
TYPE Original Research

PUBLISHED 03 August 2023

DOI 10.3389/fams.2023.1206500

OPEN ACCESS

EDITED BY

Haizhao Yang,

Purdue University, United States

REVIEWED BY

Kent-Andre Mardal,

University of Oslo, Norway

Qifeng Liao,

ShanghaiTech University, China

*CORRESPONDENCE

Mingchao Cai

Mingchao.Cai@morgan.edu

RECEIVED 15 April 2023

ACCEPTED 14 July 2023

PUBLISHED 03 August 2023

CITATION

Cai M, Gu H, Hong P and Li J (2023) A

combination of physics-informed neural

networks with the fixed-stress splitting iteration

for solving Biot’s model.

Front. Appl. Math. Stat. 9:1206500.

doi: 10.3389/fams.2023.1206500

COPYRIGHT

© 2023 Cai, Gu, Hong and Li. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

A combination of
physics-informed neural
networks with the fixed-stress
splitting iteration for solving Biot’s
model

Mingchao Cai1*, Huipeng Gu2, Pengxiang Hong2 and Jingzhi Li2

1Department of Mathematics, Morgan State University, Baltimore, MD, United States, 2Department of

Mathematics, Southern University of Science and Technology, Shenzhen, Guangdong, China

Introduction: Biot’s consolidation model in poroelasticity describes the

interaction between the fluid and the deformable porous structure. Based

on the fixed-stress splitting iterative method proposed by Mikelic et al. (Computat

Geosci, 2013), we present a network approach to solve Biot’s consolidation

model using physics-informed neural networks (PINNs).

Methods: Two independent and small neural networks are used to solve

the displacement and pressure variables separately. Accordingly, separate loss

functions are proposed, and the fixed stress splitting iterative algorithm is used

to couple these variables. Error analysis is provided to support the capability of the

proposed fixed-stress splitting-based PINNs (FS-PINNs).

Results: Several numerical experiments are performed to evaluate the

e�ectiveness and accuracy of our approach, including the pure Dirichlet problem,

the mixed partial Neumann and partial Dirichlet problem, and the Barry-

Mercer’s problem. The performance of FS-PINNs is superior to traditional PINNs,

demonstrating the e�ectiveness of our approach.

Discussion: Our study highlights the successful application of PINNs with the

fixed-stress splitting iterative method to tackle Biot’s model. The ability to use

independent neural networks for displacement and pressure o�ers computational

advantages while maintaining accuracy. The proposed approach shows promising

potential for solving other similar geoscientific problems.

KEYWORDS

physics-informed neural networks, the fixed-stress method, Biot’s model, iterative

algorithm, separated networks

1. Introduction

Biot’s consolidation model in poroelasticity describes the interaction between fluid flow
and the porous structure it saturates. This model was first proposed by Biot [1], and has a
wide range of applications, including biomechanics [2] and petroleum engineering [3]. The
partial differential equations (PDEs) for the quasi-static Biot system in a bounded domain
� ⊂ R

d (where d = 2 or 3) over the time interval (0,T] are as follows:

∂t

(

1

M
p+ α∇ · u

)

−∇ · K∇p = f in�× (0,T], (1)

−∇ · σ (u)+ α∇p = g in�× (0,T]. (2)

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2023.1206500
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2023.1206500&domain=pdf&date_stamp=2023-08-03
mailto:Mingchao.Cai@morgan.edu
https://doi.org/10.3389/fams.2023.1206500
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2023.1206500/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cai et al. 10.3389/fams.2023.1206500

Here, u is the displacement of solid, p is the fluid pressure, g is
the body force, f is a source or sink term, σ (u) = 2µε(u)+ λdivuI
with ε(u) = 1

2

[

∇u+ (∇u)T
]

being the strain tensor. The Lamé
constants λ and µ are expressed in terms of the Young’s modulus E
and the Poisson ratio ν as

λ = Eν

(1+ ν)(1− 2ν)
, µ = E

2(1+ ν) . (3)

Other physical parameters are the Biot-Willis constant α >

0, which is close to 1, Biot’s modulus M > 0, and hydraulic
conductivity K. Equation (1) represents the mass conservation and
Equation (2) means forces balance. For ease of presentation, we
assume the following pure Dirichlet conditions.

u = ud, p = pd on ∂�× (0,T]. (4)

The initial conditions are

u = u0, p = p0 in�× {0}. (5)

The discussion of the existence and uniqueness of the solution
of Biot’s system (1)–(5) can be found in [4–6]. In this work, we focus
on the algorithm aspect.

Several classical numerical methods have been proposed to
solve this problem, including finite volume methods [7], virtual
element methods [8], and mixed finite element methods [9].
Biot’s model is a multiphysics problem involving both linear
elasticity and porous media flow. Numerical difficulties such as
elastic locking and pressure oscillations can arise, especially for
models based on two-field formulations [10–13]. To overcome
these difficulties, various methods have been proposed, such as
the discontinuous Galerkin method [14], stabilized finite element
methods [11, 15], and three-field or four-field reformulations using
inf-sup stable finite element pairs [12, 16–18]. These methods
may face challenges in terms of large computational overhead.
The fixed-stress splitting iterative method [19, 20] is proposed to
address this issue. This method breaks down the original problem
into two subproblems and solves them in an iterative manner,
rather than solving the entire system at once. The method relies
on the contraction mapping principle to prove its convergence [19]
and has been shown to be efficient through various studies. Further
studies have been carried out based on the fixed-stress splitting
iterative method, such as the analysis of the relationship between
the convergence rate and the stabilization parameter [21–23] and
the implementation of a parallel-in-time strategy to speed up the
computations [24].

In recent years, deep neural networks (DNNs) have
demonstrated impressive potential in solving partial differential
equations (PDEs) with a wide range of applications in various
domains. Among DNNs, physics-informed neural networks
(PINNs) have become a popular class due to their ability to solve
PDEs without meshing. PINNs have proven successful in solving
high-dimensional problems and interface problems, and they
can tackle inverse problems with slight modifications of the loss
function [25–27]. Several studies have used PINNs to tackle the
Biot’s model [28–30], where the key advantage of PINNs over
traditional methods such as finite element methods is their ability
to avoid numerical difficulties arising from meshing and not

requiring inf-sup stability. Therefore, from a flexibility perspective,
deep neural network methods are preferable. However, most of
these studies employ a monolithic approach to train the neural
network solution, with only one study using a sequential training
approach [27], which lacks theoretical analysis and only presents
numerical experiments. In this paper, we propose a combination
of physics-informed neural networks with fixed-stress splitting
method (FS-PINNs) to solve Biot’s equations. We employ two
PINNs and incorporate them into the fixed-stress splitting iterative
method. Our method involves two separate neural networks, one
for solid displacement and another for fluid pressure, leading to
faster convergence and lower computational cost than classical
PINNs [31, 32]. Through a detailed analysis of the monotonic
convergence of the fixed-stress splitting method, we present an
error estimate for the solution of the proposed FS-PINNs. Future
work could include refining the neural network architecture to
improve the accuracy and further reduce the computational cost.
In addition, the potential application of our approach to other
PDE problems and multiphysics problems could be explored.
Overall, the proposed FS-PINNs represent a promising approach
for solving poroelastic models with faster convergence and lower
computational cost.

The remaining sections of the paper are organized as follows.
Section 2 provides an overview of the fixed-stress splitting iterative
method for Biot’s model. In Section 3, we introduce the fixed-
stress splitting iterative PINNs (FS-PINNs) and present theoretical
analyses to demonstrate their approximation properties. Section 4
presents numerical experiments to demonstrate the effectiveness of
the proposed method. Finally, conclusions are drawn in Section 5.

2. Fixed-stress splitting method for
Biot’s equations

In this section, we introduce an iterative scheme proposed in
[19], called the fixed-stress splitting method. Instead of solving
Biot’s model (1)–(5) in a monolithic way, this method decouples
the original problem into two subproblems and solves them in
an iterative manner. Given a large enough stabilization parameter
βFS and an initial guess (p0, u0), the standard fixed-stress splitting
method computes a sequence of approximations as follows:
The first step: Given pn and un, we solve for pn+1 satisfying

(

1

M
+ βFS

)

∂tp
n+1 − ∇ · K∇pn+1 =

f − α∇ · ∂tun + βFS∂tpn in�× (0,T], (6)

pn+1 = p0 in�× {0}, (7)

pn+1 = pd on ∂�× (0,T]. (8)

The second step: Using pn+1, we solve for un+1 satisfying

−∇ · σ (un+1) = g − α∇pn+1 in�× (0,T], (9)

un+1 = u0 in�× {0}, (10)

un+1 = ud on ∂�× (0,T]. (11)

To derive the variational formulation of the fixed-stress
problem (6)–(11), we define the proper functional spaces with

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2023.1206500
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cai et al. 10.3389/fams.2023.1206500

H1(�) denoting the Hilbert subspace as follows.

W = {p ∈ H1([0,T];H1(�))
∣

∣ p|∂� = pd},
V = {u ∈ H1([0,T];H1(�))

∣

∣ u|∂� = ud}.

Multiplying (6), (9) by test functions, and applying the
integration by parts, we obtain the variational problems: for a given
t ≥ 0, find {(pn+1, un+1)} ⊂ W × V such that

(

1

M
+ βFS

)∫

�
(∂tp

n+1)ψdx+ K

∫

�
(∇pn+1)(∇ψ)dx

=
∫

�
fψdx− α

∫

�
(∇ · ∂tun)ψdx+ βFS

∫

�
(∂tp

n)ψdx, ∀ψ ∈ W,

(12)

2µ

∫

�
ε(un+1) : ε(v)dx+ λ

∫

�
(∇ · un+1)(∇ · v)dx

=
∫

�
gvdx+ α

∫

�
(∇ · v)pn+1dx, ∀v ∈ V .

(13)

Assume that (p, u) ∈ W × V is the unique solution of Biot’s
system (1)–(5). Given a large enough stabilization parameter βFS,
the sequence {(pn+1, un+1)} ⊂ W × V generated by Equations (12,
13) converges to the solution (p, u). More precisely, we can state the
following:

THEOREM 2.1. The sequence {(pn+1, un+1)} ⊂ W × V generated by
Equations (6)–(11) converges to (p, u) ∈ W × V for any βFS ≥

α2

2
(

2µ
d
+λ
) . If one denotes en+1

u := un+1 − u and en+1
p := pn+1 − p,

then there holds

∫ T

0

∫

�

(∂te
n+1
p )2dxdt ≤ L

∫ T

0

∫

�

(∂te
n
p)

2dxdt, (14)

where L = βFS

βFS+ 2
M

is a positive constant strictly smaller than 1.

REMARK 2.2. We have included a convergence analysis of the fixed-
stress splitting iterative method in the Appendix. In our proof, we
demonstrate that the differences en+1

p and en+1
u approach zeros as

n tends to infinity. Our proof helps to illustrate the convergence of
the fixed-stress splitting method.

3. The classical PINNs and the
FS-PINNs for solving Biot’s model

In this section, we introduce the training procedure of
the classical PINNs for solving Biot’s model, and propose an
iterative deep learning method combining the fixed-stress splitting
method, called FS-PINNs. The proposed FS-PINNs consist of
two independent PINNs, one for pressure, and the other for
displacement. We then present the training procedure and a
theoretical analysis of the proposed FS-PINNs.

3.1. Training procedure of the classical
PINNs

The idea of using the classical PINNs to solve PDEs is from [25],
which can be easily extended to solve Biot’s model. The main idea is

to design loss functions for fully connected neural networks. In this
context, we provide a brief overview of the training procedure for
solving problem (1)–(5), which is illustrated in Figure 1.

The functional form of a classical PINN is given as follows.

n̂(x; θn) =
(

p̂(x; θn); û(x; θn)
)

= 6Ln
n ◦6Ln−1

n ◦ · · · ◦61
n(x). (15)

Here, n̂ is the network approximation of the exact solution
(p; u) with Ln hidden layers with the input x = (x1, · · · , xd, t) ∈
R
d × [0,T]. The collection of parameter θn is given by

θn = {W1
n,W

2
n, · · · ,WLn

n , b1n, b
2
n, · · · , bLnn }. (16)

The mapping function6i
n is defined as

xin := 6i
n(x

i−1
n ) = σ i

n(W
i
nx

i−1
n + bin), i = 1, 2, · · · , Ln. (17)

Here, (W i
n, b

i
n, σ

i
n) represent the weights, biases, and activation

functions of the i-th layer for network n̂. It is assumed that the
number of neurons in each hidden layer is set to be the same Nn

and that all activation functions σ i
n are identical.

After setting up the architecture, we can begin training the
parameter θn using the procedure:

θ∗ = argmin
θn

Ln(x; θn), (18)

where Ln is the loss function. The loss function for the
classical PINNs generally consists of three components: the PDEs
loss, the initial condition loss, and the boundary condition
loss. The PDEs loss represents the residual of the governing
equations, while the initial and boundary condition losses ensure
that the predicted solution satisfies the initial and boundary
conditions. The loss function is denoted by Ln(x; θn) and has the
following representation.

Ln(x; θn) =
1

N1

N1
∑

i=1

(

∥

∥p̂(xi1; θn)− pi
∥

∥

2
L2

+
∥

∥û(xi1; θn)− ui
∥

∥

2
L2

)

+ 1

N2

N2
∑

i=1

(

∥

∥

1

M
∂t p̂(x

i
2; θn)−∇ · K∇p̂(xi2; θn)+

α∇ · ∂tû(xi2; θn)− f (xi2)
∥

∥

2
L2

+
∥

∥−∇ · σ (û(xi2; θn))+

α∇p̂(xi2; θn)− g(xi2)
∥

∥

2
L2

)

.

The above expression uses the mean square error (MSE) to
measure errors. In this expression, {xi1}

N1
i=1 represents the initial and

boundary training data, while {xi2}
N2
i=1 represents the collocation

points in the domain. We then optimize θn to obtain θ∗. For cases
involving mixed boundary conditions, one can refer to [28] for
more details.

3.2. Training procedure of the proposed
FS-PINNs

The primary innovation of our approach is incorporating the
fixed-stress strategy into the training procedure of PINNs. The
proposed method includes two independent PINNs to solve for

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2023.1206500
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cai et al. 10.3389/fams.2023.1206500

FIGURE 1

The training procedure of the classical PINNs using unified activation functions for a 2D Biot’s model.

FIGURE 2

The training procedure of the proposed FS-PINNs. Two independent networks are trained iteratively with respect to the corresponding loss functions.

displacement and fluid pressure separately. We can then train
our FS-PINNs iteratively with respect to their corresponding loss
functions. Figure 2 illustrates the training procedure.

Similar to the classical PINNs, the functional forms of the two
independent PINNs are as follows.

p̂(x; θp) = 6
Lp
p ◦6Lp−1

p ◦ · · · ◦61
p(x), (19)

û(x; θu) = 6Lu
u ◦6Lu−1

u ◦ · · · ◦61
u(x). (20)

Here, p̂ refers to the network approximation of pressure p with
Lp hidden layers, while û refers to the network approximation of
displacement u with Lu hidden layers. The collection of parameters
of p̂ and û are denoted by θp and θu, respectively, and are given by:

θp = {W1
p,W

2
p, · · · ,W

Lp
p , b1p, b

2
p, · · · , b

Lp
p }, (21)

θu = {W1
u,W

2
u, · · · ,WLu

u , b1u, b
2
u, · · · , bLuu }. (22)

The mapping functions6i
p and6

i
u are defined as

xip := 6i
p(x

i−1
p ) = σ i

p(W
i
px

i−1
p + bip), i = 1, 2, · · · , Lp, (23)

xiu := 6i
u(x

i−1
u ) = σ i

u(W
i
ux

i−1
u + biu), i = 1, 2, · · · , Lu. (24)

In this context, (W i
p, b

i
p, σ

i
p) and (W i

u, b
i
u, σ

i
u) represent the

weights, biases, and activation functions of the i-th layer for p̂ and
û, respectively. It is also assumed that the number of neurons in
each hidden layer of p̂ and û is set to Np and Nu, respectively.
Furthermore, all activation functions σ i

p and σ i
u are assumed to

be identical.
From now, our attention turns to developing the loss functions.

By utilizing the fixed-stress splitting method detailed in Equations
(6)–(8) and Equations (9)–(11), we can impose constraints on the
networks p̂ and û, respectively. We begin by setting n = 0 and
θnp = θnu = 0. We can then formulate the optimization problem as
follows. In the first step, we obtain θn+1

p by solving for theminimum

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2023.1206500
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cai et al. 10.3389/fams.2023.1206500

of Lp(x, θnu , θ
n
p ; θp):

θn+1
p = argmin

θp

Lp(x, θ
n
u , θ

n
p ; θp). (25)

In the second step, we obtain θn+1
u by solving for the minimum

of Lu(x, θn+1
p ; θu):

θn+1
u = argmin

θu

Lu(x, θ
n+1
p ; θu). (26)

To be clear, Lp and Lu denote the loss functions for networks p̂
and û, respectively. These loss functions are defined as follows:

Lp(x, θ
n
u , θ

n
p ; θp) =

1

N3

N3
∑

i=1

∥

∥

∥
p̂(xip; θp)− p(xip)

∥

∥

∥

2

+ 1

N4

N4
∑

i=1

∥

∥

∥

∥

(

1

M
+ βFS

)

∂t p̂(x
i
f ; θp)− ∇ · K∇p̂(xif ; θp)

+ α∇ · ∂tû(xif ; θ
n
u )− βFS∂t p̂(xif ; θ

n
p )− f (xif )

∥

∥

∥

∥

2

,

(27)

Lu(x, θ
n+1
p ; θu) =

1

N5

N5
∑

i=1

∥

∥û(xiu; θu)− u(xiu)
∥

∥

2

+ 1

N6

N6
∑

i=1

∥

∥

∥
−∇ · σ (û(xig; θu))+ α∇p̂(xig; θn+1

p )− g(xig )
∥

∥

∥

2
.

(28)

In the above expressions, {xip}
N3
i=1 and {xiu}

N5
i=1 denote the

initial and boundary training data on p(x) and u(x), respectively.
Additionally, {xi

f
}N4
i=1 and {xig}

N6
i=1 represent the collocation points

for f (x) and g(x) in the domain, respectively. By repeatedly
updating θp and θu using (25) and (26), we can get the network
approximations of Biot’s model: p̂(x; θp) and û(x; θu).

3.3. Analysis of the proposed FS-PINNs

The classical PINNs have shown great potential in solving
PDEs, but quantifying their errors remains an open problem [26].
The accuracy of neural network approximation is influenced by
various factors, such as network architecture, training data, etc. In
this section, we assume that PINNs can solve the two subproblems
within a certain error tolerance. We then employ an iterative
strategy for the proposed FS-PINNs. It is crucial to consider the
possibility of error accumulation and divergence since network
approximations can not guarantee convergence of the fixed-stress
iteration. To address this issue, we observe that the fixed-stress
splitting method, which is essentially equivalent to the fixed-point
iterative scheme, has been shown to mitigate error accumulation.
Therefore, we present a mathematical analysis to demonstrate
the robustness of our proposed FS-PINNs. Given an initial guess
(p̂0, û0), we describe the procedures of (25) and (26) as follows.

Step 1: Given p̂n and ûn, we employ (25) to obtain a network
solution p̂n+1 for the following problem.

(

1

M
+ βFS

)

∂tp
n+1 −∇ · K∇pn+1 = f − α∇ · ∂t ûn + βFS∂t p̂n in�× (0,T], (29)

pn+1 = p0 in�× {0},
(30)

pn+1 = pd on ∂�× (0,T].
(31)

The corresponding loss function for p̂n+1 imposes the initial
condition and the boundary condition in the mean square sense.

Step 2: using p̂n+1, we employ (26) to obtain a network solution
ûn+1 for the following problem.

−∇ · σ (un+1) = g − α∇p̂n+1 in�× (0,T], (32)

un+1 = u0 in�× {0}, (33)

un+1 = ud on ∂�× (0,T]. (34)

The corresponding loss function for ûn+1 imposes the initial
condition and the boundary condition in the mean square sense.

To analyze the numerical errors p̂n+1 − p and ûn+1 − u, we can
express them as the sum of two terms: (p̂n+1 − pn+1)+ (pn+1 − p)
and (ûn+1−un+1)+ (un+1−u), which can be dealt with separately.
We assume that the Physics-Informed Neural Networks (PINNs)
used to solve Equations (29) and (32) can achieve a certain error
tolerance, denoted by δ, for the approximations p̂n+1 and ûn+1

obtained in each step. This is expressed as

‖p̂n+1 − pn+1‖H1([0,T];H1(�)) ≤ δ, ‖ûn+1 − un+1‖H1([0,T];H1(�)) ≤ δ.

(35)
Such assumptions are reasonable if the neural networks are

sufficiently deep and wide [33]. For estimating the terms (pn+1−p)
and (un+1−u), we utilize integration by parts and employ the fixed-
stress iterative method to analyze convergence. We then build on
Theorem 2.1 to perform mathematical analysis.

THEOREM 3.1. Assume that (p, u) ∈ W × V is the unique
solution of the problem (1)–(5). Let (p̂n+1, ûn+1) be the network
approximations of Equations (29)–(34), and (pn+1, un+1) ∈ W×V

be the exact solution of (6)–(11). We define en+1
u := un+1 − u and

en+1
p := pn+1 − p. Under the assumption (35) with a positive δ, if

βFS is large enough, then there exists a positive number L̃ < 1 such
that the following estimate holds for all n ≥ 0.

∫ T

0

∫

�

(∂te
n+1
p )2dxdt ≤ L̃

∫ T

0

∫

�

(∂te
n
p)

2dxdt + Cδ2, (36)

where C is a positive constant. Moreover, the limit superior exists
and satisfies:

lim sup
n→∞

∫ T

0

∫

�

(∂te
n+1
p )2dxdt ≤ C

δ2

1− L̃
. (37)

Proof. Firstly, we start with the second step of FS-PINNs. We
subtract the original Equation (2) from the n-th iteration of (32).
For the resulted equation, taking the derivative with respect to t, we
obtain

−∇ · σ (∂tenu) = −α∇∂tenp + α∇(∂tp
n − ∂t p̂n). (38)

Multiplying (38) by ∂tenu, applying the divergence theorem, the
Cauchy-Schwarz inequality, and the Poincaré inequality, we shall

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2023.1206500
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cai et al. 10.3389/fams.2023.1206500

derive the following inequality with any ǫ1 > 0.

2µ

∫ T

0

∫

�
ε(∂te

n
u) : ε(∂te

n
u)dxdt + λ

∫ T

0

∫

�
(∇ · ∂tenu)2dxdt

= α

∫ T

0

∫

�
(∇ · ∂tenu)(∂tenp)dxdt + α

∫ T

0

∫

�
(∇(∂t p̂

n − ∂tpn))(∂tenu)dxdt

≤ 1

2

(

2µ

d
+ λ

)∫ T

0

∫

�
(∇ · ∂tenu)2dxdt +

α2

2
(

2µ
d

+ λ
)

∫ T

0

∫

�
(∂te

n
p)

2dxdt

+ α2

4ǫ1

∫ T

0

∫

�
(∇(∂t p̂

n − ∂tpn))2dxdt + Cpǫ1

∫ T

0

∫

�
(∇ · ∂tenu)2dxdt.

(39)

On the other hand, there holds [23]

(

2µ

d
+ λ

)∫ T

0

∫

�

(∇ · ∂tenu)2dxdt ≤ 2µ

∫ T

0

∫

�

ε(∂te
n
u) : ε(∂te

n
u)dxdt + λ

∫ T

0

∫

�

(∇ · ∂tenu)2dxdt.

Based on the above inequality and (35), we can deduce the
following inequality from (39).

2µ

∫ T

0

∫

�

ε(∂te
n
u) : ε(∂te

n
u)dxdt + λ

∫ T

0

∫

�

(∇ · ∂tenu)2dxdt

≤ (1+ Cǫ1)

[

α2

2µ
d
+ λ

∫ T

0

∫

�

(∂te
n
p)

2dxdt + α2

2ǫ1
δ2

]

. (40)

Similar to the derivation of (38), subtracting the (n + 1)-th
iteration Equation (32) from (2) and taking the derivative with
respect to t, we obtain

−∇ · σ (∂ten+1
u ) = −α∇∂ten+1

p + α∇(∂tp
n+1 − ∂t p̂n+1). (41)

Subtracting (38) from (41) yields

−∇ · σ (∂ten+1
u − ∂tenu) = −α∇(∂te

n+1
p − ∂tenp)+

α∇
[

(∂tp
n+1 − ∂t p̂n+1)− (∂tp

n − ∂t p̂n)
]

. (42)

We multiply (42) by ∂te
n+1
u − ∂te

n
u, and repeat the same

argument as that for (40) to derive

2µ

∫ T

0

∫

�

ε(∂te
n+1
u − ∂tenu) : ε(∂ten+1

u − ∂tenu)dxdt

+ λ
∫ T

0

∫

�

(∇ · (∂ten+1
u − ∂tenu))2dxdt

≤ (1+ Cǫ1)

[

α2

2µ
d
+ λ

∫ T

0

∫

�

(∂te
n+1
p − ∂tenp)2dxdt +

2α2

ǫ1
δ2

]

.

(43)

Next, we consider the entire system of the FS-PINNs.
Subtracting the original Equation (1) from the (n + 1)-th iteration
Equation (29) yields

(

1

M
+ βFS

)

∂te
n+1
p − ∇ · K∇en+1

p = −α∇ · ∂tenu

+ βFS∂tenp + α∇ · (∂tun − ∂tûn)− βFS(∂tpn − ∂t p̂n).
(44)

Multiplying (44) by ∂ten+1
p , and (41) by ∂tenu, respectively, we

then take a summation to derive the following equation.

LHS := 1

M

∫ T

0

∫

�
(∂te

n+1
p )2dxdt + K

2

∫

�
(∇en+1

p (T))2dx+

2µ

∫ T

0

∫

�
ε(∂te

n+1
u ) : ε(∂te

n
u)dxdt

+ λ
∫ T

0

∫

�
(∇ · ∂ten+1

u )(∇ · ∂tenu)dxdt+

βFS

∫ T

0

∫

�
(∂te

n+1
p )(∂te

n+1
p − ∂tenp)dxdt

= −α
∫ T

0

∫

�

(

∇ · (∂t ûn − ∂tun)
)

(∂te
n+1
p )dxdt+

βFS

∫ T

0

∫

�
(∂t p̂

n − ∂tpn)(∂ten+1
p )dxdt

+ α
∫ T

0

∫

�
(∇(∂t p̂

n+1 − ∂tpn+1))(∂te
n
u)dxdt =: RHS. (45)

We recall the following algebraic identities [“(·, ·)” means the l2

inner product].

(ξ − η, ξ ) = 1

2

[

(ξ , ξ )− (η, η)+ (ξ − η, ξ − η)
]

,

(ξ , η) = 1

4

[

(ξ + η, ξ + η)− (ξ − η, ξ − η)
]

. (46)

Applying (46) to the LHS of (45), and discarding some positive
terms, we shall obtain

LHS ≥
(

1

M
+ βFS

2

)∫ T

0

∫

�

(∂te
n+1
p )2dxdt−

βFS

2

∫ T

0

∫

�

(∂te
n
p)

2dxdt

− µ

2

∫ T

0

∫

�

ε(∂te
n+1
u − ∂tenu) : ε(∂ten+1

u − ∂tenu)dxdt

− λ

4

∫ T

0

∫

�

(∇ · (∂ten+1
u − ∂tenu))2dxdt+

βFS

2

∫ T

0

∫

�

(∂te
n+1
p − ∂tenp)2dxdt. (47)

We then deduce the following inequality based on (43).

LHS ≥
(

1

M
+ βFS

2

)∫ T

0

∫

�

(∂te
n+1
p )2dxdt−

βFS

2

∫ T

0

∫

�

(∂te
n
p)

2dxdt

+
(

βFS

2
− 1+ Cǫ1

2

α2

2µ
d
+ λ

)

∫ T

0

∫

�

(∂te
n+1
p − ∂tenp)2dxdt

− (1+ Cǫ1)
α2

ǫ1
δ2. (48)

For estimating an upper bound of the RHS term in (45), we use
the Cauchy-Schwarz inequality with any ǫ2 > 0, and (40). We see

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2023.1206500
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cai et al. 10.3389/fams.2023.1206500

that

RHS ≤ ǫ2

∫ T

0

∫

�

(∂te
n+1
p )2dxdt+

Cpǫ2

∫ T

0

∫

�

(∇ · ∂tenu)2dxdt +
2α2 + βFS

4ǫ2
δ2

≤ ǫ2

∫ T

0

∫

�

(∂te
n+1
p )2dxdt + Cpǫ2(1+ Cǫ1)

α2

2µ
d
+ λ

∫ T

0

∫

�

(∂te
n
p)

2dxdt

+
(

2α2 + βFS
4ǫ2

+ Cpǫ2(1+ Cǫ1)
α2

2ǫ1

)

δ2. (49)

We let βFS ≥ (1 + Cǫ1)
α2

2µ
d
+λ , by combining (48) and (49), we

see that

(

1

M
+ βFS

2
− ǫ2

)∫ T

0

∫

�

(∂te
n+1
p )2dxdt

≤
(

βFS

2
+ C1(ǫ1, ǫ2)

)∫ T

0

∫

�

(∂te
n
p)

2dxdt + C2(ǫ1, ǫ2)δ
2, (50)

where

C1(ǫ1, ǫ2) = Cpǫ2(1+ Cǫ1)
α2

2µ
d
+ λ

,

C2(ǫ1, ǫ2) =
2α2 + βFS

4ǫ2
+
(

Cpǫ2

2
+ 1

)

(1+ Cǫ1)
α2

ǫ1
.

We choose ǫ1 and ǫ2 small enough, such that the contraction
coefficient L̃, defined as follows, is strictly smaller than 1.

L̃ := βFS + 2C1(ǫ1, ǫ2)
2
M + βFS − 2ǫ2

< 1.

Then, we can rewrite (50) in the following form.

∫ T

0

∫

�

(∂te
n+1
p )2dxdt ≤ L̃

∫ T

0

∫

�

(∂te
n
p)

2dxdt + Cδ2. (51)

This leads to the limit supremum.

lim sup
n→∞

∫ T

0

∫

�

(∂te
n+1
p )2dxdt

≤ lim sup
n→∞

[

L̃n+1
∫ T

0

∫

�

(∂te
0
p)

2dxdt + (L̃n + · · · + 1)Cδ2
]

≤ C
δ2

1− L̃
. (52)

This completes our proof.

4. Benchmark tests

In this section, the efficacy of the proposed FS-PINNs is
presented through three case studies. The first study involves
a pure Dirichlet boundary value problem, while the second
study considers a problem with mixed Dirichlet-Neumann
boundary conditions. Finally, the third study investigates Barry-
Mercer’s problem. All experiments were implemented in the

open-source machine learning tool PyTorch [34] on a single
NVIDIA GeForce RTX 3060 GPU. Our code is available
at https://github.com/newpolarbear/FS-PINNs. We evaluate the
computational efficiency of our proposed method by comparing its
true errors and runtime overheads with those of classical PINNs.

4.1. Models generation

In practice, the training procedure of classical PINNs is
heavily influenced by several factors. One of these factors is
the design of the neural network architecture, which does not
have a universal standard. It’s well-known that the network’s
representational capability is affected by its depth and width. While
deeper and wider networks have greater representation capacity,
they may suffer from slower training, compromises can be made to
reduce runtime overhead. Another factor is the choice of nonlinear
activation functions and optimization methods. In this work, we
used tanh(x) = ex−e−x

ex+e−x as the activation function and Adam
optimizer with a fixed learning rate of 0.0001. In addition, some
factors are specific to the problem being solved, such as the number
of epochs, collocation points, and initial and boundary training
data. In this study, we randomly select 10, 000 points as collocation
points within the domain. The initial training data and each
boundary training data are set to 500 and 200, respectively.

In addition to the standard configurations of classical PINNs,
there are other aspects that come into play when training FS-
PINNs. One FS-PINN is composed of two separate networks, which
directly impact the performance. Moreover, training FS-PINNs
involves networks optimization for each fixed-stress iteration, as
shown in Figure 2. In the n-th fixed-stress iteration, we carry out
the optimization procedure of network parameters θp and θu. For
simplicity, we assume that the number of epochs for optimizing θp
equals that for optimizing θu. Since the fixed-stress splittingmethod
is an iterative algorithm, achieving accurate solutions at each step is
not so necessary. For simplicity, we set the fixed-stress stabilization

parameter to βFS = α2/
(

2µ
d
+ λ

)

.

The training procedure of FS-PINNs is dynamic, loss functions
Lp and Lu can only show the performance in the current fixed-
stress iteration. To evaluate the proposed method, we consider
the true errors between network solutions and exact solutions
as follows.

MSE for pressure p : MSEp =
1

N

N
∑

i=1

‖p̂(xi)− p(xi)‖2,

MSE for x-displacement u1 : MSEu1 =
1

N

N
∑

i=1

‖û1(xi)− u1(x
i)‖2,

MSE for y-displacement u2 : MSEu2 =
1

N

N
∑

i=1

‖û2(xi)− u2(x
i)‖2.

Here, p̂, û1, and û2 represent the neural network solutions of
pressure, x-displacement, and y-displacement, respectively, while
p, u1, and u2 denote their corresponding exact solutions. The total
mean squared error can be computed by taking the summation of

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2023.1206500
https://github.com/newpolarbear/FS-PINNs
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cai et al. 10.3389/fams.2023.1206500

TABLE 1 Runtime overheads of five di�erent parameter selections for FS-PINNs architecture of Example 1.

Parameter selection Runtime for network p̂ Runtime for network û Total runtime

Np = 5 :Nu = 25 514.9 s (35.4%) 939.1 s (64.6%) 1454.0 s

Np = 10 :Nu = 20 471.4 s (40.8%) 685.4 s (59.2%) 1156.8 s

Np = 15 :Nu = 15 497.9 s (42.0%) 688.0 s (58.0%) 1185.9 s

Np = 20 :Nu = 10 483.0 s (43.1%) 637.0 s (56.9%) 1120.0 s

Np = 25 :Nu = 5 569.9 s (47.4%) 632.5 s (52.6%) 1202.4 s

these errors:

Total MSE : MSEtotal = MSEp +MSEu1 +MSEu2 . (53)

4.2. Example 1

The first numerical experiment is based on the example in [16].
The domain is� = [0, 1]2 and the final time is T = 0.5, where pure
Dirichlet boundary conditions are applied. In this experiment, the
source or sink term f , body force g, initial conditions, and boundary
conditions are chosen such that the exact solutions are provided as
follows:

u(x, y, t) = t

2

(

x2, y2
)T

, p(x, y, t) = sin
(

x+ y
)

et . (54)

The model parameters are set to E = 1.0, ν = 0.3, α = 1.0,
M = 1.0, and K = 1.0.

4.2.1. Robustness of the FS-PINNs architecture
The performance of FS-PINNs is highly dependent on its

architecture. We fixed the total width to Np + Nu = 30 and depths
to Lp = Lu = 3, where Np, Nu are the number of neurons, and
Lp, Lu are the number of layers. We then designed an experiment
with five sets of parameter selection for Np :Nu. To ensure that the
networks are well-trained, we applied 20 fixed-stress iterations and
3,000 epochs for each fixed-stress step. The experiment is tested
repeatedly to ensure the reliability of the results.

Table 1 shows the runtime overheads for various parameter
selections, revealing that a more uniform separation exhibits lower
runtime overhead. Notably, the case Np = 5 :Nu = 25 performs
poorly compared to other cases, because wider networks experience
slower training, which leads to a significant increase in the runtime
overhead of network û. Conversely, the other four cases exhibit
similar performance, suggesting that the proposed FS-PINNs with
reasonable architecture are resilient to runtime overhead.

Figure 3 tracks the trends of all MSE terms during different
parameter selections training procedures, revealing that the case
Np = 25 :Nu = 5 performs worst, and the case Np = 5 :Nu = 25 is
less stable. The inadequate representation ability of tiny networks
leads to inaccurate solutions. Network approximations p̂ and û

depend on the interdependent loss functions for FS-PINNs. On
the other hand, the trends of the remaining three cases are quite
similar, which implies that FS-PINNs with reasonable architecture
can withstand accuracy issues.

4.2.2. Acceleration e�ect of the FS-PINNs training
This section demonstrates the acceleration effect of the FS-

PINNs over the classical PINNs. Biot’s equations are solved using
both methods with the same setup as in Example 1. The number of
neurons for the two networks in FS-PINNs is fixed to Np = Nu =
15 (as indicated by Table 1), while the total number of neurons in
classical PINNs is set to Nn = 30 with the number of layers Ln = 3.
To examine the effect of the number of epochs optimizing networks
and the number of fixed-stress iterations, we then conduct the test
with a constant number of the multiplication of the above two
number, which is set to 20, 000.

Figure 4 shows the trends ofMSE terms for solving the problem
in Example 1. We present the results generated by one classical
PINN and four FS-PINNs under identical conditions, which
demonstrates the acceleration effect of FS-PINNs. By decoupling
the original optimization problem into two small sub-problems,
together with the fixed-stress coefficient L < 1, FS-PINNs increase
efficiency and maintain certain accuracy. From this perspective,
FS-PINNs offer more flexibility in solving the problem through
different setting of optimizing epoch and fixed-stress iteration. In
Figure 4, we can see that a smaller number of epochs lead to faster
convergence initially but lower accuracy eventually. Since the fixed-
stress splitting method is a numerical approach, high accuracy is
not essential for each fixed-stress step. It implies that a large number
of optimizing epochs is not so helpful.

Among all the results generated by FS-PINNs, here we consider
in-depth observations for the case of [400, 50]. Here, 400 means
the number of epochs, and 50 means the number of fixed-stress
iterations. To test the cases with a larger parameter λ, we also
include the testing result when the Poisson ratio ν = 0.49 for
Example 1. Figure 5 provides a comparison between the analytical
solution and the numerical solution given by FS-PINNs with
[400, 50]. Theses results show that the proposed FS-PINNs with
ν = 0.3 and ν = 0.49 accurately predict the pressure p and
displacement u with errors within an acceptable tolerance range.
However, it is true that when λ is large, to obtain a more accurate
solution, we need to put a relatively large weight for the first
equation in the total loss function. And also, we need to increase
the number of epochs and set a finer learning rate for the training
of the network for u.

4.3. Example 2

The Biot’s problem with mixed boundary conditions presented
in [2] is tested. We consider the square domain � = [0, 1]2, with

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2023.1206500
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cai et al. 10.3389/fams.2023.1206500

FIGURE 3

Trends of all the MSE terms at T = 0.5 for five di�erent FS-PINNs architecture during training with respect to epoch.

Dirichlet boundary Ŵ1 ∪ Ŵ3 and Neumann boundary Ŵ2 ∪ Ŵ4.
Specifically, Ŵ1 = (1, y); 0 ≤ y ≤ 1, Ŵ2 = (x, 0); 0 ≤ x ≤ 1, Ŵ3 =
(0, y); 0 ≤ y ≤ 1, and Ŵ4 = (x, 1); 0 ≤ x ≤ 1. Setting the final time
to T = 0.2, we choose the body force g, the source or sink term f , as
well as the initial and boundary conditions such that exact solutions
are as follows.

u1 = e−t

(

sin (2πy)(cos (2πx)− 1)+ 1

µ+ λ sin (πx) sin (πy)

)

,

u2 = e−t

(

sin (2πx)(1− cos (2πy))+ 1

µ+ λ sin (πx) sin (πy)

)

,

p = e−t sin (πx) sin (πy).

The parameters of the model are E = 1.0, ν = 0.3, α = 1.0,
M = 1.0, K = 1.

In dealing with mixed boundary conditions, it is necessary to
select suitable loss functions capable of handling both Dirichlet
and Neumann boundary conditions. To this end, we follow the
approach taken in [28, 32] and employ the corresponding loss
functions Lp and Lu for pressure and displacement, respectively.

In this test, following the result in Section 4.2.2., we employ the FS-
PINNwith [400, 50] using the same architecture to solve Example 2.

In Figure 6, we compare the analytical solution with
our FS-PINN solution and observe that our approach can
approximate solutions for problems with mixed boundary
conditions. However, its performance is not as good as that of
solving the pure Dirichlet problem in Example 1. The network
approximations in the boundary region are sub-optimal because
all the parameters used were selected to solve Example 1.
Hence, the complexity of Example 2 presents a challenge to our
network, which could potentially be overcome by optimizing the
parameters, such as by using additional collocation points in the
boundary region.

4.4. Example 3

The Barry-Mercer’s problem is a classical benchmark
problem of porous media involving injection of fluids
[14, 31, 35, 36]. It is a two-dimensional problem in the
square domain � = [0, 1]2 that has a point source f located

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2023.1206500
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cai et al. 10.3389/fams.2023.1206500

FIGURE 4

Trends of all the MSE terms at T = 0.5 for one classical PINN and four FS-PINNs with [the number of epochs training networks, the number of

fixed-stress iterations] during training with respect to runtime overhead.

FIGURE 5

A comparison of the analytical solution (left), the FS-PINN solution with ν = 0.3 (middle), and the FS-PINN solution ν = 0.49 (right) at T = 0.5 for

Example 1.

at (x0, y0) = (0.25, 0.25), which makes it challenging to
solve numerically. Figure 7 depicts the boundary conditions
under consideration.

As for the initial conditions, we set

u = 0, p = 0 in�× {0}. (55)

To define the body force term g and the source/sink term f , we
use the following expressions:

g = 0, f = 2δ(x− x0)δ(y− y0) sin (t), (56)

where δ denotes the Dirac function. We approximate the Dirac
function using the Gaussian distribution [31], that is, δ(x) ≈

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2023.1206500
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cai et al. 10.3389/fams.2023.1206500

FIGURE 6

A comparison of the analytical solution (left) and the FS-PINN solution with [400, 50] (right) at T = 0.2 for Example 2.

FIGURE 7

Boundary conditions for the Barry-Mercer’s problem.

1
cg
√
π
e−(x/cg )2 with cg = 0.04. The physical parameters are specified

as follows:

1/M = 0, α = 1.0, λ = 0.2, µ = 0.4, K = 1.0. (57)

Denote λn = nπ , λq = qπ , and λnq = λ2n + λ2q, then the
analytical solution is as follows:

p(x, y, t) = −4
∞
∑

n=1

∞
∑

q=1

p̂(n, q, t) sin (λnx) sin (λqy),

u1(x, y, t) = 4
∞
∑

n=1

∞
∑

q=1

û1(n, q, t) cos (λnx) sin (λqy),

u2(x, y, t) = 4
∞
∑

n=1

∞
∑

q=1

û2(n, q, t) sin (λnx) cos (λqy),

where

p̂(n, q, t) = −
2 sin (λnx0) sin (λqy0)

λ2nq + 1

(

λnq sin t − cos t + e−λnqt
)

,

û1(n, q, t) =
λn

λnq
p̂(n, q, t), û2(n, q, t) =

λq

λnq
p̂(n, q, t).

In this case, we use the same architecture as in Section 4.2.2,
which is the FS-PINN with [400, 50], to solve Barry-Mercer’s
problem. As mentioned in the literature [37], networks training
relies on the propagation of information from initial and boundary
points to the interior points. To improve the performance of
our FS-PINN, we apply weighted loss functions proposed in
[32], and increase the weights of the initial and boundary loss
terms. Specifically, we replace 1

N3
, 1
N5

with 1000
N3

, 100
N5

in the loss
functions (27), (28), respectively. The solution obtained from
our FS-PINN closely matches the analytic solution at T =
π/4 for Example 3, as demonstrated in Figure 8. This indicates
the effectiveness of our approach in approximating the analytic
solution.

5. Conclusion

This paper presents a new approach to solving Biot’s
consolidation model by combining Physics-informed neural
networks (PINNs) with the fixed-stress splitting method. We
demonstrate that our method achieves faster convergence
and lower computational costs than the neural network
methods which solve Biot’s problem in a monolithic way.
We provide a theoretical analysis to show the convergence
of our proposed FS-PINNs. The numerical experiments
illustrate the effectiveness of our approach on various
test cases with different boundary conditions and physical
parameters.

While our approach has several advantages over some
traditional methods for solving poroelastic models, such as being
meshless, not requiring inf-sup stability, there are also some

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2023.1206500
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cai et al. 10.3389/fams.2023.1206500

FIGURE 8

A comparison of the analytical solution (left) and the FS-PINN solution (right) at T = π/4 for Example 3.

limitations and challenges that need to be addressed in future
work. These include choosing optimal network architectures
and parameters for different problems, improving accuracy and
reducing computational costs even further, and extending the
approach to other PDE problems and multi-physics problems.
We hope that our work can inspire more research on combining
deep learning techniques with iterative methods for solving
PDEs.

Data availability statement

The original contributions presented in the
study are included in the article/supplementary
material, further inquiries can be directed to the
corresponding author.

Author contributions

MC: conceptualization, investigation, writing—original
draft, validation, methodology, writing—review and editing,
supervision, formal analysis, and funding acquisition. HG:
investigation, writing—original draft, validation, visualization,
writing—review and editing, formal analysis, and data curation.
PH: investigation, writing—original draft, validation, visualization,
writing—review and editing, software, and data curation. JL:
conceptualization, investigation, funding acquisition, validation,
methodology, project administration, and supervision. All
authors contributed to the article and approved the submitted
version.

Funding

The work of MC was partially supported by the NIH-RCMI
grant through 347 U54MD013376, the affiliated project award
from the Center for Equitable Artificial Intelligence and Machine
Learning Systems (CEAMLS) at Morgan State University (project
ID 02232301), and the National Science Foundation awards
(1831950 and 2228010). The work of HG, PH, and JL were
partially supported by the NSF of China No. 11971221, Guangdong
NSF Major Fund No. 2021ZDZX1001, the Shenzhen Sci-Tech
Fund Nos. RCJC20200714114556020, JCYJ20200109115422828,
and JCYJ20190809150413261, National Center for Applied
Mathematics Shenzhen, and SUSTech International Center for
Mathematics.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers in AppliedMathematics and Statistics 12 frontiersin.org

https://doi.org/10.3389/fams.2023.1206500
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cai et al. 10.3389/fams.2023.1206500

References

1. Biot MA. General theory of three-dimensional consolidation. J Appl Phys. (1941)
12:155–64. doi: 10.1063/1.1712886

2. Ju G, Cai M, Li J, Tian J. Parameter-robust multiphysics algorithms for Biot model
with application in brain edema simulation.Math Comput Simul. (2020) 177:385–403.
doi: 10.1016/j.matcom.2020.04.027

3. Kim J, Tchelepi HA, Juanes R. Stability and convergence of sequential
methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits.
Comput Methods Appl Mech Eng. (2011) 200:1591–606. doi: 10.1016/j.cma.2010.
12.022

4. Ženíšek A. The existence and uniqueness theorem in Biot’s consolidation
theory. Aplik Matem. (1984) 29:194–211. doi: 10.21136/AM.1984.10
4085

5. Showalter RE. Diffusion in poro-elastic media. J Math Anal Appl. (2000)
251:310–40. doi: 10.1006/jmaa.2000.7048

6. Phillips PJ, Wheeler MF. A coupling of mixed and continuous Galerkin finite
element methods for poroelasticity I: the continuous in time case. Comput Geosci.
(2007) 11:131–44. doi: 10.1007/s10596-007-9045-y

7. Nordbotten JM. Stable cell-centered finite volume discretization for
Biot equations. SIAM J Numer Anal. (2016) 54:942–68. doi: 10.1137/15M101
4280

8. Coulet J, Faille I, Girault V, Guy N, Nataf F. A fully coupled scheme using
virtual element method and finite volume for poroelasticity. Comput Geosci. (2020)
24:381–403. doi: 10.1007/s10596-019-09831-w

9. Yi SY. A coupling of nonconforming and mixed finite element methods for
Biot’s consolidation model. Numer Methods Part Diff Equat. (2013) 29:1749–77.
doi: 10.1002/num.21775

10. Yi SY. A study of two modes of locking in poroelasticity. SIAM J Numer Anal.
(2017) 55:1915–36. doi: 10.1137/16M1056109

11. Rodrigo C, Gaspar F, Hu X, Zikatanov L. Stability and monotonicity for some
discretizations of the Biot’s consolidation model. Comput Methods Appl Mech Eng.
(2016) 298:183–204. doi: 10.1016/j.cma.2015.09.019

12. Lee JJ, Mardal KA, Winther R. Parameter-robust discretization and
preconditioning of Biot’s consolidation model. SIAM J Sci Comput. (2017) 39:A1–24.
doi: 10.1137/15M1029473

13. Cai M, Zhang G. Comparisons of some iterative algorithms for Biot equations.
Int J Evol Equat. (2017) 10:267–82.

14. Phillips PJ, Wheeler MF. Overcoming the problem of locking in linear
elasticity and poroelasticity: an heuristic approach. Comput Geosci. (2009) 13:5–12.
doi: 10.1007/s10596-008-9114-x

15. Rodrigo C, Hu X, Ohm P, Adler JH, Gaspar FJ, Zikatanov L. New stabilized
discretizations for poroelasticity and the Stoke’s equations. ComputMethods Appl Mech
Eng. (2018) 341:467–84. doi: 10.1016/j.cma.2018.07.003

16. Feng X, Ge Z, Li Y. Analysis of a multiphysics finite element
method for a poroelasticity model. IMA J Numer Anal. (2018) 38:330–59.
doi: 10.1093/imanum/drx003

17. Oyarzúa R, Ruiz-Baier R. Locking-free finite element methods for poroelasticity.
SIAM Journal on Numerical Anal. (2016) 54:2951–73. doi: 10.1137/15M10
50082

18. Yi SY, Bean ML. Iteratively coupled solution strategies for a four-field mixed
finite element method for poroelasticity. Int J Numer Analyt Methods Geomech. (2017)
41:159–79. doi: 10.1002/nag.2538

19. Mikelić A, Wheeler MF. Convergence of iterative coupling for coupled flow
and geomechanics. Comput Geosci. (2013) 17:455–61. doi: 10.1007/s10596-012-
9318-y

20. Mikelić A, Wang B, Wheeler MF. Numerical convergence study of iterative
coupling for coupled flow and geomechanics. Comput Geosci. (2014) 18:325–41.
doi: 10.1007/s10596-013-9393-8

21. Both JW, Borregales M, Nordbotten JM, Kumar K, Radu FA. Robust fixed stress
splitting for Biot’s equations in heterogeneous media. Appl Math Lett. (2017) 68:101–8.
doi: 10.1016/j.aml.2016.12.019

22. Bause M, Radu FA, Köcher U. Space-time finite element approximation of the
Biot poroelasticity system with iterative coupling. Comput Methods Appl Mech Eng.
(2017) 320:745–68. doi: 10.1016/j.cma.2017.03.017

23. Storvik E, Both JW, Kumar K, Nordbotten JM, Radu FA. On the optimization
of the fixed-stress splitting for Biot’s equations. Int J Numer Methods Eng. (2019)
120:179–94. doi: 10.1002/nme.6130

24. Borregales M, Kumar K, Radu FA, Rodrigo C, Gaspar FJ. A partially parallel-in-
time fixed-stress splitting method for Biot’s consolidation model. Comput Math Appl.
(2019) 77:1466–78. doi: 10.1016/j.camwa.2018.09.005

25. Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks:
a deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. J Comput Phys. (2019) 378:686–707.
doi: 10.1016/j.jcp.2018.10.045

26. Lu L, Meng X, Mao Z, Karniadakis GE. DeepXDE: a deep learning library for
solving differential equations. SIAM Rev. (2021) 63:208–28. doi: 10.1137/19M1274067

27. Amini D, Haghighat E, Juanes R. Inverse modeling of nonisothermal
multiphase poromechanics using physics-informed neural networks. arXiv preprint
arXiv:220903276. (2022). doi: 10.1016/j.jcp.2023.112323

28. Kadeethum T, Jørgensen TM, Nick HM. Physics-informed neural networks for
solving nonlinear diffusivity and Biot’s equations. PLoS ONE. (2020) 15:e0232683.
doi: 10.1371/journal.pone.0232683

29. Millevoi C, Spiezia N, Ferronato M. On Physics-Informed Neural
Networks Architecture for Coupled Hydro-Poromechanical Problems. (2022).
doi: 10.2139/ssrn.4074416

30. Bekele YW. Physics-informed deep learning for flow and deformation in
poroelastic media. arXiv preprint arXiv:201015426. (2020).

31. Haghighat E, Amini D, Juanes R. Physics-informed neural network simulation of
multiphase poroelasticity using stress-split sequential training. Comput Methods Appl
Mech Eng. (2022) 397:115141. doi: 10.1016/j.cma.2022.115141

32. Amini D, Haghighat E, Juanes R. Physics-informed neural network solution
of thermo-hydro-mechanical (THM) processes in porous media. arXiv preprint
arXiv:220301514. (2022). doi: 10.1061/(ASCE)EM.1943-7889.0002156

33. De Ryck T, Jagtap AD, Mishra S. Error estimates for physics informed neural
networks approximating the Navier-Stokes equations. arXiv preprint arXiv:220309346.
(2022). doi: 10.1093/imanum/drac085

34. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al.
PyTorch: An imperative style, high-performance deep learning library. In: Wallach
H, Larochelle H, Beygelzimer A, Alche-Buc F, Fox E, Garnett R, editors.
Advances in Neural Information Processing Systems, Vol. 32. Curran Associates
(2019). Available online at: https://proceedings.neurips.cc/paper_files/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

35. Barry S, Mercer G. Exact solutions for two-dimensional time-dependent flow
and deformation within a poroelastic medium. J Appl Mech. (1999) 66:536–40.
doi: 10.1115/1.2791080

36. Phillips PJ. Finite Element Methods in Linear Poroelasticity: Theoretical and
Computational Results. Austin, TX: The University of Texas at Austin (2005).

37. Daw A, Bu J, Wang S, Perdikaris P, Karpatne A. Mitigating propagation failures
in pinns using evolutionary sampling, conference paper at ICLR 2023?. (Under review).

Frontiers in AppliedMathematics and Statistics 13 frontiersin.org

https://doi.org/10.3389/fams.2023.1206500
https://doi.org/10.1063/1.1712886
https://doi.org/10.1016/j.matcom.2020.04.027
https://doi.org/10.1016/j.cma.2010.12.022
https://doi.org/10.21136/AM.1984.104085
https://doi.org/10.1006/jmaa.2000.7048
https://doi.org/10.1007/s10596-007-9045-y
https://doi.org/10.1137/15M1014280
https://doi.org/10.1007/s10596-019-09831-w
https://doi.org/10.1002/num.21775
https://doi.org/10.1137/16M1056109
https://doi.org/10.1016/j.cma.2015.09.019
https://doi.org/10.1137/15M1029473
https://doi.org/10.1007/s10596-008-9114-x
https://doi.org/10.1016/j.cma.2018.07.003
https://doi.org/10.1093/imanum/drx003
https://doi.org/10.1137/15M1050082
https://doi.org/10.1002/nag.2538
https://doi.org/10.1007/s10596-012-9318-y
https://doi.org/10.1007/s10596-013-9393-8
https://doi.org/10.1016/j.aml.2016.12.019
https://doi.org/10.1016/j.cma.2017.03.017
https://doi.org/10.1002/nme.6130
https://doi.org/10.1016/j.camwa.2018.09.005
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1137/19M1274067
https://doi.org/10.1016/j.jcp.2023.112323
https://doi.org/10.1371/journal.pone.0232683
https://doi.org/10.2139/ssrn.4074416
https://doi.org/10.1016/j.cma.2022.115141
https://doi.org/10.1061/(ASCE)EM.1943-7889.0002156
https://doi.org/10.1093/imanum/drac085
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1115/1.2791080
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cai et al. 10.3389/fams.2023.1206500

Appendix

Proof of Theorem 2.1

Proof. Subtracting (6), (9) from (1), (2), respectively, we shall
derive

(

1

M
+ βFS

)

∂te
n+1
p − ∇ · K∇en+1

p = −α∇ · ∂tenu + βFS∂tenp ,

(58)

−∇ · σ (en+1
u )+ α∇en+1

p = 0. (59)

After differentiating (59) with respect to t, one has

−∇ · σ (∂ten+1
u )+ α∇∂ten+1

p = 0. (60)

We multiply (58), (60) by ∂ten+1
p , ∂tenu, respectively, and use

integration by parts to obtain

(

1

M
+ βFS

)∫ T

0

∫

�

(∂te
n+1
p )2dxdt+

K

2

∫

�

(∇en+1
p (T))2dx

= −α
∫ T

0

∫

�

(∇ · ∂tenu)(∂ten+1
p )dxdt+

βFS

∫ T

0

∫

�

(∂te
n
p)(∂te

n+1
p )dxdt, (61)

2µ

∫ T

0

∫

�

ε(∂te
n+1
u ) : ε(∂te

n
u)dxdt+

λ

∫ T

0

∫

�

(∇ · ∂ten+1
u )(∇ · ∂tenu)dxdt

= α

∫ T

0

∫

�

(∇ · ∂tenu)(∂ten+1
p )dxdt. (62)

Combining Equations (61) and (62) results in the following
equation.

1

M

∫ T

0

∫

�

(∂te
n+1
p )2dxdt + K

2

∫

�

(∇en+1
p (T))2dx+

2µ

∫ T

0

∫

�

ε(∂te
n+1
u ) : ε(∂te

n
u)dxdt

+ λ
∫ T

0

∫

�

(∇ · ∂ten+1
u )(∇ · ∂tenu)dxdt+

βFS

∫ T

0

∫

�

(∂te
n+1
p )(∂te

n+1
p − ∂tenp)dxdt = 0. (63)

Applying the algebraic identities (46) to (63), we derive

(

1

M
+ βFS

2

)∫ T

0

∫

�

(∂te
n+1
p )2dxdt + K

2

∫

�

(∇en+1
p (T))2dx

+ µ

2

∫ T

0

∫

�

ε(∂te
n+1
u + ∂tenu) : ε(∂ten+1

u + ∂tenu)dxdt

+ λ

4

∫ T

0

∫

�

(

∇ · (∂ten+1
u + ∂tenu)

)2
dxdt ++

βFS

2

∫ T

0

∫

�

(∂te
n+1
p − ∂tenp)2dxdt

= µ

2

∫ T

0

∫

�

ε(∂te
n+1
u − ∂tenu) : ε(∂ten+1

u − ∂tenu)dxdt

+ λ

4

∫ T

0

∫

�

(

∇ · (∂ten+1
u − ∂tenu)

)2
dxdt+

βFS

2

∫ T

0

∫

�

(∂te
n
p)

2dxdt. (64)

The difference of two successive iterations based on (59) will
yield

−∇ · σ (∂ten+1
u − ∂tenu)+ α∇(∂te

n+1
p − ∂tenp) = 0. (65)

Multiplying (65) by (∂ten+1
u − ∂te

n
u), integration by parts, and

then applying Cauchy-Schwarz inequality, we derive that

2µ

∫ T

0

∫

�

ε(∂te
n+1
u − ∂tenu) : ε(∂ten+1

u − ∂tenu)dxdt

+ λ
∫ T

0

∫

�

(

∇ · (∂ten+1
u − ∂tenu)

)2
dxdt+

≤ α2

2µ
d
+ λ

∫ T

0

∫

�

(∂te
n+1
p − ∂tenp)2dxdt. (66)

Discarding the second, third, and fourth terms in (64), we
choose βFS ≥ α2

2
(

2µ
d
+λ
) to obtain

∫ T

0

∫

�

(∂te
n+1
p )2dxdt ≤ βFS

βFS + 2
M

∫ T

0

∫

�

(∂te
n
p)

2dxdt, (67)

which directly implies (14).

Frontiers in AppliedMathematics and Statistics 14 frontiersin.org

https://doi.org/10.3389/fams.2023.1206500
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	A combination of physics-informed neural networks with the fixed-stress splitting iteration for solving Biot's model
	1. Introduction
	2. Fixed-stress splitting method for Biot's equations
	3. The classical PINNs and the FS-PINNs for solving Biot's model
	3.1. Training procedure of the classical PINNs
	3.2. Training procedure of the proposed FS-PINNs
	3.3. Analysis of the proposed FS-PINNs

	4. Benchmark tests
	4.1. Models generation
	4.2. Example 1
	4.2.1. Robustness of the FS-PINNs architecture
	4.2.2. Acceleration effect of the FS-PINNs training

	4.3. Example 2
	4.4. Example 3

	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References
	Appendix
	Proof of Theorem 2.1



