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Spherically symmetric black hole
spacetimes on hyperboloidal
slices

Alex Vañó-Viñuales*

Center for Astrophysics and Gravitation (CENTRA), Departamento de Fisica, Instituto Superior Tecnico
IST, Universidade de Lisboa UL, Lisboa, Portugal

Gravitational radiation and some global properties of spacetimes can only be
unambiguously measured at future null infinity (I +). This motivates the interest in
reaching it within simulations of coalescing compact objects, whose waveforms
are extracted for gravitational wave modeling purposes. One promising method
to include future null infinity in the numerical domain is the evolution on
hyperboloidal slices: smooth spacelike slices that reach future null infinity. The
main challenge in this approach is the treatment of the compactified asymptotic
region at I +. Evolution on a hyperboloidal slice of a spacetime including a
black hole entails an extra layer of di�culty in part due to the finite coordinate
distance between the black hole and future null infinity. Spherical symmetry is
considered here as the simplest setup still encompassing the full complication
of the treatment along the radial coordinate. First, the construction of constant-
mean-curvature hyperboloidal trumpet slices for Schwarzschild and Reissner-
Nordström black hole spacetimes is reviewed from the point of view of the
puncture approach. Then, the framework is set for solving hyperboloidal-adapted
hyperbolic gauge conditions for stationary trumpet initial data, providing solutions
for two specific sets of parameters. Finally, results of testing these initial data in
evolution are presented.
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1. Introduction

The accurate numerical treatment of black holes (BHs) and their emitted gravitational

wave (GW) signals is primordial for the field of GW astronomy. BHs are the most common

participants in the compact binary coalescences observed so far [1, 2] but are challenging to

model numerically due to the presence of the physical singularity inside of their horizon.

GWs, as radiation propagating at the speed of light, are only unambiguously defined at

future null infinity I +, the collection of the end points of future-directed null geodesics.

Future null infinity also corresponds to the idealized location of observers of astrophysical

events [3–5], such as GW interferometers, where GWs signals should ideally be extracted

from simulations.

Two main descriptions of BHs are common in numerically simulated spacetimes.

Excision [6] involves setting an artificial timelike inner boundary inside the BH horizon

to avoid the slices from reaching the physical singularity. This exploits the fact that no

physical information is allowed to exit the BH, but the need to know the location of

the apparent horizon at all times makes this approach technically difficult for generic

spacetimes. Nevertheless, it has been successfully used to produce the largest, longest, and

most accurate binary BH waveform catalog currently available [7]. In the puncture method,
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a specific singularity-avoidant slice of the BH spacetime is

considered. This slice can have the topology of a wormhole,

where the asymptotically flat end at the other side of the BH

is compactified and represents the BH’s location [8–10]. In the

evolution of wormhole puncture initial data with the “moving

puncture” gauge [11, 12], the initial slice numerically detaches

from the asymptotically flat end beyond the horizon and its

topology becomes close to that of a compactified trumpet [13–

15], where the proper distance becomes infinite while reaching

toward the symmetric point to future timelike infinity i+. For
embedding diagrams of the wormhole and trumpet geometries,

see figures 1 and 2 in Hannam et al. [15]. The construction of

maximal trumpet slices has been tackled for Schwarzschild [16–20],

Reissner-Nordström (RN) [21], and Kerr [22, 23]. Asymptotically,

the slices considered in those studies are spacelike Cauchy and

thus reach spatial infinity i0. The trumpet puncture approach

is also chosen in the present study, for its simpler technical

implementation and for the possibility to reach a portion inside of

the horizon. While the latter is not required for GW extraction, it

can provide insights into the numerical behavior of slices inside of

the horizon, e.g., useful for the construction of Penrose diagrams of

dynamical scenarios [24].

Including future null infinity within the numerical integration

domain is possible by evolving on a suitable choice of foliation.

The most straightforward option are characteristic slices, which

can provide considerable simplifications in the equation used

[25] but are prone to the development of caustics. Cauchy-

characteristic matching [25–27] joins an inner Cauchy spacelike

slice to an outer characteristic one along a timelike boundary.

However, compatible formulations of the Einstein equations for

each domain are required. In Cauchy-characteristic evolution [28–

31], the same setup is used, but the Cauchy evolution is performed

independently and then used as inner boundary data for the

characteristic evolution. A more flexible and elegant alternative is

the evolution on hyperboloidal [32–35] slices, which are spacelike

and reach null infinity. An advantage that hyperboloidal evolution

is expected to have and that has been achieved with Cauchy-

characteristic evolution is resolving GW memory [36]. A radial

compactification on hyperboloidal slices allows to include future

null infinity in a finite domain. Unlike a compactification of

Cauchy slices where radiation traveling out is slowed down and

becomes underresolved, the outward propagation speed of signals

on compactified hyperboloidal slices is of order unity and they

reach I + at a finite coordinate time without any loss of resolution.

Figure 5 in Vañó-Viñuales et al. [37] illustrates this effect with a

scalar field perturbation.

Conformal compactification [38] is one method to tackle

compactified hyperboloidal slices, which allow us to reach I +

with a finite value of the coordinates. The core idea is that instead

of working with the physical metric g̃ab that diverges at infinity

when the coordinates are compactified, the Einstein equations are

instead expressed in terms of a finite conformally rescaled metric

ḡab, related to the physical one by a conformal factor� that vanishes

at I + at the appropriate rate

ḡab = �2g̃ab. (1)

One of the most difficult aspects of this approach to the

hyperboloidal initial value problem [35, 39] is the regularization

of the resulting formally singular equations [see (2) in 2] in a way

that works numerically and avoids instabilities arising from the

continuum equations, in particular for hyperbolic-free evolution

schemes considered here. At the analytical level, the equations were

shown to bemanifestly regular atI + [32, 35], however that specific

formulation does not treat BHs in a straightforward way and suffers

from continuum instabilities [40]. In contrast to the conformal

approach, the dual foliation method [41, 42], a generalization

of the dual coordinate frame method used in Scheel et al. [43],

aims to minimize the divergent terms in the equations, making

them as regular as possible. The present implementation follows

Zenginoğlu’s approach [44–47] to conformal compactification,

using free evolution and a time-independent conformal factor �.

Stable evolutions in spherical symmetry of regular initial data that

do not form BHs were presented in Vañó-Viñuales et al. [37], while

Vañó-Viñuales and Husa [48] covers experiments with suitable

hyperbolic gauge conditions.

Evolving a hyperboloidal slice of spacetime including BHs

is particularly challenging1, especially in the puncture approach

where both regions inside the horizons and the asymptotic far

field are compactified. Constant-mean-curvature (CMC) foliations,

where the trace of the physical extrinsic curvature takes a constant

value, are well known in the literature, e.g., for the Schwarzschild

[50–52] and RN [53, 54] spacetimes. Of special interest are

those specific CMC slices that correspond to trumpet slices in

their corresponding BH geometry: in a certain way, these are

generalizations of the maximal trumpet slices mentioned above.

The difference is that CMC slices with non-vanishing trace of the

extrinsic curvature asymptotically reach null infinity and thus can

be used as hyperboloidal trumpet slices suitable for evolving a BH

spacetime all the way to future null infinity.

Several studies have considered hyperboloidal initial data

including BHs. Configurations in spherical and in axial symmetry

were presented in Schneemann [55], while Schinkel et al. [56]

considered axisymmetric CMC slices for Kerr and [57] studied

perturbed Kerr initial data on asymptotic CMC slices. The

generalization of Bowen-York initial data to hyperboloidal slices for

binaries of boosted and spinning BHs was carried out in Buchman

et al. [58], whereas properties such as the Bondi-Sachs energy and

momentum of the above setups were presented in Bardeen and

Buchman [59]. The binary BH scenario was also studied in Schinkel

[60]. However, these studies were designed with the aim to treat

the BHS via excision and thus not a lot of effort was put into

regularizing the slices beyond the BH horizon.

The description of BHs via punctures requires a careful

treatment of the hyperboloidal slices inside the BHs as well. In

a previous study [49, 61, 62], the evolution of hyperboloidal

CMC Schwarzschild trumpet initial data was considered as well

as the collapse into a BH of a scalar field perturbation on a

1 Past experiments in spherical symmetry (subsection 8.2.1 in Vañó-

Viñuales [49] alsomentioned here at the end of 3.1) have shown an instability-

inducing drift in the variables, not linked to any specific part of the domain.

This was related mainly to gauge conditions and how they deal with the

trumpet and I + asymptotics.
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regular spacetime. The trumpet dynamics was found to be highly

dependent on the choice of gauge conditions. CMC trumpet initial

data stationary with respect to the given gauge conditions are

very desired as the evolution of any perturbation on these initial

data would be easier to identify and study. Imposing stationarity

is the approach suggested in Ohme et al. [63] although the

slicing condition considered there is most likely not appropriate

for numerical evolutions. In previous numerical experiments, a

stationary solution is reached by the evolution at late times (such

as that on the right of figure 2 in Vañó-Viñuales and Husa [62]), be

it with BH trumpet or collapsing scalar field initial data, for at least

some choices of gauge conditions. It thus makes sense to consider

stationary solutions of the gauge conditions as candidates for an

initial hyperboloidal trumpet slice.

The aims of this study are to review hyperbolic CMC trumpet

BH initial data suitable for numerical evolutions with the puncture

approach in mind (4) and to set the basic infrastructure in terms

of initial data and gauge conditions to calculate stationary trumpet

slices (5). An example of such a stationary configuration is solved

for a specific choice of gauge, and basic evolutions for both

CMC and solved-for initial data are performed on hyperboloidal

slices (6). For this purpose, the already non-trivial hyperboloidal

initial value problem in spherical symmetry is considered as it still

contains the critical part of the radial treatment.

This article is organized as follows: In 2, the used formulation

of the conformally compactified Einstein equations is briefly

described, and the gauge conditions considered here are covered

in 3. Initial data including a BH is treated in the following

two sections: as constant-mean-curvature (CMC) in 4, while an

example of solving hyperboloidal-adapted gauge conditions is

provided in 5. Section 6 presents basic evolution results, and final

thoughts on this study are summarized in the conclusions. The

appendix collects an equation used in 5. Sections 2, 3, and 4 cover

previously treated material, while sections 5 and 6 present new

research.

The chosen metric signature is (−,+,+,+) and, as is

customary, the fundamental constants are set to G = c = 1.

The convention for the sign of the extrinsic curvature is that of

Misner, Thorne, and Wheeler [64], meaning that a negative2 value

means expansion of the normals. Notation for the metrics is the

same one as used in Vañó-Viñuales et al. [37]: the four-dimensional

physical spacetime metric is denoted as g̃, the 4D conformal metric

is denoted as ḡ, the 3D conformal spatial metric (induced by ḡ) is

denoted as γ̄ , the 3D twice conformal metric is denoted as γ , and

the 3D twice conformal background metric is denoted as γ̂ .

2. Formulation

The emphasis in this study is on hyperboloidal BH initial data,

so only a brief review of the formulation of the evolved system

with corresponding references is given. Expressed in terms of the

2 This is why the constant parameter KCMC introduced in (9) and described

in 4.3 is negative for hyperboloidal slices reaching future null infinity. If a

positive value is chosen for it, then the hyperboloidal slices intersect past null

infinity.

rescaled metric ḡab as defined in (1), the 4D Einstein equations take

the form as follows:

Gab[ḡ] = 8π Tab −
2

�

(

∇̄a∇̄b� − ḡab∇̄c∇̄c�
)

− 3

�2
ḡab(∇̄c�)∇̄c�.

(2)

The well-posed formulations considered are either the

generalized BSSN [65–68] or a similar conformal version of the

Z4 [69–71], the Z4c equations [72, 73]. The full derivation of these

equations in terms of the conformally rescaled metric is described

in Vañó-Viñuales et al. [37] and in Chapter 2 of Vañó-Viñuales

[49]. The equations used in the simulations are those included

in appendix C of Vañó-Viñuales et al. [37] (or appendix A in

Vañó-Viñuales and Husa [48]) and again in Chapter 2 of Vañó-

Viñuales [49]. There is a modification related to the evolution of

BH spacetimes: a constraint damping term of the form

− κ0
Zr

r
, (3)

where Zr is a Z4 variable and κ0 a freely specifiable parameter, can

be added to 3̇r ’s right-hand-side (RHS). This term helps suppress

instabilities if extrapolating boundary conditions are used at r = 0

(this was not necessary for evolutions of regular spacetimes as

parity conditions could be imposed at the origin).

The evolution variables are the 3D conformally rescaled spatial

metric:

γab = χγ̄ab, (4)

where γ̄ab is the spatial metric induced from ḡab, and χ is the spatial

conformal factor. The conformal extrinsic curvature tensor K̄ab is

decomposed into its conformal trace-free part as follows:

Aab = χ K̄ab −
1

3
γabK̄, with K̄ = K̄abγ̄

ab ≡ Kabγ
ab, (5)

and (in this formulation) its physical trace, mixed with the physical

Z4 variable 2̃,

K̃ = �K̄ − 3βa∂a�

α
− 22̃. (6)

Evolved areAab, and K̃’s variation with respect to its initial value

1K̃ = K̃− K̃0 = K̃−KCMC (this last parameter will be explained in

4.3). The quantity 2̃ is evolved as well if using the Z4 formulation.

The Z4 variable Za is absorbed into the vector as follows:

3a = γ bc
(

Ŵa
bc − Ŵ̂a

bc

)

+ 2γ abZb, (7)

where Ŵa
bc
are the Christoffel symbols calculated from γab and Ŵ̂a

bc

the ones built from a time-independent backgroundmetric γ̂ab. The

latter is chosen to be the flat spatial metric in spherical coordinates,

and its explicit components (following an equivalent notation to

that in (8) are given in (11). The evolved gauge variables are the

conformal lapse α and the shift β i.
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2.1. Spherically symmetric reduction
variables

The following spherically symmetric ansatz is used for the

spherically symmetric line element in the conformally compactified

domain (with σ 2 ≡ dθ2 + sin2 θdφ2):

ds2 = −
(

α2 − χ−1γrrβ
r2
)

dt2

+ χ−1
[

2 γrrβ
rdt dr + γrr dr

2 + γθθ r
2 dσ 2

]

, (8)

where the freedom introduced by the spatial conformal factor χ is

fixed by eliminating γθθ = γ
−1/2
rr .

In spherical symmetry, the only independent component of

the trace-free part of the conformal extrinsic curvature Aab

after explicitly imposing its trace-freeness is Arr . Only the radial

component of the quantities 3a, βa, and Za (denoted by 3r , βr ,

and Zr respectively) remains non-zero. The evolution variables of

the spherically symmetric reduced system are χ , γrr , Arr , 1K̃, 3r ,

α, βr , and 2̃.

The conformal factor� is set to be a time-independent function

of the compactified radial coordinate r as

�(r) = (−KCMC)
r2
I

− r2

6 rI
, (9)

with rI being the coordinate location of future null infinity (set to

rI = 1 in the implementation without restricting generality) and

KCMC being a negative parameter described in 4.3. This expression

satisfies that�(r) is a regular function that becomes zero atI , with

non-vanishing derivative there (compare e.g. [55, 74]). The origin

of this expression is explained in 4.5.

3. Gauge conditions

Hyperboloidal constrained evolutions [75–77] have used

suitable gauges imposed via the resolution of elliptic constraint

equations. In this study, the free evolution approach is employed

for its faster performance in simulations, and it requires the use of

hyperbolic gauge conditions. The gauge quantities, lapse α and shift

β i, control the behavior of the coordinates, and they are critically

important for a successful and efficient evolution. Bad choices will

easily lead simulations to crash at an earlier or later time. An

example of the effects of gauge choices in this hyperboloidal work

is that they can induce deformations in propagating signals, as is

illustrated by the (deformed) scalar field signals at I + in figure

2 in Vañó-Viñuales and Husa [48], that are to be corrected in

post-processing.

For vanishing cosmological constant and vacuum or compact

support matter sources, future null infinity is an ingoing null

hypersurface. This means that no information is allowed to enter

the domain from outside, making it a natural boundary for the

numerical integration domain, where no boundary conditions need

to be imposed—radiation just needs to be allowed to leave the

spacetime. It is possible to fix I + to a specific coordinate location

in the numerical grid (rI (9) in the present setup) for compactified

hyperboloidal slices. This procedure is called scri-fixing [39, 44].

The background behavior of hyperboloidal slices differs from

Cauchy ones in that the trace of the physical extrinsic curvature

K̃ is non-zero asymptotically. This requires a modification of the

usual slicing conditions commonly used in numerical simulations.

See for example, the generalizations of the Bona-Massó family of

slicing conditions [78] and the modifications of the Gamma-driver

shift [79] and harmonic shift conditions [80] included in Vañó-

Viñuales and Husa [48]. The basic idea behind those modifications

is the addition of specific non-principal-part source terms to the

gauge evolution equations to ensure that a hyperboloidal slice of

Minkowski spacetime will be a stationary solution of the gauge

equations. This is described in the next subsection.

An optimal prescription for hyperbolic gauge conditions for

the conformally compactified hyperboloidal approach is still to

be found. Experimentation with possible gauge source functions

has provided several successful working examples. They are being

further studied and extended by including a BH in the spacetime,

and elsewhere by being tested in the full 3D case [81]. Work toward

finding suitable gauge conditions [82] is also being tackled from the

dual foliation approach.

3.1. Hyperbolic gauge conditions tested
with BH spacetimes

When applying the gauge conditions discussed in Vañó-

Viñuales and Husa [48] to a BH spacetime, one important aspect

is to recognize that harmonic slicing is only marginally singularity

avoiding, which means that a singularity is reached in an infinite

coordinate time. Harmonic slicing is thus not a good choice in

the neighborhood of a BH if excision is not used. However, near

I +, the physical propagation speeds of harmonic lapse (and shift)

ensure that no unknown gauge information enters the numerical

domain through future null infinity. Thus, the optimal scenario is

to use harmonic slicing near I + and something different close to

the BH. A condition that has provided successful evolutions using

trumpet initial data is, with˙≡ ∂t and
′ ≡ ∂r ,

α̇ = βrα′− β̂rα̂′− (ncK + α2)1K̃

�
+ �′

�
(β̂rα̂−βrα)+ ξcK(α̂ − α)

�
,

(10)

where ξcK is a parameter used to damp the behavior of the lapse at

I +. This equation is equivalent to (20) in Vañó-Viñuales and Husa

[48] with ξ1α̂ = ξcK , ξ2 = 0, and α2f = ncK + α2, later setting

ncK
3 to be proportional to �. Note that the coefficient in front of

1K̃ is similar to the shock-avoiding slicing condition [20, 83, 84].

This form was chosen for the following considerations. The α2 part

provides physical propagation speeds for the gauge modes (the first

three lines listed in Figure 1), as mentioned above. This is desired at

I + because then all propagation speeds are either positive or zero,

and there are no incoming modes there. However, near the location

of the trumpet inside of the BH’s horizon, the physical propagation

speeds become zero (as α = 0 at the location of the trumpet).

The effect is that any signals that have entered the BH region

3 The time-independent quantity ncK , a function of the radial coordinate,

has here a di�erent expression from that used in Vañó-Viñuales and Husa

[48].
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FIGURE 1

Zero speed c0 = −βr and incoming (−) and outgoing (+) lightspeeds c± = −βr ± α
√

χ

γrr
plotted for a CMC slice of a Schwarzschild BH with M = 1,

using KCMC = −1 and rI = 1. The vertical line indicates the radial position of the horizon, where c0, c− < 0 and c+ = 0. At I +, we have c0, c+ > 0 and
c− = 0. Except for c0, outgoing speeds are shown in black and ingoing ones in blue. The two sets of dashed lines correspond to the incoming and
outgoing modified propagation speeds related to the slicing condition as in (10) with the choices of parameter mcK used in (10). While the speeds go
to zero at the location of the trumpet (r = 0) and coincide whith the lightspeeds at I +, their values are di�erent in the rest of the domain. The two
sets of dash-dot curves show the characteristic speeds associated with the shift condition with λ = 1, for shift choices (12) and (13). In the second
case, where the shift advection terms have been dropped, the incoming speed is made to be zero at I +, but that forced the outgoing one to be
equal to c0 (instead of c+) there compared to a Minkowski equivalent (with di�erent parameter choices) in figure 1 in Vañó-Viñuales and Husa [48].

and travel along the infinitely long cylinder of the trumpet slice

will propagate slower and slower, soon becoming underresolved,

which can lead to numerical instabilities. Increasing the gauge

propagation speeds allows perturbations to leave the domain in a

finite time and provides more stable evolutions in general and also

gives smoother stationary values for the evolution quantities at the

trumpet. Examples of modified propagation speeds for the lapse

and shift conditions are shown in Figure 1.

These gauge source functions are designed to make a

hyperboloidal CMC slice of Minkowski (encoded in the hatted

quantities), a stationary solution of the slicing equation: α̇ = 0 ↔
α = α̂, βr = β̂r , 1K̃ = 0. The components of the background

conformally compactified metric (following an ansatz like that of

(8)) that appear in (10), and are used to calculate Ŵ̂a
bc
in (7), are

χ̂ = γ̂rr = ˆγθθ = 1, α̂ =

√

�2 +
(

KCMC r

3

)2

and

β̂r = KCMC r

3
. (11)

They are obtained (4.3) from (21) or (24) setting A( r
�̄
) = 1,

M = 0, CCMC = 0, and �̄ = �.

For the shift condition, two different options are considered.

One is a variant of the integrated Gamma-driver [79] adapted to

hyperboloidal slices:

β̇r = βrβr ′ − β̂rβ̂r ′ +
(

λ(r2
I

− r2)+ 3

4
α2χ

)

3r + η(β̂r − βr)

+ ξβr

(

β̂r

�
− βr

�

)

, (12)

mostly the same as (26) in Vañó-Viñuales and Husa [48]. The

coefficient in front of 3r is chosen in such a way that the associated

propagation speeds will be the physical ones at I +. The positive
parameter λ will only increase the speeds near the trumpet in a

similar fashion as ncK for the slicing condition above. This is shown

in Figure 1. The other shift option is to have an expression purely

proportional to 3r : the resulting system is still hyperbolic, and it

will have conformally flat initial data as a stationary solution (more

on this in 5). However, dropping the advection terms modifies

the characteristic propagation associated to the shift condition. In

order to ensure that the related ingoing speed at I + is still zero,

the coefficient in front of 3r is modified as

β̇r =
(

λ(r2
I

− r2)+ 3α2χ + 3

2
γrrβ

r2 + 9

2

√
γrrχαβr

)

3r . (13)

The resulting outgoing propagation speed is also modified: it is

smaller (although still positive) at I + (see Figure 1), and it would

be positive even inside of the horizon if the λ term was not present.
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The choice of the coefficient in (13) giving zero ingoing speed is not

unique, but it has been used here for its good behavior in numerical

evolutions, both at the origin and at I +.
Hyperboloidal CMC trumpet initial data [(24) and (25) as

derived in 4, or any initial data satisfying the relations in 5.2] are

a stationary solution of the Einstein equations as described in 2.

However, if they are evolved together with gauge conditions whose

source functions are filled with hyperboloidal CMC Minkowski

data (11) as described above, the right-hand-sides of the gauge

evolution equations will not be zero. Thus, some gauge dynamics

will take place in which the trumpet slice readjusts and settles

into a new stationary solution, see the plot on the right of figure

2 in Vañó-Viñuales and Husa [62]. The change in the slices is

easier to understand when depicted as a Carter-Penrose diagram,

as in Figure 11B. While this scenario is satisfactory in the sense

that a long-term solution is found, the initial dynamics does not

allow to decouple any potential perturbations of the system from

the trumpet dynamics. Naively, a way to try to obtain the desired

outcome—trumpet initial data that are a stationary solution of the

gauge conditions—is to fill in the gauge source terms in the gauge

conditions with (24), the same data as the one given initially. This

has been tested (see section 8.2 in Vañó-Viñuales [49]), with the

result that a slow exponential growth appeared in the evolutions,

causing the simulations to a crash in finite time. The conclusion of

these tests is that the chosen trumpet initial data are a stationary

but not a stable solution for the gauge conditions with trumpet

source terms (more on this in 5). However, the growth in these

simulations is slow enough to study small scalar field perturbations,

as presented in Vañó-Viñuales and Husa [61]. Whether a different

choice of trumpet slice or form of the gauge conditions would not

cause the growth is an open question.4 Meanwhile, an attempt to

combine stability and stationarity together is described in 5, where

a solution for the gauge conditions with hyperboloidal Minkowski

source functions is determined for a specific setup.

4. Constant-mean-curvature initial
data

4.1. Main ingredients of hyperboloidal
conformal compactification

At the core of the hyperboloidal approach is the foliation of

spacetime along hyperboloidal slices, which can be characterized

as the level sets of a specific parameter. This parameter is taken to

be the hyperboloidal time coordinate t, and it is related to the usual

4 There is another potential drawback to this approach: a change in the

mass of the BH (for instance, due to some energy that is accreted by

it during evolution) would in principle not be taken into account by the

source functions, and the gauge conditions may try to force the system

into an inappropriate geometry. There is the possibility, at least in spherical

symmetry, to evaluate numerically the new value of the BH’s mass “on the

fly” during the evolution, use it to calculate the new trumpet geometry, and

update the source terms accordingly. An example of this recalculation of the

BH’s mass and the trumpet is shown for some evolution variables in figures

8.30 and 8.31 in Vañó-Viñuales [49].

time coordinate t̃ via the height function h(r̃) [85, 86] as

t = t̃ − h(r̃). (14)

The height function satisfies dh/dr̃ < 1 everywhere except

asymptotically, where dh/dr̃|I = 1 holds, thus characterizing the

hyperboloidal slices as spacelike but extending to I +.
In order to reach future null infinity with a finite value of the

spatial coordinates, the radial coordinate r̃ on a hyperboloidal slice

is compactified into a new r using a compactification factor �̄(r)

r̃ = r

�̄(r)
. (15)

Following (1), the line element is conformally rescaled by the

conformal factor �, to provide regular metric components all the

way to I +

ds2 = �2ds̃2. (16)

The compactification factor �̄ is not to be confused with the

conformal factor �, as they are a priori different quantities. While

the conformal compactification method relies in both having the

same (or at least proportional) behavior near I +, their behavior in
other parts of the domain (especially at the location of the BHs) can

be chosen to be very different. For the spherically symmetric data

considered here, an example of this is illustrated in Figure 5.

4.2. Spherically symmetric conformally
compactified hyperboloidal slices

A suitable starting point to derive spherically symmetric

vacuum initial data on a hyperboloidal slice is the following line

element on an uncompactified Cauchy slice:

ds̃2 = −A(r̃)dt̃2 + 1

A(r̃)
dr̃2 + r̃2dσ 2 (17a)

= −A(r̃)dt2 − 2A(r̃)h′(r̃)dtdr̃ +
1− A(r̃)

(

h′(r̃)
)2

A(r̃)
dr̃2

+ r̃2dσ 2, (17b)

expressed first in terms of the usual time t̃ and then in terms of

the hyperboloidal time coordinate t after using (14). This ansatz for

the initial metric is general enough to consider flat spacetime, the

Schwarzschild and Reissner-Nordström (RN) spacetimes, and the

addition of a non-vanishing cosmological constant. After applying

the radial compactification (15) and conformal rescaling (16), it

becomes

ds2 = −A�2dt2 + �2

�̄2

[

−2Ah′ (�̄ − r �̄′)dt dr

+

[

1−
(

Ah′
)2
]

A

(�̄ − r �̄′)2

�̄2
dr2 + r2dσ 2



 , (18)

where A and h′ are functions of r
�̄
, while �̄ and � depend on r.

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2023.1206017
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Vañó-Viñuales 10.3389/fams.2023.1206017

4.3. Hyperboloidal CMC slices

A convenient way of slicing spacetime is doing it along

constant-mean-curvature (CMC) slices, on which the trace of the

physical extrinsic curvature (K̃) is a constant. A special case of

CMC slices are maximal slices [87], where K̃ = 0 and spatial

infinity is reached asymptotically. Maximal Schwarzschild trumpet

slices are analytically described in Baumgarte and Naculich [16].

Generalizations for slices with a non-vanishing K̃ are considered in

Refs. [85, 86, 88, 89] and including the critical case for trumpets

in Malec and O’Murchadha [50] and Buchman et al. [58], while a

study of CMC slices in the RN geometry has been performed in

Tuite and O’Murchadha [53].

This derivation of a height function providing CMC slices

follows [85, 86], see subsection 3.2.2 in Vañó-Viñuales [49] for a

more detailed derivation. The basic procedure is to express the unit

normal ña to the hypersurface in terms of the metric (17b) and use

it to calculate the expression for the trace of the physical extrinsic

curvature:

K̃ = − 1
√

−g̃
∂a

(

√

−g̃ ña
)

= − 1

r2
∂r



r2
A3/2(r̃) h′(r̃)

√

1−
(

A(r̃)h′(r̃)
)2



 .

(19)

Setting it equal to a constant value of K̃ = KCMC < 0 and

introducing CCMC as an integration constant, the first derivative of

the height function is isolated to give

h′(r̃) = −
KCMC r̃

3 + CCMC

r̃2

A(r̃)

√

A(r̃)+
(

KCMC r̃
3 + CCMC

r̃2

)2
. (20)

The expression for the flat spacetime case is obtained by setting

A(r̃) = 1 and CCMC = 0, and the height function can be integrated

to h(r̃) =
√

(3/KCMC)2 + r̃2.

Comparing our line element of initial data (18) with our metric

ansatz (8) and substituting (20), we assign the following initial

values to our metric components, where the notation X0 ≡ X(t =
0) is used:

γθθ0 = 1, χ0 =
�̄2

�2
, γrr0 =

(�̄ − r �̄′)2

α̃2
0 �̄2

, α0 = � α̃0, (21a)

βr
0 =

(

KCMC r
3�̄

+ CCMC�̄2

r2

)

α̃0 �̄2

(�̄ − r �̄′)
, with

α̃0 =

√

A(
r

�̄
)+

(

KCMC r

3�̄
+ CCMC�̄2

r2

)2

. (21b)

A height function determined by imposing CMC is not the

only suitable choice. It could also be only asymptotically CMC [57].

Other possible options, e.g., [42], where h′(r̃) is chosen to provide

unit outgoing radial coordinate lightspeed, and [90], where h(r̃) is

introduced as part of the minimal gauge [91].

4.4. Hyperboloidal CMC trumpet slices

The choice of the integration constantCCMC is a relevantmatter

as a critical value exists that provides trumpet [14] CMCdata [58] in

FIGURE 2

Innermost value of the Schwarzschild-like radial coordinate (the
double root R0) reached by the outer CMC trumpet slice, as a
function of KCMC and Q (for zero cosmological constant). Taken
from Vañó-Viñuales [49].

an equivalent way as done in the non-hyperboloidal case [16]. This

critical value ofCCMC depends onM,Q, andKCMC and is calculated

[16, 87] by setting to zero the discriminant of the denominator (6th

order polynomial) of 5

γr̃r̃ 0(r̃) =
1

A(r̃)+
(

KCMC r̃
3 + CCMC

r̃2

)2
. (22)

With this critical choice of CCMC (see (3.42) in Vañó-Viñuales

[49] for the explicit expression for RN), the denominator now has a

double real root at r̃ = R0. This finite value of the radial coordinate

r̃ is where the slice (reaching I + in its outer end) finishes,

corresponding to the location of the trumpet [58]. However, in

terms of proper distance, the inner end of the slice is infinitely far

away from the singularity. For instance, in the Schwarzschild case

and for maximal KCMC = 0, the double root is R0 = 3M/2 [16, 87],

whereas for KCMC → −∞, it tends to R0 → 2M. The dependence

of the double root R0 on the charge Q and the value of KCMC is

shown in Figure 2. Note that in the extreme Reissner-Nordström

case (Q = M), R0/M is always unity.

The effect of CCMC’s value on the CMC slices is depicted in

figure 1 in Buchman et al. [58] and in Tuite and O’Murchadha [53]

and illustrated in Figure 3 in the form of Carter-Penrose diagrams

of the Schwarzschild spacetime. For a value of CCMC smaller

than the critical one, the denominator of (22) has two different

real roots (R1,R2) for r̃, the outer one R2 corresponding to the

location of the minimal surfaces mentioned in Buchman et al. [58].

If CCMC < − 1
3KCMC

(

M +
√

M2 − Q2
)3

(such as the example

shown in Figure 3A), the slices reach inside of the white hole, while

for a larger value ofCCMC (Figure 3B), they enter the BH.Quantities

become complex for r̃ ∈ (R1,R2); the corresponding part of the

diagrams is left in white. As mentioned above, for the critical value

of CCMC, a double root appears and complete CMC trumpet slices

(Figure 3C) exist, joining either I + to the symmetric point to

future timelike infinity (i+) (the outer slices) or the singularity to i+

5 The initial ansatz can be as general as A(r̃) = 1 − 2M
r̃

+ Q2

r̃2
+ 3

3
r̃2, but in

this work only the case with vanishing cosmological constant is considered.
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A B

C D

FIGURE 3

Carter-Penrose diagrams representing hyperboloidal CMC Schwarzschild foliations with M = 1 and KCMC = −1 and the choices of CCMC of the height
functions depicted in Figure 4. They correct the versions included in figures 3.3 and 3.4 in Vañó-Viñuales [49]. (A) Incomplete slices entering the
white hole. (B) Incomplete slices entering BH. (C) Trumpet slices. (D) Slices reaching the singularity. In figures (A, B), the height function is imaginary
between R1 and R2. For the critical CCMC (C), the slices that reach the singularity and those that reach I + are separated by a thick line located at
r̃ = R0 that corresponds to the double root. In the CCMC = 4 case on (D), the hyperboloidal slices go all the way from I + into the singularity. This last
diagram is qualitatively the same (with di�erent values of the parameters) as the Penrose diagram in figure 10 in Zenginoğlu [44]. The present
numerical experiments use the outer slices (those reaching I +) of (C) as the critical value of CCMC allows to map the trumpet slice to the whole of
the radial coordinate range r ∈ (0, rI ].

(the inner ones). For CCMC larger than the critical one (Figure 3D),

there is no root to the polynomial in (22) and the CMC slices extend

between null infinity and the singularity. Examples of the outer

CMC Schwarzschild trumpet slices for critical CCMC for different

values ofKCMC is given in figure 3.5 in Vañó-Viñuales [49], showing

the maximal case K̃ = 0 corresponding to the usual trumpet slices

[16] in the first subfigure. For a positive value of KCMC (in the

current sign convention), the hyperboloidal slices reach past null

infinity I − instead of I +. Equivalent penrose diagrams depicting

CMC slices for the RN spacetime (with A(r̃) = 1 − 2M
r̃ + Q2

r̃2
) are

shown in figures 3.11, 3.12, 3.13, and 3.14 in Vañó-Viñuales [49].

The non-extremal case is illustrated by the choice Q = 0.9M. The

trumpet case (with critical CCMC) should compare to panel 2 in

figure 2 in Tuite and O’Murchadha [53]; the slices have a different

profile because theirs were probably not numerically determined.

The extremal case Q = M is shown in 3.14 in Vañó-Viñuales [49],

and it has the feature that all slices are trumpet ones with R0 = M

always, as can also be seen in Figure 2. For the over-extreme case

(Q > M), no critical value of CCMC is found; thus, no trumpet slices

can be constructed (at least with this method).

The effect of CCMC can also be seen in the Schwarzschild

examples of the height function h(r̃) shown in Figure 4. They were

used to construct the respective Penrose diagrams in Figure 3.

The height function, integrated numerically from (20), if expressed

in Schwarzschild coordinates has a coordinate singularity at the

location of the horizon (r̃ = 2M): it diverges downward for

CCMC = 2 because it enters the white hole and upwards

for the cases crossing the BH horizon. The region between

(R1,R2) is complex for the subcritical values of CCMC (absence

of curves), so it is not straightforward how to join the inner

and outer real parts of the corresponding height functions. For

the critical case, the outer part of the height function goes to

−∞ at the root r̃ = R0 = 1.905. For the supercritical

CCMC = 4, the height function attains a finite value at the

singularity r̃ = 0. The integration constants for each case have

been set in such a way that as r̃ → ∞, the Schwarzschild

height functions approach the flat spacetime one h(r̃) =
√

(3/KCMC)2 + r̃2.

Initial data developed in refs. [56–58] aims for its evolution

using excision. For that purpose, any CMC slices with CCMC >

− 1
3KCMC

(

M +
√

M2 − Q2
)3

(intersecting the BH horizon), are

probably suitable, as in any case they will be cut before reaching

the singularity. The puncture approach pursued here, however,

compactifies the full slice, so the most suitable choice is the CMC
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FIGURE 4

Example of numerically integrated height functions for the Schwarzschild spacetime with M = 1 and KCMC = −1. The values of CCMC correspond to
those used in Figure 3. The integration constant has been set in such a way that as r̃ → ∞, the Schwarzschild height function approaches the flat
spacetime one (h(r̃) =

√

(3/KCMC)2 + r̃2). In blue the parts of the height function that are imaginary (for CCMC, smaller than the critical one).

trumpet slice for the critical value of CCMC. This is the case that will

be considered from now on.

4.5. Compactification �̄ and conformal
rescaling � for CMC slices

It is convenient to determine the compactification factor �̄ by

imposing a conformally flat initial spatial metric, which is in a way

equivalent to transforming to the isotropic radial coordinate:

γrr 0 =
(�̄ − r�̄′)2

�̄2

[

A( r
�̄
)+

(

KCMC r
3�̄

+ CCMC�̄2

r2

)2
] ≡ 1, (23)

as this is also a simple choice compatible with an initial zero (32).

The factor �̄ is expected to vanish at the same rate as the conformal

factor � at I +, but it is allowed to have a different behavior

elsewhere. Expression (23) is solved numerically for �̄; a suitable

procedure is described in subsection 6.6.1 of Vañó-Viñuales [49].

The result for the Schwarzschild case is shown as the solid line in

Figure 5, with the dotted line representing the linear behavior of

�̄ near r = 0, corresponding to the asymptotic behavior near the

trumpet r̃ = R0 (see (5) in Baumgarte and Naculich [16]). The

resulting �̄ will only extend to r = 0 if the critical value of CCMC

is used. If CCMC is larger than the critical value, �̄ will diverge as

r → 0, while using a value smaller than the critical CCMC will

provide a �̄ that does not reach the origin (and does not vanish

at the smaller r it gets to).

In flat spacetime (A( r
�̄
) = 1), condition (23) can be solved

analytically resulting in expression (9), where �̄ is substituted by

�. This result is commonly seen in the literature [55, 74] and

has been used in a preceding study [37, 48] as conformal and

compactification factors for the flat spacetime case. In order to

ensure that the slices reach I + (instead of ending at spacelike

infinity i0), (9) satisfies that �|I = 0 and ∇a�|I 6= 0. Then,

its behavior at I + is unaffected by the choices of the parameters

M and CCMC, and it is well-behaved at the origin of the coordinate

system. It is thus a good candidate to be used as a time-independent

conformal factor � in general, so this is indeed also the choice

in this study dealing with BH spacetimes, as already mentioned

toward the end of 2.1. The profile of this choice of � appears in

Figure 5 as a dashed line.

A comparison between compactified spherically symmetric

BHs for various values of the charge Q is shown in Figure 6.

In Figure 6A, the CMC trumpet compactification factors �̄

corresponding to Schwarzschild, to RN with Q = 0.9M and to

extreme RN (Q = M) are presented. An interesting effect of the

extremality of the Q = M case is that the cylindrical infinity of

the trumpet and the BH horizon are mapped to the same point

r = 0 of the isotropic radius r. This can be easily recognized by

looking at the profiles of the CMC trumpet initial values of the shift

βr , displayed on the right in Figure 6B. In the Schwarzschild and

non-extreme RN cases, the shift is positive at the horizon (mapped

to rSchw ≈ 0.13 and rRN+ ≈ 0.071 for Q = 0.9M respectively),

but in the extreme case, the shift never becomes positive. The

curves corresponding to the Schwarzschild case of the shift βr in

Figure 6B (see plot on the left figure 3.10 in Vañó-Viñuales [49] for

a representation of the lapse) compared to figure 5 in Hannamet

al. [13] and figure 2 in Baumgarte and Naculich [16], with the

difference that here the data are compactified on a hyperboloidal

slice instead of a spacelike one (with vanishing K̃).
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4.6. Vacuum initial data: Schwarzschild
spacetime

From now on, the described CMC trumpet BH initial data,

suitable for evolutions using the formalism in 2, will be restricted

to the Schwarzschild (A(r̃) = 1 − 2M
r̃ ) spacetime. The Reissner-

Nordström case works equivalently. The consideration of a non-

vanishing cosmological constant is left for future studies. After

imposing conformal flatness (23), �̄′ can be isolated from there and

FIGURE 5

Conformal (�) and compactification (�̄) factors, as well as the
behavior of �̄ ∼ r/R0 near the origin (with R0 the location of the
trumpet in uncompactified Schwarzschild radial coordinate), for
KCMC = −1 and critical CCMC. This figure is also included in
Vañó-Viñuales and Husa [61].

introduced into (21), yielding for the metric components

χ0 =
�̄2

�2
, γrr0 = γθθ0 = 1, (24a)

α0 = �

√

(

1− 2M�̄

r

)

+
(

KCMC r

3�̄
+ CCMC�̄2

r2

)2

,

βr
0 =

KCMCr

3
+ CCMC�̄3

r2
, (24b)

and for the extrinsic curvature (K̃ = KCMC) and rest of the variables

[calculated from (30), (31), and (32) using (24)]

3r
0 = 2̃0 = Zr0 = 0, Arr0 = −2CCMC�̄3

r3�
and 1K̃0 = 0.

(25)

The background metric γ̂ab is chosen to be the initial value of

the evolved one, that is, conformally flat γ̂rr = γ̂θθ = 1 as indicated

in (11). The profiles of the initial values of the variables (24) and

(25) are shown in Figure 7. As mentioned in 3.1, CMC initial data

(24) and (25) are a stationary solution of the Einstein equations but

not of the gauge conditions described in 3.

5. Stable stationary initial data for
given gauge conditions

In this study, “stationary” initial data means data that

correspond to a stationary solution of the Einstein equations and

also of the chosen gauge conditions. Only if all RHSs (right-hand

sides) of the evolution equations are zero for the initial data, the

solution will be stationary. This is valid for both physical and gauge

dynamics. In 4, an example was given describing how CMC initial

data were a stationary solution of the gauge conditions with CMC-

constructed source terms. However, the evolution would start

A B

FIGURE 6

(A) CMC trumpet compactification factor. (B) CMC trumpet values for shift βr . A version of these figures was originally included in Vañó-Viñuales [49].
(A) Profiles of the compactification factor �̄ with KCMC = −1 and critical CCMC for Schwarzschild, RN with Q = 0.9M and extreme RN CMC trumpet
geometries. (B) Trumpet values for the shift βr for Schwarzschild, RN with Q = 0.9M and extreme RN geometries. The detail in βr ’s plot shows how
the shift in the extreme RN case is never positive, a consequence of the trumpet and the horizon being mapped to the same point of the
compactified radial coordinate.
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FIGURE 7

CMC Schwarzschild trumpet BH initial data for the evolution variables with KCMC = −1, M = 1, and critical CCMC. The vertical line denotes the
location of the horizon. As is expected for trumpet data, the lapse α and spatial conformal factor χ are zero at the puncture. The shift component βr

is positive at the horizon and negative at I +. Compare to solved-for stationary data shown in Figure 10.

diverging from those data as soon as the simulation started, and

variable values would grow exponentially, leading the simulation

to crash. This stationary solution was unstable under the small

discretization errors naturally arising in a numerical code.

In this same context, “stable” describes an “attractor-type”

solution to the system. As explained in 4, gauge source functions

calculated from CMC Minkowski data give a stable stationary end

state (after some trumpet gauge dynamics) for some choices of

gauge conditions and parameters. Initial and final trumpet states

of an instance of that evolution are included in figure 2 in Vañó-

Viñuales and Husa [62]), where the latter also coincides with the

final state of a collapsed scalar field creating a BH with the same

total mass6 (for the same gauge configuration used). Ideally, we

want stable stationary hyperboloidal trumpet initial data, which

will remain a solution of the system even when small initial

perturbations are present.

The way to set up initial data for a given spherically symmetric

Schwarzschild BH spacetime (for some chosen values of M and

KCMC) is to impose the conditions (listed in 5.2) that satisfy the

Einstein equations in the non-dynamical regime and then solve the

gauge conditions for stationarity. The latter means setting α̇ = 0

and β̇r = 0, which correspond, respectively, to the choice of

hyperboloidal trumpet slicing and the compactification factor and

solving for the remaining degrees of freedom. There are several

options to tackle the last part:

• Solve first the slicing condition on the uncompactified domain

(using the uncompactified radial coordinate r̃ or equivalent)

6 The profiles of the evolution variables at several instances of time during

a collapse simulation are shown in figure 8.14 in Vañó-Viñuales [49].

and afterwards use the shift condition to determine a suitable

compactification for the radial coordinate, in the form of

(15). The advantages of this approach are that the steps are

performed separately and only one equation is to be solved at

a time. The disadvantages are that the first integration is to be

performed up to infinite values of the uncompactified radial

coordinate, which will introduce considerable errors near I +

unless some type of compactification is performed, and it also

requires determining the location of the trumpet, which is

not trivial. This optional partial compactification is difficult

to deal with in the second step (imposing stationarity on the

shift condition to obtain the compactification) as the solving

procedure has to be built on top of it consistently – all of this

assuming that a solution to the equation indeed exists.

• Solve both slicing and shift conditions [e.g., in the forms

(10) and (12)] for stationarity at the same time. This would

in principle allow us great freedom in the gauge conditions

that we choose to solve for, provided they give an existing

final stable stationary solution for a trumpet after some gauge

dynamics. However, there has been no success so far despite

numerous attempts. The main difficulty seems to lie within

the form of the shift condition. The stable stationary trumpet

state reached at late times in experiments sometimes shows a

non-smooth profile of the field 3r at I + (see fourth panels

in figure 8.31 in Vañó-Viñuales [49]). Relation (32) needs to

hold in the stationary regime and maybe that condition is

incompatible with the presence of advection terms in the shift

condition (12). In general, the final stable stationary state is

very sensitive to the choice of gauge conditions.

• Solve the slicing condition for the trumpet geometry and

impose an initial conformally flat metric to obtain the

compactification, in an equivalent way as done for CMC data
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with (23). The advantage is that both equations can be solved

at the same time (the compactification allowing to solve all the

way to I +). The slicing condition [here, (10) is considered]

is to be chosen carefully as it plays an important role in the

trumpet geometry [19]. The disadvantage of this approach

is that the shift condition needs to be modified in order

to keep the obtained initial data stationary, namely, either

dropping the advection and “η” terms or having its gauge

source functions filled in by the stationary solution found.

The three options have been attempted, with only some success

for some specific cases in the third way of proceeding. This

best choice will be described in 5.3 and solved for two example

configurations.

5.1. Comparison of metric quantities in
physical and conformal domains

For the purpose of clarifying the relations between physical and

conformally compactified quantities in the metric, let us introduce

the following ansatz for the spherically symmetric line element in

the uncompactified physical domain in terms of the hyperboloidal

time t (again with dσ 2 ≡ dθ2 + sin2 θdφ2):

ds̃2 = −
(

α̃2 − X̃r̃r̃ β r̃2
)

dt2+ 2 X̃r̃r̃ β r̃dt dr̃+ X̃r̃r̃ dr̃
2+ X̃θθ r̃

2 dσ 2.

(26)

The values of the metric components for a hyperboloidal slice

can be read off by comparing this metric ansatz to (17b) [or for a

Cauchy slice if using t̃ instead and relating to (17a)].

For the conformally compactified version, as will be used in

initial data calculations in 5.3 and relates to the physical one as

in (16), set

ds2 = �2ds̃2

= −
(

α2 − Xrr βr2
)

dt2+2Xrr βrdt dr + Xrr dr
2+Xθθ r

2 dσ 2.

(27)

It relates to the line element (8) used in the evolution formalism

by Xrr ≡ γrr/χ and Xθθ ≡ γθθ/χ , but for convenience and clarity,

it is written in terms of the X quantities. Its components can be read

off from (18), as done for (8) in (21) after substitution of (20).

The relations between the physical and conformally rescaled

metric quantities are the following (most listed in (2.39) and (2.69)

in Vañó-Viñuales [49])

α̃ = α

�
, χ̃ = �2χ̄ , with χ̃ = γ̃θθ

X̃θθ

equivalently as in (8) and

χ̄ = χ

�̄2
, so that χ̃ = �2

�̄2
χ . (28)

The quantity χ̄ accounts purely for the conformal rescaling (1)

on the spatial conformal factor. However, χ is conformally rescaled

and also includes the compactification of the radial coordinate (15).

The shift does not change due to the 4D conformal rescaling,

but its radial components change under a transformation in the

radial coordinate. The changes for the X metric components

include both effects

β r̃ =
(

�̄ − r�̄′

�̄2

)

βr , X̃r̃r̃ =
�̄2

�2

(

�̄

�̄ − r�̄′

)2

Xrr , and

X̃θθ = �̄2

�2
Xθθ . (29)

5.2. Relations holding in the stationary
regime

Subsection 5.3 will tackle the derivation of stationary initial

data in relation to the gauge conditions from the same starting

point as [63]. However, a slicing condition that has been tested

experimentally is considered, and the calculations will take place in

the conformally compactified domain instead of the physical one.

The procedure will require knowing the conditions that stationarity

puts on the metric, which is taken to be the Schwarzschild one from

now onward.

Imposing stationarity on the evolution equation of the

metric components allows to find the desired time-independent

expressions for the trace of the extrinsic curvature, given in (30)

and (31). Setting the RHS of (2.82a) in Vañó-Viñuales [49] to zero

together with the evolved Z4 constraint 2̃ = 0 gives the following

expression for the quantity 1K̃ = K̃ − KCMC (the variation of

the physical trace of the extrinsic curvature with respect to the

background value KCMC) in terms of the conformally compactified

metric components:

1K̃ = −KCMC + �

α

(

βr ′ − 3βrχ ′

2χ
+ βrγθθ

′

γθθ

+ βrγrr
′

2γrr
+ 2βr

r

)

− 3βr�′

α
. (30)

In essence, the relation above is equivalent to (7) in Ohme et

al. [63]; only here, different variables are used, and the relation

holds in the conformally compactified domain. Setting now the

RHS of (2.82b) in Vañó-Viñuales [49] to zero provides the following

expression for Arr to hold in the stationary regime:

Arr =
1

3α

(

βrγ ′
rr −

βrγrrγ
′
θθ

γθθ

+ 2γrrβ
r ′ − 2βrγrr

r

)

. (31)

This expression will not be used in further derivations but is

provided here for completeness. The stationary expression for 3r

in terms of the spatial metric components obtained from the Z4

constraint (2.81c) in Vañó-Viñuales [49] is

3r = 2 ˆγθθ

γ̂rrγθθ r
− 2

γrrr
+ γ ′

rr

2γ 2
rr

−
γ ′
θθ

γrrγθθ

+
γ̂ ′
θθ

γ̂rrγθθ

− γ̂ ′
rr

2γ̂rrγrr

= 2

r

(√
γrr −

1

γrr

)

+ γ ′
rr

γ 2
rr

. (32)

After the second equality above, γ̂rr = γ̂θθ = 1 have been set

and the substitution γθθ = γ
−1/2
rr has been imposed. The latter is

required by the introduction of the spatial conformal factor χ in

the formulation, and it is to be applied to (30) and (31) as well.

The second expression for 3r in the stationary regime (32), with
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its formal divergence as r → 0, is not straightforward to solve.

To find finite values of 3r for a γrr that neither diverges nor goes

to zero at the origin fine-tuning is required (with the exception

of γrr = 1 that gives 3r = 0). This condition (32) possibly puts

stringent limitations on the possible solutions of the shift equation

(12). A way to simplify the problem is to, instead of solving for the

shift condition, impose 3r = 0 initially and accordingly choose

conformally flat initial data, as was mentioned at the beginning of

the section and will be used in 5.3.

The Schwarzschild spacetime is a static solution of the Einstein

equations, given by (17) with A(r̃) = 1 − 2M
r̃ . The following

relations between metric components in the uncompactified

physical domain hold:

α̃2 − β r̃2X̃r̃r̃ = α̃2 − β̃2 = 1− 2M

r̃
, (33a)

X̃rr =
1

α̃2
, X̃θθ = 1. (33b)

The first condition is, e.g., (9), in Ohme et al. [63] and

corresponds to using the Killing lapse and shift. The second one

is used in (8) also in Ohme et al. [63], introducing

β̃ =
√

X̃r̃r̃β̃
r̃ ≡

√

γr̃r̃

χ̃
β r̃ that transforms via β̃ = β

�
to

β =
√

Xrrβ
r ≡

√

γrr

χ
βr . (34)

The last expression in (33b) means that the physical areal radius

remains constant.

The equivalent expressions in the conformally compactified

domain, obtained from (33) using the transformation relations in

(28) and (29), are

α2 − βr2 γrr

χ
≡ α2 − βr2Xrr = α2 − β2 = c2 �2

(

1− 2M�̄

r

)

,

(35a)

γrr

χ
≡ Xrr =

c2

α2

(

�2

�̄2
(�̄ − r�̄′)

)2

,
γθθ

χ
≡ Xθθ = �2

�̄2
.

(35b)

The compactification factor �̄ cannot be chosen freely (the

conformal factor � can), but it is to be substituted from the

second relation in (35b), a consequence of the physical areal radius

chosen to be constant in (33b). Note the presence of the c factor

(completely unrelated to the speed of light) in the first two relations:

it corresponds to a constant rescaling of the hyperboloidal time

coordinate, t → c t, in the same way as in the transformation to

hyperboloidal time (55) in Panosso Macedo [90]. The constant c

will take a different value in the stationary regime depending on

the gauge equations chosen and the values of their parameters.

Relations (35) have been checked experimentally in spherically

symmetric hyperboloidal trumpet evolutions. The quantity c can

be absorbed into the value of KCMC (in the conformal factor) in the

above expressions, but this approach will not be followed here. It

is indeed possible that the c rescaling of the time coordinate in the

evolution is a consequence of a rescaling of the conformal factor �

(chosen to be time-independent) that takes place as a result of the

change in the hyperboloidal slices. Understanding this effect is left

for future work.

5.3. Solving the slicing condition and
imposing an explicitly conformally flat
metric

A delicate evolution variable in the BSSN/Z4 formulations is

3i, which is usually set initially to zero corresponding to a choice

of conformally flat initial metric, i.e., γij = ηij. As pointed out

after introducing (32), for this spherically symmetric setup where

γθθ = γ
−1/2
rr holds and γ̂rr = γ̂θθ = 1, the problem is considerably

simplified if γrr = 1 is set as initial condition, ensuring a well-

behaved initial 3r = 0. This is indeed a conformally compactified

version of isotropic coordinates for puncture data [18, 19]. Thus,

from now on, the initial metric will be chosen to be conformally

flat explicitly. This mimics the procedure done for CMC slices in

4, where the compactification factor is also determined imposing

conformal flatness via (23). The difference is that now the slicing

will not be CMC but determined by stationarity of the slicing

condition (10).

The coupled system of equations to solve is the left equation

in (35b) and (10)’s RHS set to zero with ncK = −mcK
6rI
KCMC

� =
mcK(r

2
I

− r2), where mcK is a non-zero constant. The reason why

ncK is set to be proportional to the conformal factor is to ensure

that it vanishes at I +. In this way, the gauge propagation speed

associated with the slicing condition will be the physical one at

future null infinity (as is the case for the harmonic slicing for

ncK = 0), as is shown in Figure 1. The other relations in 5.2 are

used to substitute all quantities in those two equations in terms of

β [defined in (34)], the following rescaling of the compactification

factor:

ω̄ = �̄

r�
, (36)

which is expected to be finite and non-zero everywhere in the

integration domain, and the constant c, which will be used as

parameter to shoot-and-match on during the solving procedure.

The profiles of β and ω̄ for the CMC case, with c = 1, are depicted

in Figure 8. The explicit substitutions to be performed are

�̄ = r � ω̄, βr = β

√

χ

γrr
, γθθ = γ−1/2

rr , γrr = 1, χ = r2 ω̄2,

α =
√

β2 + c2�2(1− 2Mω̄�). (37)

The expression from χ comes from imposing conformal

flatness on the right equation in (35b). The α has been isolated

from (35a). The reason for choosing to substitute α instead of β is

that the latter, as can be seen in Figure 8A, changes sign over the

compactified domain (the shift βr is positive at the horizon and

negative at I +) and thus cannot be easily substituted. After the

substitutions, the left equation in (35b) reads

ω̄′ = ω̄

�

(

±
√

β2 + c2�2(1− 2Mω̄�)

c r
− �′

)

. (38)

The sign providing the RHS that coincides with CMC’s �̄′ from
Figure 5 for substituted CMC data is chosen (the minus one, in

this case). The resulting equation from (10) is much longer and has

been included in Appendix A as (42). Both equations are formally

diverging at the trumpet and at I +. The ellipticity of the coupled
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system of equations has not been studied. For convenience, the

system is solved for

δβ = β − c KCMC r

3
(39)

instead of β as the former vanishes at I + (see inset in Figure 8A).

The explicit form of the conformal factor (9) is also substituted.

Using Taylor expansions in the radial coordinate around the

trumpet is not suitable, as α may not necessarily be proportional to

an integer power of the radial coordinate [18, 19]. The integration

will thus start fromI + toward the trumpet, motivating the change

of coordinate x = 1 − r. Guesses for the initial values of δβ and ω̄

at I + (x = 0) required to start the shoot-and-match integration

from there are obtained by Taylor expanding the equations around

I + up to first order. The values of the variables and their first

derivatives at future null infinity,

δβ|I+ ≈ 0

+x
3(c− 1)

(

c2ξcKK
2
CMC − 3cK2

CMCmcK − 3mcK

(

9ξcK + K2
CMC

))

cKCMC

(

2
(

3c2 − 2
)

K2
CMC + 9(3c− 4)ξcK

) (40a)

ω̄|I+ ≈
(

3c2 − 1
)

K2
CMC + 9(c− 1)ξcK

2c2K2
CMC

·
[

1+ x
1

c2K2
CMC

(

2
(

3c2 − 2
)

K2
CMC + 9(3c− 4)ξcK

) ·
(

6c4K4
CMC+

+36c3ξcKK
2
CMC − c2K2

CMC

(

45ξcK + 4K2
CMC + 27mcK

)

−243cξcKmcK + 27mcK

(

9ξcK + K2
CMC

))]

(40b)

are obtained by imposing regularity of the expansions at I +

for each power of x. The system of equations is solved using

Mathematica’s NDSolve function on the integration domain x ∈
[10−5, 1) and a WorkingPrecision of 50. The starting point

x = 10−5 is chosen to avoid the formal divergence of the equations

at I +, while the integration is carried out up to almost x = 1

(at least as close as x = 0.9996). The starting point needs to look

visually very near to future null infinity and be closer to I + than

any of the gridpoints in the evolutions (see 6). Conditions (40) are

evaluated at x = 10−5 for the chosen values of mcK and ξcK , and

a value for c is set with high precision to start the integration. The

criteria to determine whether the found solution is good enough is

for the lapse α to be zero at the trumpet. In practice, when using

NDSolve, that translates to obtaining profiles of δβ and ω̄ that

look smooth and do not diverge at x = 1 – given the difficulty

of the integration, a solution with a very small divergence localized

beyond x = 0.999 is taken as valid. Unless c is very close to the

required value, the solutions very quickly become infinite as being

integrated toward the origin, given the formally divergent character

of the equations. On top of that, there are some regions in the

potential values of c where the solutions become complex, or they

cannot be integrated any closer to the origin than a certain point.

That point may correspond to the hyperboloidal equivalent of the

“critical point” mentioned in Bruegmann [18] and Baumgarte and

de Oliveira [19]. Moreover, the level of fine-tuning required for c, so

that the solution is well-behaved up to x = 1(≡ r = 0), is very high.

What is meant with “fine-tuning” for c is the system of equations is

solved for a specific value of c, depending on the direction in which

the obtained profiles for δβ and ω̄ are diverging, the next value of

c is selected to decrease the divergence. This procedure is repeated

until a value for c that provides regular profiles for the solutions

at the origin (and α close enough to zero there) is found. This

makes usual methods to choose the values for c in the shooting-

and-matching difficult to employ successfully, so that after a careful

study of each setup (for chosen values of mcK and ξcK), a manual

tuning of c has been used.

The profiles of β and ω̄ for two different parameter choices,

with the CMC equivalent for comparison, are displayed in Figure 8.

The two configurations considered were (withM = 1 and KCMC =
−1): mcK = 1 and ξcK = 1, requiring c = 0.9996723791389223,

and mcK = 0.1 and ξcK = 0.5, with c = 0.9661803490. These

values of the parameters were chosen because they provide a long-

term stationary solution in evolutions of the Einstein equations

(see 6.3 for further comments). The number of significant digits

required for the value of c depends on the method and precision

used. As can be seen in the plots, the larger mcK , the more “CMC-

like” the slices look near the origin, whereas it has been found

experimentally that ξcK has more of an impact in the region near

I +, allowing solutions to be further from the CMC profile for

smaller values of ξcK . This is also the behavior seen in evolutions

of CMC trumpet initial data with those parameter choices for the

slicing condition.

With NDSolve, it is not straightforward to estimate the

error of the solution (even using options like AccuracyGoal
or PrecisionGoal), which in turn makes the study of its

convergence difficult. Using x = ·10−5 as the starting point for

the integration gave larger residuals, as expected, but this is not

enough to systematically study convergence. In order to overcome

this hurdle, simple explicit integrators were implemented to solve

the same system of coupled equations. Those were a 1st order Euler

method and a 4th order Runge-Kutta (RK4). The explicit integrator

was used for the shooting, while a bisection method was used for

the matching part (looking how close to zero α|r = 0 was for

the chosen value of c). An example of the results obtained for

mcK = 1 and ξcK = 1 (for a value of c = 1.03903643703151

in the Euler method) is shown in Figures 9A, B with a solid black

line, also including the NDSolve solution for comparison (black

dashed) – there are obvious differences. Two solutions obtained

with the RK4 integrator are also shown in Figure 9 in blue, solid

for 200 points (with c = 0.9891442037734391040608175) and

dashed for 220 points (c = 0.989160040599287855336) although

they are only distinguishable from each other in the noisy part

near I +. While these curves are closer to the NDSolve solution,

there are still differences between them. The main obstacle in the

explicit integration methods was that∼3% of the gridpoints closest

to I + look very noisy, and there is a jump between the values

of δβ and ω̄ at both sides of the noise even if a solution for

the whole domain was found. Fine-tuning on the correct value

of c was difficult (this is why only two solutions are given for

the RK4) as the RHS would change sign several times throughout

the domain of c considered (quite possibly due to the presence

of the noisy part) and not all of the potentially promising values

would provide a solution extending all the way to the origin.

An extra difficulty was that sometimes the RHS would become

complex halfway through the integration and no full solution

was found, which also happened with NDSolve. Convergence

for the part of the RK4 solution between the origin and the
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A B

FIGURE 8

(A) Profiles for β, with δβ in inset. (B) Profiles for ω̄. CMC trumpet profiles together with solutions to the slicing condition (10) and (38) (with minus
sign) for two di�erent sets of parameters. The corresponding values of c are included in the main text.

noise is shown in Figure 9C: the Hamiltonian and r-component

of the momentum constraints are evaluated for the 200 and 220-

point RK4 solutions and rescaled according to the expected 4th

order convergence. Both lines overlap perfectly in most of the

interior domain.

Apart from the unavoidable fact that the equations are formally

singular at the extrema, potential explanations for the delicate

tuning of c required and the noisy part in the solutions obtained

from the explicit integrators are (i) the Taylor expansion (40) used

to start the integration are not suitable and (ii) the slicing condition

considered (10) together with the imposition of conformal flatness

do not provide a solution (see 6.3 for comments on its stationary

solution after evolution).

Initial data (constructed from the NDSolve solution) for

the evolution variables for the mcK = 0.1, ξcK = 0.5 case,

chosen because its solution differs more from the CMC profile, are

presented in Figure 10. The quantities are calculated from β , ω̄ and

c using relations (37), (30), (31), and (32). The CMC profiles from

Figure 7 have also been included in the plot in a light blue color

to facilitate comparison. The main qualitative difference between

both sets of data is that 1K̃ has an positive dependence on r in

the non-CMC case. Note that the full trace of the physical extrinsic

curvature, K̃ = KCMC + 1K̃ = −1 + 1K̃, is still negative

everywhere for the solved-for case. The spatial conformal factor χ

is no longer unity at I + and Arr reaches the origin (the location of

the trumpet) with a steeper slope.

The compactification and slicing for the mcK = 0.1, ξcK =
0.5 solution, including the CMC profiles for comparison, are

shown in Figure 11. The two compactification factors in Figure 11A

are qualitatively the same. The slope at the origin is different

because the slices of the solved-for solution reach further into

the horizon – the trumpet is located at R0 = 1.60M. This can

be appreciated in Figure 11B. Full details on the construction

of Penrose diagrams for numerical data will be included in

Vañó-Viñuales [24].

6. Evolution results

6.1. Implementation

Simulations are performed with a spherically symmetric code

that uses the method of lines with a 4th order Runge-Kutta time

integrator and 4th order finite differences, adding Kreiss-Oliger

dissipation [92]. The grid used is staggered (cell-centered), so it

avoids the two points where the equations are formally singular -

the origin r = 0, that corresponds to the value of the Schwarzschild

radial coordinate R0 where the trumpet asymptotes to, and r =
rI , which corresponds to future null infinity I +. Extrapolating
boundary conditions such as the outflow boundary conditions in

Calabrese and Gundlach [93] are used at both boundaries. Off-

centered finite difference stencils in the advection terms’ derivatives

is known to improve stability and performance of numerical

relativity simulations [94–96]. Thus, advection stencils are up-

winded toward larger radii (like on the right in figure 2 in Vañó-

Viñuales and Husa [48]), where the radial shift component is

negative and down-winded toward smaller radii where the shift is

positive.

The chosen values of the parameters for the simulations

considered here are (unless stated otherwise): κ1 = 0.5, κ2 = 0,

κ0 = 0, dissipation strength 0.1, KCMC = −1, mcK = 0.1,

ξcK = 0.5, λ = 1, ξβr = 0, η = 0, 1. Most simulations

use 456 spatial discretization points and a timestep of dt =
6.667 · 10−4. The number of spatial gridpoints is enough to resolve

the hyperboloidal trumpet initial data considered here, while the

timestep is chosen to be below the Courant–Friedrichs–Lewy limit.

For some configurations (not in the case of the work presented

here), the dt needs to be smaller to account for the presence of stiff

terms in the equations. Evolutions have been performed with the

generalized BSSN system.

As mentioned in the previous section, convergence of the

stationary initial data solutions could so far only be shown on
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A B C

FIGURE 9

(A) Solutions for δβ. (B) Solutions for ω̄. (C) Constraints for RK4. (A, B): Comparison between the NDSolve results (black dashed) and those obtained
for a simple Euler solver (solid black) and the Runge-Kutta 4 (blue lines) for the mcK = 1 and ξcK = 1 case, specifying the number of gridpoints used
for Euler and RK4. The non-smooth part near I + for the explicit integration methods (Euler and RK4) is shown in the insets. Note that the profiles of
the solutions show a jump to the left and right of the noisy part. (C) Constraints evaluated for the two solutions obtained with the RK4 integrator
(with 200 and 220 points, thus a resolution increase of 1.1). The Hamiltonian and r-component of the momentum constraint for the lower resolution
are divided by fp , where f is the increase in resolution of 1.1, and p is the order of convergence (4 for RK4). The curves coincide well in the interior of
the domain (the solutions converge there), but the noisy part near I + shown on (A, C) does not converge.

FIGURE 10

Solved-for Schwarzschild trumpet BH initial data for the evolution variables with KCMC = −1, M = 1, mcK = 0.1, and ξcK = 0.5 in black, and CMC data
shown in Figure 7 in light blue for comparison. The vertical lines denote the respective location of the horizons. The Arr component of the trace-free
part of the conformal extrinsic curvature shows a steeper slope at the origin for the solved-for data. The values at I + of the corresponding χ , α, and
βr are di�erent from their CMC values, while the solved-for 1K̃ is non-zero in the whole domain. As imposed when constructing both trumpet slices,
γrr = γθθ = 1 and, consequently, 3r = 0.

part of the integration domain (see Figure 9C). For those data,

noisy features makes the reconstructed initial data for the evolution

variables (such asArr or1K̃) non-smooth enough to pose problems

in the evolutions, namely, that the simulations crash due to the

spiky profiles. In this study, the focus will be to understand the

phenomenological behavior of the solutions. In any case, any

reasonable lack of convergence or smoothness of the solved-for

initial data will disappear as the evolution progresses as the gauge

conditions will drive the data to the real solution. As initial data,

the two options depicted in Figure 10 will be used, namely, the

hyperboloidal Schwarzschild CMC trumpet data (24) and (25), as

well as the solved-for mcK = 0.1, ξcK = 0.5 solution obtained with
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A B

FIGURE 11

(A) Compactification factor. (B) CMC and solved-for slices. Comparison between CMC trumpet and the solution for mcK = 0.1 and ξcK = 0.5.
Whereas in the CMC case the trumpet is located at R0 = 1.91M of the Schwarzschild radius (as indicated in Figure 3C), for the solved-for slices it is at
R0 = 1.60M, closer to the singularity. Accordingly, the slope (∼ 1/R0) near r = 0 of the compactification factor is steeper. The slices shown on the
Penrose diagram correspond to di�erent values of the hyperboloidal time t for CMC and solved-for data; they have been chosen in such a way that
the slices coincide at I +.

NDSolve, which from now on will be called “statio” solution. Two

different gauge setups will be considered, both using (10) as slicing

condition: the first one will use the integrated Gamma-driver (12),

of which neither CMC trumpet data nor the statio solution are a

stationary solution, while the second one will involve the modified

shift condition (13) without advection terms, whose RHS is zero for

both sets of initial data.

6.2. Evolution with shift condition including
advection terms

The first test is performed with the Gamma-driver (12) shift

condition with advection terms and η term, together with the

slicing (10). The expectation is that the trumpet readjustment to

happen for the statio data should be smaller than for the CMC data.

When evolved with η = 0, a small oscillatory behavior appears

in all evolution variables around the initial profiles of the statio

data, no matter if the starting point of the simulation is CMC or

statio data. The amplitude of these oscillations grows slowly (up

to the final t = 100 of these simulations), which indicates that

the simulation will crash at some point later in time. The damping

term with η was already introduced in Baiotti and Rezzolla [79]

to avoid strong oscillations in the shift, while other works have

found a small value of η useful to suppress gauge oscillations,

such as those affecting eccentricity measurements in Purrer et al.

[97]. A further study of suitable values of η and comparison with

non-hyperboloidal simulations is left for future work.

If setting η = 1, the dynamics drives the initial data to a

stable solution. The differences between the initial and the final

profiles are shown in Figure 12. As expected, those differences are

larger for CMC initial data, especially the change in Arr , which

gets up to 2.4 (beyond the range shown in the Figure). The two

lines for 3r lie on top of each other as both their initial and

end states are the same. While the statio initial data has indeed

the advantage that it has required less trumpet dynamics in the

evolution, the profiles of the Arr and 3r quantities near I +

look slightly diverging, which may cause convergence problems in

general (see comments in next subsection). The depicted changes

in α show that its final state is smaller than the CMC initial

profile but slightly larger than the statio one. No further study

of the parameter space has been performed because anyway it

is not yet clear what gauge conditions are best suited for the

hyperboloidal setup.

6.3. Evolution with shift condition without
advection terms

Both sets of initial data are now evolved with the shift

condition (13). The initial dynamics in the CMC case are driven

by the slicing condition (10), while the statio solution remains

visually static throughout the evolution (ran up to t = 1, 000).

Figure 13A aims to capture how fast the final state is attained in

the evolutions, via showing the behavior of the L2 norm over the

whole 3r gridfunction over time, for both sets of initial data (CMC

and statio), as well as for two runs with CMC initial data and

different parameter configurations. The statio3r is set to be exactly

zero initially (implied by the explicit conformal flatness imposed)

although this cannot be seen in Figure 13A due to the logarithmic

plot used in the vertical axis as the evolution starts its value changes

probably because the solved-for solution has some small errors and

still needs to relax to its truly stationary state. In any case, the

change is much smaller than for CMC initial data. Both sets of

initial data relax to the final state at the same rate. The quality of the

final solution is estimated looking at the values of the Hamiltonian

constraint at different values of the radial coordinate as time passes

in Figure 13B. In the middle of the compactified domain (dash-

dot line), the value of H rapidly approaches a small value. Closer

to I + (dashed line), the final value is larger, meaning that the
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FIGURE 12

In blue are the di�erences between the initial CMC trumpet data and the final state of the simulation (evaluated at t = 100), while the black lines
show the di�erence between the mcK = 0.1, ξcK = 0.5 initial profile and the final one. The final state is the same for both sets of initial data, as they
were both evolved with the same setup: slicing (10) with mcK = 0.1 and ξcK = 0.5, and shift with advection terms (12) with λ = 1 and η = 1. The
vertical line denotes the final location of the horizon. The di�erences are larger for CMC initial data. See main text for further details.

A B

FIGURE 13

(A) L2-type norm for 3r over time. (B) Hamiltonian constraint at several r. Long-term behavior of unperturbed simulations with advection-term-free

shift condition. (A) L2-type norm for 3r ’s gridfunctions at given times,
√

∑N
i=1(3

r
i )
2 where i ∈ [1,N] denotes the spatial points. As 3r = 0 is the

stationary solution of (13), this plot shows how fast initial CMC and statio data get to their final state. Apart from the two solid lines representing [data
also appearing in (B)], two simulations are included: CMC initial data, and either i) (dashed line) a di�erent value of parameter κ1 = 1.5 (taken to be 0.5
otherwise) or ii) (dash-dot line) evolved slicing condition with parameter valuesmcK = 0.1 and ξcK = 0.5. (B) Values of the Hamiltonian constraint over
time at di�erent values of the compactified radial coordinate: in the middle of the domain for dash-dot, near I + for dashed and at the closest point
to I + for the solid line. Constraint violations are larger closer to future null infinity.

constraint violation there is more pronounced than in the center

(which is expected because the equations are formally singular). At

the last gridpoint (half a spatial step from the compactified location

of future null infinity, solid line), the effect is even larger. One

indication that the statio solution must have some small errors is

that in the blue solid line, the leftmost value of H for CMC data (at

t = 0) is very small – except for the compactification factor, which

is solved numerically, the rest is an explicit analytic solution (24).

However, the initial value of the Hamiltonian constraint for statio

data on the black solid line is large, indicating that the given initial
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FIGURE 14

Convergence order over time calculated using the L2-type norm as logf

(

√

∑N
i=1 (Xlow,i−Xmed,i )2

√

∑N
i=1 (Xmed,i−Xhigh,i )2

)

with i ∈ [1,N], f = 1.5, N = 304 and Xlow/med/high,i

denoting the evolution variables for the low, medium, and high resolutions at point i. For the blue curves, all the evolution variables were included (so
that X was successively χ , γrr ,Arr1K̃,3r ,α, and βr), while for the black lines, the summation was performed only on α. The expected 4th order
convergence is lost very early, and only recovered later in the evolution, if at all. Interpretation in the main text. Further understanding the
convergence behavior in the evolution for the choice of gauge conditions is beyond the scope of this study.

data does not satisfy the constraints in a satisfactory way, at least

very near I +.
The dashed and dash-dot lines included in Figure 13A

correspond to two simulations with CMC initial data but with

a different parameter configuration, respectively, κ1 = 1.5, and

slicing with mcK = ξcK = 1. They have been included to shed light

on the loss of self-convergence issues detected in the simulations

and shown in Figure 14. The L2-type norm of the stationary states

of 3r for these two different configurations are different from the

solid lines (that for the slicing with mcK = ξcK = 1 gets closer to

zero).

The convergence order calculated from the evolution variables

shown in Figure 14 drops from the expected 4 very early in the

simulation. Self-convergence of the lapse (black lines) is recovered

around t ∼ 250. Other fields behave worse (not shown here):

for instance and except for the CMC mcK = ξcK = 1 runs,

self-convergence of γrr is only 2nd order, while Arr ’s is between

2nd and 4th. This is why the convergence order that takes into

account all of the evolution variables does not go back to 4 even

by t = 900. The exception is the CMC mcK = ξcK = 1 case,

where the 4th order convergence is recovered around t ∼ 300.

The reason is that a larger value of ξcK damps the deviations of

the lapse from its value at I + more efficiently, together with a

larger propagation speed near the trumpet given by a bigger mcK .

With just the simple slicing condition (10) considered here, one can

appreciate the enormous effect that gauge conditions have on the

evolutions. However, convergence is lost before t ∼ 300 even in the

best case, which is clearly pointing to the presence of a problem.

To the author’s best knowledge, the shift condition (13) has not

been used before and could be partially to blame of the loss of

convergence. Other more sophisticated gauge conditions, such as

those covered in Vañó-Viñuales and Husa [48], could be tested for

comparison – although the statio solution would not be a stationary

solution anymore. During the time when self-convergence of the

variables was lost virtually everywhere in the domain (0 . t . 300

or later), the constraints continued to converge in the interior at the

domain at all times. However, at late times, they did not asymptote

to zero but to ∼ 10−6. Understanding all these interesting aspects

and how they relate to the choice of gauge conditions is left for

future research.

To study the robustness of the gauge system and study how

constraint convergence evolves in the simulations, a constraint-

satisfying Gaussian-like gauge perturbation is included in the initial

lapse,

α = α0 + Ae
− (r2−r2c )

2

4σ4 , (41)

where α0 denotes either its CMC value as in (24) or its statio value.

The chosen values of the parameters are A = 0.05, σ = 0.1, and

rc = 0.25. This initial data are run with 304, 456, and 684 spatial

points (and corresponding timestep dt = 10−3, 6.667 · 10−4, 4.444 ·
10−4), thereby increasing the resolution by 1.5 between runs.

The initial gauge perturbation extends to all evolution variables

and gets propagated away, part into the BH and part out through

I +, leaving behind what under visual inspection looks like the

statio solution. Even if the statio initial data do not appropriately

converge, the evolution of the gauge perturbation will after a certain

amount of time. Looking at convergence of the constraints can give

an estimate of when that happens as well as the general reliability

of the simulation. Figure 15 shows convergence of the Hamiltonian

constraint at an early time t = 0.1 and a later one t = 4 for both

CMC and statio initial data. Except at the boundaries, convergence

for the CMC case is good as the blue curves coincide very well in

the interior of the domain for both figures. That is not the case for
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A B

FIGURE 15

(A) Rescaled H constraint at t = 0.1. (B) Rescaled H constraint at t = 4. Rescaled values of the Hamiltonian constraint as a function of r at two
di�erent instants of time. Hlow uses 304 points, Hmed uses 456, and Hhigh uses 684. The rescalings are of the form fp, where f is the increase in
resolution between runs (1.5 in this case) and p is the order of convergence (4th in this setup). The same legend is valid for both plots.

the statio case: initially the lack of convergence of the initial data

is seen clearly in the non-coincidence between the black curves

in Figure 15A. Later, at t = 4 as shown in Figure 15B, most of

the discrepancies have disappeared and convergence looks better

– except again at the extrema of the radial coordinate, where the

Hamiltonian constraint looks very noisy. This is not necessarily an

indicator of a problem, as the constraints are formally divergent at

the trumpet and at I +.7

7. Conclusion

The hyperboloidal approach allows numerical simulations

to reach future null infinity from first principles and without

complicated constructions. While it needs to be further understood

and developed, progress in the non-linear regime is taking place

along several fronts [81, 98, 99] and will also benefit from

work in the linear one, e.g., [100]. The focus in the present

study has been on spherically symmetric hyperboloidal trumpet

initial data for puncture-type evolutions of BHs. More specifically,

the construction of CMC trumpet data via the height function

approach has been reviewed and adapted to the needs of numerical

simulations using the puncture approach together with conformal

compactification. Gauge conditions play a crucial role in numerical

evolutions both in the stability of the setup and the allowed

final states of the system. While understanding them within the

hyperboloidal approach is still work in progress, some options

providing successful numerical simulations are known.

Availability of stationary initial data that are suitable for the

evolution and study of perturbations thereof is very desired,

especially as part of the development of the hyperboloidal method.

This study sets the infrastructure to pursue those solutions for

7 Constraint equations, zero for the continuum solution, do not have

a scale. Self-convergence of the evolution fields is what needs to be

satisfactory there. As described above, this is not the case, but this will be

studied elsewhere.

spherically symmetric BH trumpet data within the conformally

compactified domain. A procedure to solve a specific numerically-

tested slicing condition together with explicit conformal flatness

has been developed and tested in examples. The accuracy of

the numerical solutions was not fully satisfactory (convergence

could only be checked in part of the domain), but still they

could be tested in hyperboloidal evolutions and shed some

light on the behavior of some choices of shift conditions. The

bottomline is that new initial data that approaches the stationary

solution of the gauge conditions much more rapidly than CMC

data was constructed despite how challenging the procedure

ultimately was.

There are several options that could be tested to improve the

quality of the stationary solutions and that have been left for future

work. At the numerical level, a more sophisticated solving method

could be used, such as an elliptic solver for non-linear equations

or a relaxation method. The main requirement is to obtain reliable

and smooth solutions for which convergence can be checked in the

whole integration domain. At the analytical level, a different slicing

condition could be considered. To be suitable, it needs to provide

a stable stationary final state in evolution for a hyperboloidal

trumpet slice. This is not easy to attain, but progress on the gauge

condition front in the near future will provide more options. This

progress will also contribute to understand the convergence

problems detected during the evolutions, which will be

solved elsewhere.

The insight gained on the effects of the two different shift

conditions tested here will be used to develop other suitable options

that may provide smoother profiles of the evolution variables

near I +. Within the free evolution setup with a BSSN/Z4-type

formulation, the shift condition is closely related to the quantity

3a, which may impose some limitations as to which final states are

allowed or not. Either modifying the definition of 3a, making it

more compatible with the hyperboloidal framework, or considering

a different formulation of the Einstein equations may be beneficial.

In either case, it would be worth attempting to solve the shift

condition for the compactification, once the behavior of 3a
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is better understood, instead of imposing conformal flatness as

done here.

While CMC trumpet initial data for the RN spacetime has

been developed, it is still waiting to be tested in hyperboloidal

evolution to the author’s best knowledge. Moreover, how far

the conformally compactified height function approach can be

extended to include a non-vanishing cosmological constant, in a

similar way to [101] but with views toward non-linear numerical

simulations, is still to be found out. Finally, including a massless

scalar field perturbation on stationary trumpet initial data will

allow to study the former’s behavior without mixing it with

trumpet relaxation dynamics, which was one of the problems

hit in Vañó-Viñuales [49] and Vañó-Viñuales and Husa [61].

Of special relevance are the decay tails and their convergence

at I +, as preparation of the GWs to be treated in the full

3D case.

This study succeeded in taking a few steps toward a more

thorough understanding of the interplay between gauge conditions

and stationary solutions on hyperboloidal trumpet slices for the

puncture approach. It has provided a framework to determine

those solutions for suitable generic gauge conditions as well as

exemplifying how challenging both the initial data calculations

and the evolutions are. Insights into how to develop better

suited formulations for the hyperboloidal approach have also

been gained.
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45. Zenginoğlu A. Hyperboloidal evolution with the Einstein equations. Class Quant
Grav. (2008) 25:195025. doi: 10.1088/0264-9381/25/19/195025
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Appendix

A1. Initial data equation from slicing condition

Equation resulting from substituting relations (37) into (10) and solving for β ′:

β ′ = 1

9α c r�2ω̄2(c2KCMC�(2M�ω̄ − 1)+ 6mcKrI )

[

α c KCMCω̄

(

− 9�2

(

c2(αKCMC − ξcK)+
3αξcK

√

K2
CMCr

2 + 9�2

)

−18c2M�3ω̄(ξcK − αKCMC)−
αK2

CMCr
2(3ξcK + KCMCr�

′)
√

K2
CMCr

2 + 9�2
+ �

(

αK3
CMCr

2

√

K2
CMCr

2 + 9�2
+ 54αmcKrI

))

− 9β3�ω̄2(c2KCMC�(9M�ω̄ − 4)+ 12mcKrI )+ 9β c�ω̄2(10c3KCMCM
2�5ω̄2 + 2�3(c3KCMC + 12 cMmcKrI ω̄)

−9c3KCMCM�4ω̄ − αc2KCMCr��′ + 2 c�2(α c KCMCMrω̄�′ − 6mcKrI )

+ 6αmcKrrI �′)+ 9αβ2 c KCMCω̄(ξcK − αKCMC)+ 18β5KCMCω̄2

]

. (42)

Here, α is kept for readability and is to be substituted using (37). The coordinate location of I + at rI = 1 is also to be set.
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