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Invariant forms and control
dimensional parameters in
complexity quantification

Snezhana I. Abarzhi*

Department of Mathematics and Statistics, The University of Western Australia, Perth, WA, Australia

Non-equilibrium dynamics is omnipresent in nature and technology and can

exhibit symmetries and order. In idealistic systems this universality is well-captured

by traditional models of dynamical systems. Realistic processes are often

more complex. This work considers two paradigmatic complexities—canonical

Kolmogorov turbulence and interfacial Rayleigh-Taylor mixing. We employ

symmetries and invariant forms to assess very di�erent properties and

characteristics of these processes. We inter-link, for the first time, to our

knowledge, the scaling laws and spectral shapes of Kolmogorov turbulence and

Rayleigh-Taylor mixing. We reveal the decisive role of the control dimensional

parameters in their respective dynamics. We find that the invariant forms and

the control parameters provide the key insights into the attributes of the

non-equilibrium dynamics, thus expanding the range of applicability of dynamical

systems well-beyond traditional frameworks.
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1. Introduction

Non-equilibrium dynamics governs a broad range of processes in nature and technology

and is a challenge to study in theory, experiments and simulations. An important aspect

advanced our understanding of this complexity is symmetries of the dynamics. For instance,

systems with pattern formations—a subject of active research in the field of dynamical

systems—are well-described by universal theoretical models, such as the complex Ginzburg-

Landau equation and the non-linear Schrödinger equation [1–8].

Realistic processes are often more complicated than idealistic systems studied within

the traditional framework. Yet, they are observed to exhibit symmetries, universality and

order. Their non-equilibrium dynamics is eligible to the first principle consideration, and

can be investigated on the basis of group theory and representation theory. A critical aspect

is the link of the theoretical attributes of the non-equilibrium dynamics—the symmetry

groups and the invariant forms—to the dimensional parameters that can control the physical

process, and to the observable quantities that can be diagnosed in experiments [1, 8–17].

In this work we consider two paradigmatic complexities—the classical fluid

dynamics problems of canonical Kolmogorov turbulence and Rayleigh-Taylor interfacial

mixing. These non-equilibrium processes have very different physical properties,

symmetries and characteristics. We employ the invariant forms of these processes

to inter-link their scaling laws and spectral shapes and to reveal the role of

the control dimensional parameters in their respective dynamics [8–12, 15–24].
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Turbulence and Rayleigh-Taylor mixing are inherent to

a broad range of phenomena having considerable scientific

and technological importance. Examples include supernovae,

solar flares, climate change, plasma fusion, nanofabrication, and

purification of water [25–39]. Turbulence is a state of a dissipative

system and it decays unless it is driven by an external energy source.

Canonical turbulence is self-similar, isotropic and homogeneous,

with a non-dissipative energy transport between the scales. It is a

stochastic process with strong fluctuations that may fully blackout

deterministic conditions. For as much as turbulence is considered

to be the last unsolved problem of the classical physics, Rayleigh-

Taylor mixing is its more complex counterpart [8–12, 17–19, 40–

47].

Rayleigh-Taylor instability develops at the interface between

two fluids of different densities accelerated against their density

gradient, and it is driven by the acceleration. The amplitude

of the interface perturbation grows quickly, and the interface

is transformed to a composition of small-scale shear driven

vortical structures and a large-scale coherent structure. The scale

interaction enhances with time, and the flow transitions to the

final stage of intensive interfacial mixing of the fluids. Rayleigh-

Taylor mixing is self-similar, like Kolmogorov turbulence, and

it is anisotropic, heterogeneous, and sensitive to deterministic

conditions, contrary to canonical turbulence [8–12, 20–25, 48–58].

Turbulence and Rayleigh-Taylor mixing are a subject of active

research in contemporary science, mathematics and engineering.

In-depth understanding of their fundamental properties is achieved

over the recent decades. The following aspects are certain now:

Turbulence is a super-diffusive stochastic process challenging to

implement in practice. Realistic turbulent processes often exhibit

anomalous scaling. Properties of self-similar interfacial Rayleigh-

Taylor mixing depart from those of canonical turbulence, including

scaling laws, spectral shapes, and sensitivity to deterministic

conditions [8–12, 42–58].

According to the classical approaches, in canonical turbulence,

the velocity scales with length as a power-law with an exponent

(1/3) and the wave-vector spectrum has the scaling exponent

(−5/3). The group theory approach finds that in Rayleigh-Taylor

mixing with constant acceleration the velocity scales with length as

a power-law with an exponent (1/2) and the wave-vector spectrum

has the scaling exponent (−2). When compared to canonical

turbulence, Rayleigh-Taylor mixing has stronger correlations and

steeper spectra, and can keep order and sense deterministic

conditions even at high Reynolds numbers. The group theory

results are consistent with, and explain, experiments on Rayleigh-

Taylor mixing in fluids and plasmas. The order in Rayleigh-Taylor

mixing is similar in spirit to laminarization of strongly accelerated

turbulent flows, including flows in boundary layers and curved

pipes [8–12, 17–19, 23, 48–60].

The canonical approaches for Kolmogorov turbulence

and the group theory approach for Rayleigh-Taylor mixing

are both based on the analysis of symmetries of these

processes, including scaling transformations. Questions thus

appear: (1) What is the influence of scaling symmetries

and invariant forms on theoretical attributes of the non-

equilibrium dynamics? (2) Can the properties of very different

processes—canonical turbulence and Rayleigh-Taylor mixing—

be linked to one another? (3) What is the role of the

control dimensional parameters in their respective dynamics?

[8–12, 15–19, 23, 48].

The three questions motivate and frame our investigation.

We handle mathematical challenges of Kolmogorov turbulence

and Rayleigh-Taylor mixing by employing elegant physical

concepts. We reveal that these paradigmatic complexities have

lucid theoretical representations. We capture the decisive role

of the control dimensional parameters in their non-equilibrium

dynamics. Our results chart perspectives for future research

and expand the range of non-equilibrium processes accessible

for analysis, including group theory, representation theory and

dynamical systems methodologies.

2. Conservation laws, symmetries and
invariant forms

2.1. Governing equations

As in any physical process [17], a dynamics of an ideal fluid

is governed by the conservation of mass, momentum and energy

represented in continuous approximation in an inertial frame of

reference as

∂ρ
∂t +

∂ρvi
∂xi

= 0,
∂ρvi
∂t +

∂ρvivj
∂xj

+ ∂P
∂xi

= 0,

∂E
∂t +

∂(E + P)vi
∂xi

= 0 (1)

Here the spatial coordinates and time are (xi, t) =
(

x, y, z, t
)

;

the fields of density, velocity, pressure and energy density are

(ρ, v, P,E), with E = ρ
(

e+ v2/2
)

and the specific internal energy

e. The closure equation of state related the internal energy and

pressure, with constant (P/ρe ). In the presence of kinematic

viscosity ν the momentum equation is augmented with the term
(

−ρν∂2vi/∂x
2
j

)

and the energy equation is also modified [10–12,

17].

For canonical Kolmogorov turbulence, the density field is

uniform, ρ = ρ0, the dynamics is the density independent, and

the process is driven by an external source supplying energy at

a constant rate per unit mass E0. This specific power E0, with

the dimension m2s-3, is the control parameter of the self-similar,

isotropic and homogeneous turbulence [17–19, 40–46].

For Rayleigh-Taylor dynamics, the equations in the bulk are

augmented with the boundary conditions at the interface and at the

outside boundaries, so that the normal (tangential) component of

velocity and pressure (enthalpy) are continuous (discontinuous) at

the interface, and there are no external sources.

⌊ρ(v · n + θ/|∇θ|)⌋ = 0, [v · n] = 0, [P] = 0,

[v · τ ] = any, [W] = any, v|z→±∞ = 0 (2)

Here the jump of a quantity at the interface is [. . .]; the normal

and tangential unit vectors of the interface are n, τ with n =

∇θ/|∇θ | , (n · τ) = 0, and the function θ
(

x, y, z, t
)

is θ = 0 at

the interface and is θ > 0 (< 0) in the light (heavy) fluid sub-

domain. The initial conditions prescribe the perturbations of the
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interface and the flow fields at some instance of time. The dynamics

is specific and is driven by balance per unit mass, as follows from the

independence of the boundary condition for the normal velocity

from the fluid density.

Rayleigh-Taylor dynamics is driven by the acceleration g, g =
(

0, 0,−g
)

, g =
∣

∣g
∣

∣. It is due to a body force, is directed from

the heavy to the light fluid, and modifies the pressure field as

P → P − ρgz. For constant acceleration, g = g0, in the mixing

regime the length scale in the acceleration direction (i.e., the

amplitude of the interface perturbation) increases quadratic with

time h ∼ g0t
2. The acceleration strength g0, with the dimension

m s-2, is the control parameter of the self-similar, anisotropic and

heterogeneous Rayleigh-Taylor mixing [8–12, 23, 25, 61–63].

2.2. Symmetries and invariant forms

Symmetries of isotropic homogeneous turbulence include

Galilean transformations, translations in space and time and spatial

rotations and reflections. Self-similar canonical turbulence is also

invariant under the scaling transformation of the length, L → LK,

velocity v → vKn, and time, t → tK1−n, where n is an exponent

and K > 0 is a constant. In the governing equations in the limit of

vanishing viscosity, ν/vL → 0, conditional on ν → νK1+n, the

exponent of the scaling transformation is n = 1/3 . Its invariant

form is the rate of energy dissipation, ε = ν
(

∂vi/∂xj
),2
, with

ε ∼ v3/L and ε → εK3n−1. The energy dissipation rate and the

energy power are similar quantities, ε ∼ ǫ0 [17–19, 40–47]:

n =
1

3
, ε ∼

v3

L
, ε ∼ ǫ0 (3)

Symmetries of non-inertial RT mixing include translations,

rotations and reflections in the plane normal to the acceleration.

Self-similar Rayleigh-Taylor mixing is also invariant with respect

to the scaling transformation, L → LK, v → vKn, , conditional

on g0 → g0K
2n−1. In the governing equations in the limit of

vanishing viscosity, ν/vL → 0, with ν → νK1+n, the exponent

of the scaling transformation is n = 1/2 . Its invariant form is

(the component of) the rate of loss of specific momentum µ in the

acceleration direction, with µ ∼ v2/L and µ → µK2n−1, where

the vector of the rate of momentum loss isµi = ν

(

∂2vi/∂x
2
j

)

. The

rate of momentum loss and the acceleration strength are similar

quantities, µ ∼ g0. In RT mixing the rate of energy dissipation

is scale-dependent, with ε ∼ µ2t ∼ g20 t at time t and ε ∼

µ3/2 L1/2 ∼ g
3/2
0 L1/2 at length L [8–12, 48, 63]:

n =
1

2
, µ ∼

v2

L
, µ ∼ g0 (4)

Distinct symmetries and invariant forms lead to substantial

departures of properties of self-similar Rayleigh-Taylor mixing

from those of Kolmogorov turbulence, including their scaling laws,

spectral shapes, correlations and fluctuations [8–12, 48, 63].

The properties of Kolmogorov turbulence and Rayleigh-Taylor

mixing are identified by the classical approaches and by the group

theory approach, respectively, through analyzing symmetries and

scaling transformations. We need to clarify whether the group

theory approach and the classical approaches are consistent with

one another, whether the distinctions in properties of Kolmogorov

turbulence and Rayleigh-Taylor mixing are fully captured by their

invariant forms, and whether the characteristics of these processes

depend on their control dimensional parameters [8–12, 15, 17–19,

48].

3. Interlink of Kolmogorov turbulence
and Rayleigh-Taylor mixing

This section directly links the properties of Rayleigh-Taylor

mixing and canonical turbulence, demonstrates the full consistency

of their theoretical descriptions, and reveals the prominent role of

the control dimensional parameters in physics of these processes.

3.1. Velocity scaling

Consider the velocity scaling law, with v (vl) being the velocity

scale at the length scale L
(

l
)

.

In canonical turbulence, the energy dissipation rate is ε ∼

v3/L with υ ∼ (εL)1/3 at the length scale L, and it is εl ∼ v3
l
/l

with vl ∼ (εll)
1/3 at the length scale l. The invariance of the rate of

energy dissipation, ε = εl with ε ∼ ǫ0, leads to the velocity scaling

law v3
l
/v3 ∼ l/L [17–19, 41, 46, 47].

In Rayleigh-Taylor mixing, the rate of energy dissipation is

scale-dependent, with ε ∼ v3/L ∼ µ3/2 L1/2 and with εl ∼

v3
l
/l ∼ µ

3/2
l

l1/2 , where the rate of momentum loss is µ ∼ v2/L

at the length scales L and it is µl ∼ v2
l
/l at the length scale l. The

rate of momentum loss is an invariant quantity, µ = µl with µ =

g0, leading to the velocity scaling law v2
l
/v2 ∼ (µl/µ )

(

l/L
)

∼

l/L [10–12, 48].

We directly link the velocity scaling laws in canonical

turbulence and Rayleigh-Taylor mixing as:

v ∼ (εL)1/3 ∼
(

µ3/2 L1/2 L
)1/3

∼ (µL)1/2 ∼
(

g0L
)1/2

vl ∼
(

εl l
)1/3

∼

(

µ
3/2
l

l1/2 l
)1/3

∼
(

µl l
)1/2

∼
(

g0l
)1/2

vl
v ∼

(εl l)
1/3

(ε L)1/3
∼

(µl l)
1/2

(µL)1/2
∼

(g0l)
1/2

(g0L)
1/2 ⇒

vl
v ∼

(

l
L

)1/2

(5)

This reveals that the velocity scaling laws in Rayleigh-Taylor

mixing and in Kolmogorov turbulence are consistent with each

other. Due to their distinct invariant forms—µ and ε – the

velocity correlations are stronger in Rayleigh-Taylor mixing than

in Kolmogorov turbulence [10–12, 23, 48].

3.2. Reynolds number scaling and viscous
scale

Consider the Reynolds number scaling and the viscous

scale [17–19].

The Reynolds number is Re = vL/ν at the length scale L, and

the Reynolds number is Rel = vll/ν at the length scale l. Since
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v ∼ (εL)1/3 and vl ∼
(

εll
)1/3

, we obtain Re ∼ ε1/3 L4/3 /ν and

Rel ∼ ε
1/3
l

l4/3 /ν . For the viscous length scale l ∼ lν , the local

Reynolds number is Rel ∼ 1 [17–19, 47].

In canonical turbulence, the invariance of the energy

dissipation rate, ε = εl with ε ∼ ǫ0, leads to the scaling law for the

Reynolds number Re
l
/Re ∼

(

l/L
)4/3

and determines the viscous

scale lν ∼
(

ν3/εl
)1/4

∼
(

ν3/ε
)1/4

∼
(

ν3/ǫ0
)1/4

[17–19, 47].

In Rayleigh-Taylor mixing, with account for the scale-

dependence of the energy dissipation rates ε ∼ µ3/2 L1/2 and εl ∼

µ
3/2
l

l1/2 , we obtain Re ∼ µ1/2L3/2/v and Rel ∼ µ
1/2
l

l3/2 /ν .

The invariance of the rate of momentum loss,µ = µl withµ ∼ g0,

leads to the Reynolds number scaling Re
l
/Re ∼

(

l/L
)3/2

and

the viscous scale lν ∼
(

ν2/µl

)1/3
∼

(

ν2/µ
)1/3

∼
(

ν2/g0
)1/3

[10–12, 23, 48].

We directly link these quantities in canonical turbulence and in

Rayleigh-Taylor mixing as:

Re ∼ ε1/3 L4/3

ν
∼

(

µ3/2 L1/2
)1/3

L4/3

ν
∼

µ1/2 L3/2

ν
∼

g
1/2
0 L3/2

ν

Rel ∼
ε
1/3
l

l4/3

ν
∼

(

µ
3/2
l

l1/2
)1/3

l4/3

ν
∼

µ
1/2
l

l3/2

ν
∼

g
1/2
0 l3/2

ν
⇒

Rel
Re ∼

(

l
L

)3/2
, lν ∼

(

ν2

µl

)1/3
∼

(

ν2

µ

)1/3
∼

(

ν2

g0

)1/3

(6)

This reveals that the Reynolds number scaling and the viscous

scale in Rayleigh-Taylor mixing are consistent with those in

Kolmogorov turbulence. Due to their distinct invariant forms—

µ and ε , respectively—the Reynolds number scaling is steeper in

Rayleigh-Taylor mixing than in canonical turbulence, whereas the

viscous scale is set by the acceleration g0 in Rayleigh-Taylor mixing

and by the energy power ǫ0 in turbulence [10–12, 23, 48].

3.3. Spectral shapes for velocity
fluctuations

Consider the spectral shape for fluctuations of the velocity (the

specific kinetic energy) [17–19].

In canonical turbulence the spectral density of the velocity

fluctuations is E(k). It is defined by the invariance of the energy

dissipation rate ε and its independence of the wavevector k,

leading to the exponent −5/3 of the k spectrum, with E
(

k
)

∼

ε2/3 k−5/3 ∼ ǫ
2/3
0 k−5/3 [17–19, 47].

In RT mixing, the energy dissipation rate depends on the

wavevector, ε ∼ µ3/2 k−1/2 . We obtain:

E
(

k
)

∼ ε2/3 k−5/3 ∼
(

µ3/2 k−1/2
)2/3

k−5/3 ∼ µ k−2

⇒ E
(

k
)

∼ µ k−2 ∼ g0 k
−2 (7)

This demonstrates that the spectral shapes in Rayleigh-Taylor

mixing and in Kolmogorov turbulence are consistent with one

another. In Rayleigh-Taylormixing the velocity fluctuations spectra

are steeper than in canonical turbulence, due to the distinct

invariant forms of these processes, µ and ε respectively [10–12, 23,

48].

In two-dimensional isotropic homogeneous turbulence, with

account for invariance properties of the enstrophy � , with the

dimension s-2, and the rate of enstrophy �̃, with the dimension

s-3, the spectral density for the kinetic energy fluctuations v2 has

the form E
(

k
)

∼ �̃2/3 k−3 [64, 65]. In Rayleigh-Taylor mixing the

enstrophy� and the rate of enstrophy �̃ depend on the wavevector

as � ∼ µk and �̃ ∼
(

µk
)3/2

. We derive

E(k) ∼ �̃2/3k−3 ∼ ((µk)3/2)
2/3

k−3 ∼ µk−2

H⇒ E(k) ∼ µk−2 ∼ g0k
−2 (8)

and find that the spectral shapes in Rayleigh-Taylor mixing and

in two dimensional turbulence are consistent with one another.

In Rayleigh-Taylor mixing the velocity fluctuations spectra are

more gradual than in two-dimensional turbulence, due to distinct

invariant forms of these processes, µ and �̃, respectively [10–12,

23, 48, 64–66].

3.4. Spectral shapes for density fluctuations

Consider the spectral shape for the density fluctuations [10, 17,

53].

In canonical turbulence, the spectral shape of the density

fluctuations is E
(

k
)

∼ ρ0ε
0k−1, since the energy dissipation rate

ε is independent of the fluid density ρ0. In Rayleigh-Taylor mixing,

the independence of the rate of momentum loss on the fluid density

ρ0 leads to the spectral shape E
(

k
)

∼ ρ0µ
0k−1 [10, 53].

We obtain

E
(

k
)

∼ ρ0ε
0k−1 ∼ ρ0

(

µ3/2 k−1/2
)0
k−1 ∼ ρ0µ

0 k−1

⇒ E
(

k
)

∼ ρ0µ
0 k−1 ∼ ρ0g

0
0 k

−1 (9)

For the density fluctuations, the exponent−1 of the k spectrum

is the same in the anisotropic and heterogeneous Rayleigh-

Taylor mixing and in the isotropic and homogeneous Kolmogorov

turbulence. In either case the dynamics is specific and is balanced

per unit mass (rather than per unit volume), as displayed in the

independence of the invariant forms of these processes—µ or ε

—on the fluid density ρ0 [10, 53].

3.5. Link to other modeling approaches

We further illustrate in step-by-step derivations that our results

on Rayleigh-Taylor mixing are consistent with other models of

realistic turbulent processes and with some empirical models [53,

67–75].

In modeling realistic turbulent processes, the spectral

density E
(

k
)

is often related to the energy dissipation

rate ε , the wavevector k, and the process time scale τ as

ε ∼ τ k4E2 [73].

In canonical turbulence the time-scale is τ ∼ (k3E)
−1/2

,

leading to ε ∼
(

k3E
)−1/2

k4E2 ∼ k5/2 E3/2 and, due to

the invariance of the energy dissipation rate ε , to the spectral

density E
(

k
)

∼ ε2/3 k−5/3 . In RT mixing, the time-scale

is τ ∼
(

g0k
)−1/2

, leading to ε ∼
(

g0k
)−1/2

k4E2 ∼
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g
−1/2
0 k7/2 E2 and the spectral density E ∼ ε1/2 g

1/4
0 k−7/4 .

By further accounting for the scale-dependence of the energy

dissipation rate ε ∼ g
3/2
0 k−1/2 ∼ µ3/2 k−1/2 , we obtain

the spectral density in Rayleigh-Taylor mixing with constant

acceleration as E ∼ g0k
−2 ∼ µk−2, similarly to the foregoing

[73, 74]:

ε ∼ τ k4E2, τ ∼
(

g0k
)−1/2

, ε ∼ g
3/2
0 k−1/2 ∼ µ3/2 k−1/2

⇒ E ∼ g0k
−2 ∼ µ k−2 (10)

By considering the Rayleigh-Taylor time scale τ ∼
(

g0k
)−1/2

and by formally treating the energy dissipation rate ε , the empirical

model [74] identifies the spectral density as E ∼ k−7/4 . We derive

this result from the spectral density E ∼ µ k−2 in Rayleigh-

Taylormixing, by accounting for the scale dependence of the energy

dissipation rate ε ∼ µ3/2 k−1/2 , the invariant form of the rate of

momentum loss µ ∼ g0 and the time-scale τ ∼
(

g0k
)−1/2

as:

E ∼ µk−2 ∼ g0k
−2 ∼

(

µ3/2 k−1/2
)1/2

g
1/4
0 k−7/4

∼

(

g
3/2
0 k−1/2

)1/2
g
1/4
0 k−7/4 ⇒

E ∼ ε1/2 g
1/4
0 k−7/4 ⇒

E ∼ ε1/2
(

g0k
)1/4

k−2 ∼ ε1/2 τ−1/2 k−2 ∼ µk−2

(11)

The phenomenological model [75] postulates that in Rayleigh-

Taylor mixing the spectral density is the same as in canonical

turbulence E ∼ k−5/3 . We reproduce this prospect from the

spectral density defined by the invariant form of Rayleigh-Taylor

mixing E ∼ µ k−2, with µ ∼ g0, and with relations of the rates of

momentum loss and energy dissipation as µ ∼ ε2/3 k1/3 :

E ∼ µk−2 ∼
(

ε2/3 k1/3
)

k−2 ∼ ε2/3 k−5/3 (9)

The model further states that in Rayleigh-Taylor mixing the

viscous scale vanishes with time [75]. For testing this statement, we

consider the local Reynolds number set by the invariant form of

Rayleigh-Taylor mixing, Rel ∼ µ
1/2
l

l3/2 /ν , with µl ∼ µ ∼ g0,

relate the rates of momentum loss and energy dissipation, µl ∼

ε
2/3
l

l−1/3 , and derive:

Rel ∼
µ
1/2
l

l3/2

ν
⇒ l ∼

Re
2/3
l

ν2/3

µ
1/3
l

∼
Re

2/3
l

ν2/3

(

ε
2/3
l

l−1/3
)1/3

⇒ l ∼
Re

3/4
l

ν3/4

ε
1/4
l

⇒ lν ∼
ν3/4

ε
1/4
l

(12)

The model’s result can be further reproduced with a formal

replacement ε
l
∼ ε and substitution ε ∼ g20 t.

The results of empirical models of Rayleigh-Taylor mixing can

be obtained within group theory approach by formally treating

the energy dissipation rate and by masking its scale-dependence

[53, 74, 75].

3.6. Velocity structure function

To conclude this section, we consider the velocity structure

function, Sn, of the order n, n ∈ N, with the dimension
(

m s-1
)n

[17–19]. It scales with the length scale l as Sn ∼
(

εl l
)n/3

in

Kolmogorov turbulence, and as Sn ∼
(

µl l
)n/2

in Rayleigh-

Taylor mixing [10–12, 17–19, 23, 48]. Since in Rayleigh-Taylor

mixing the energy dissipation rate is scale-dependent, εl ∼

µ
3/2
l

l1/2 , we obtain

Sn ∼
(

εl l
)n/3

∼

(

µ
3/2
l

l1/2 l
)n/3

∼
(

µl l
)n/2

⇒ Sn ∼
(

µl l
)n/2

(13)

The structure functions in Rayleigh-Taylor mixing and in

Kolmogorov turbulence are consistent with one another and are set

by their respective invariant forms. In Rayleigh-Taylor mixing the

structure function has a steeper dependence on the order number

when compared to Kolmogorov turbulence [10–12, 17–19, 23, 48].

In isotropic homogeneous turbulence in realistic environments

the structure function is known to depart from the Kolmogorov

scenario: It exhibits intermittency and multi-fractality

mathematically, is influenced by the flow structures physically,

and has remarkable statistics [17, 66, 76–79]. We believe that the

approaches developed for canonical turbulence [66, 76, 78] can

be generalized to the case of Rayleigh-Taylor mixing with variable

accelerations [8–11], to be done in the future.

4. Invariant forms and control
dimensional parameters

Symmetries and their associated invariant forms are common

in physical processes. They relate the process insights to the control

dimensional parameter and enable the problem solution. We give

some examples to accentuate the role of the control dimensional

parameters and the associated invariant forms in understanding

complex processes [3–7, 10–12, 15–17].

For gravitational process, the invariance of the gravitational

constant G with the dimension kg−1m3s−2 is compatible with

the Kepler’s third law, L3 ∼ t2 [17]. In standard diffusion the

invariance of diffusion coefficient D with the dimension m2s−1

leads to the diffusion scaling law L ∼ t1/2 and the Gaussian

distribution [17].

In canonical turbulence, the invariance of the energy

dissipation rate ε is associated with the power E0 of the external

source supplying energy to the system at a constant rate, both

having the dimension m2s−3 [17–19]. This leads to the scaling

laws for the length L ∼ t3/2 and the velocity v ∼ t1/2

and displays the stochastic nature of canonical turbulence having

normal distribution of velocity fluctuations.

In Rayleigh-Taylor mixing, the invariance of the rate of loss of

specific momentum µ is associated with the acceleration strength

g0, both having the dimension m s−2. This leads to the scaling laws

for the length L ∼ t2 and the velocity L ∼ t and exhibits the

deterministic nature of Rayleigh-Taylor dynamics having ballistic

velocity fluctuations [10–12].
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We thus find that the scaling laws, spectral shapes, properties

of correlations and fluctuations in canonical turbulence and in

Rayleigh-Taylor mixing are set by their invariant forms and the

associated control dimensional parameters, ε ∼ ǫ0 and µ ∼ g0,

respectively [10–12, 17–19, 47, 48, 53]. These theoretical insights

call for experimental investigations. As noted by the 1923 Nobel

Laureate Robert A. Millikan, “The fact that Science walks forward

on two feet, namely theory and experiment. . . Sometimes it is one

foot which is put forward first, sometimes the other, but continuous

progress is only made by the use of both—by theorizing and then

testing, or by finding new relations in the process of experimenting

and then bringing the theoretical foot up and pushing it on beyond,

and so on in unending alternations.”1

5. Discussion

We considered two paradigmatic complexities of non-

equilibrium dynamics—canonical turbulence and Rayleigh-Taylor

mixing. These processes are a long-standing theoretical challenge,

requiring one to solve the system of conservation laws—non-linear

partial differential equations, augmented also in the Rayleigh-

Taylor case with the singular boundary value problem at the

unstable interface and the ill-posed initial value problem. We

handle the mathematical challenges on the basis of the physical

concept of symmetries and reveal the effect of invariant forms on

attributes and characteristics of these processes. We assess that in

Rayleigh-Taylor mixing the correlations are stronger, the velocity

spectra are steeper and the deterministic conditions are more

authoritative, than in Kolmogorov turbulence. For the first time, to

our knowledge, we interlink the scaling laws and spectral shapes

of these processes, and identify the decisive role of the control

dimensional parameters in their non-equilibrium dynamics.

The concept of symmetries advanced our understanding

of dynamical systems and enabled development of universal

theoretical models of pattern formation in idealistic systems.

Our work finds that symmetries and invariant forms encapsulate

information on characteristics of non-equilibrium dynamics and

are associated with dimensional parameters controlling physical

processes. They can provide an important insight on properties of

realistic complex systems. This expands the range of applicability

1 The Nobel Prize. Available online at: https://www.nobelprize.org/.

of dynamical systems beyond traditional frameworks, and allow us

to systematically investigate a broad range of phenomena, having

considerable scientific and technological importance, and including

supernovae, climate change, plasma fusion, and purification of

water [1–63] (see text footnote 1).
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