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When does contacting more
people lessen the transmission of
infectious diseases?

Bernardo A. Mello*

International Center of Physics, Physics Institute, University of Brasília, Brasília, Brazil

A primary concern in epidemics is to minimize the probability of contagion, often

resorting to reducing the number of contacted people. However, the success of

that strategy depends on the shape of the dose-response curve, which relates the

response of the exposed person to the pathogen dose received from surrounding

infected people. If the reduction is achieved by spending more time with each

contacted person, the pathogen charge received from each infected individual

will be larger. The extended time spent close to each person may worsen the

expected response if the dose-response curve is convex for small doses. This is

the case when the expected response is negligible below a certain dose threshold

and rises sharply above it. This study proposes a mathematical model to calculate

the expected response and uses it to identify the conditions when it would be

advisable to reduce the contact time with each individual even at the cost of

increasing the number of contacted people.
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1. Introduction

Within the recent effort on understanding the evolution of COVID-2019, an essay by
Mukherjee [1] poses two relevant questions regarding the initial viral dose that a susceptible
individual receives from an infected person:

Question 1: Does the initial dose affect the probability of infection?
Question 2: Does the initial dose affect the severity of the disease?
Though not asked by him, a pertinent question when investigating the propagation of

disease is [2]:
Question 3: Does the initial dose affect the subsequent infectiousness of the exposed

person?
These questions are related to two usual goals of epidemics management: reducing the

spread of diseases and the severity of the symptoms.
A key concept when answering the questions is the dose-response curve π(q), which

estimates the expected severity of the outcome as a function of the pathogen dose q. This
curve describes the probability or the expected severity of an outcome, such as infectiousness,
immunity, contagion, mild symptoms, severe symptoms, and death. When investigating the
spread of the disease, infectiousness and immunity are probably crucial information, but it is
also relevant to evaluate the symptoms and the death probability. The dose-response curve
was recently employed to describe how the protection against COVID-19 from wearing
masks depends on the environmental virus concentration [3].

It is difficult to answer the questions because it is often impossible to measure the
initial dose directly. There are relatively few studies focusing on these questions and
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even fewer trying to find the dose-response curve, π(q).
Notwithstanding the difficulties, question 1 has been explored
for hematopoietic necrosis virus in trouts [4], antrax [5, 6]
cytomegalovirus [7, 8], herpes simplex virus-2 [9], HIV-1 [10–12],
and SARS-CoV-2 [13]. Question 2 was addressed for SARS-CoV-2
in Gandhi et al. [14]. Both questions were indirectly addressed by
exploring the microscopic dynamics of infection by poliomyelitis
viruses [15], Moloney sarcoma virus [16, 17], and herpes simplex
virus-2 [18].

It is common for a person not to be able to avoid
sharing limited space with other people. Some examples are
hospitals [19], transportation [20], classrooms [21], restaurants,
sport venues [22], workplaces, and religious gatherings [23].
Nevertheless, in certain cases, the number of distinct people
approached by each person can be reduced or increased [24].
For instance, students can be directed to change or keep places
at each new class [25]. Staff could alternate the patients and

clients attended in hospitals and restaurants. Rules could be
applied to pedestrian traffic [26]. Forced ventilation could be

used in a closed environment to homogenize the pathogen
concentration, playing a role similar to altering the distance
between people [27].

If a person encounters many different people but stays for

a short time with each of them, he or she will be subject to
a low exposition when meeting an infected person. Conversely,
if he or she encounters fewer people but stays longer with

each person, the chance of encountering a contagious person
is lower; but the contamination received from each infected

person is higher. As it will be seen, even if the mean
exposition is the same in both cases, the standard deviation is
different, and this difference can play an essential role in the

expected response.
This study presents a simple mathematical model to quantify

the expected outcome of changing the number of contacts. It
depends on four quantities:

γ Fraction of infectious people in the population.
Nc Number of contacted people, understood as the number of

people that got close enough to transmit the pathogen.
κτ
Q Ratio between the utmost pathogen charge (κτ ), which
would be received if every person met was infected, and the
charge is expected to generate 50 % of the maximum response
(Q).

h Parameter that controls the concavity of the dose-response
curve for low doses, with the form

π(q) ∝ qh, (1)

for small values of q.

In the Section 2, we formulate the model, demonstrate the
importance of π(q)’s concavity with a normal distribution of
pathogen dose, and apply it to a population of infected people,
best described by the binomial distribution of pathogen doses. The
numerical evaluation of the model is presented in the Section 3 and
analyzed in the Section 4.

2. Materials and methods

2.1. The response curve

We will consider a person who stays close to other Nc people
while engaged in a certain activity for a period of time T. The
equivalent contact time of that person is defined as

τ =
Nc
∑

i=1

1ti =
∫ t0+T

t0

nc(t) dt = Tn̄c, (2)

where1ti is the time spent close to person i and nc(t) is the number
of nearby people at time t. The equivalent contact time is equal to
the total time, T, multiplied by the temporal average of the number
of nearby people, n̄c.

The binary variable γi defines the infectious state of the person
i, with the value 0 for non-infectious and 1 for infectious. The
fraction of infectious people in the population of size Npop ≥ Nc

is γ = Npop
−1∑Npop

i=1 γi. As a simplifying hypothesis, we assume
that nearby infectious people transmit the pathogen to the exposed
personwith the constant rate κ and that transmission is not possible
from afar. Therefore, the charge received from the person i is

qi = γiκ1ti , (3)

and the total charge received is

q =
Nc
∑

i=1

γiκ1ti . (4)

Brouwer et al. [28] demonstrated that the concavity of the
response curve for low doses plays a crucial role in the transmission
models of environmentally mediated infectious diseases. Among
the curves explored by the authors, only the Hill [29] and
the Weibull [30] distributions allow changing the concavity. As
discussed in Section 1 of the Supplementary material, these are
distinct curves, but their parameters can be adjusted to achieve
partial superposition of one over the other within a curve’s sector.
As it will be shown, most of the intriguing results in this study
depend on the behavior of the curve with small values of q. Section
1 of the Supplementary material provides information that allows
estimating the values of the parameters of the Weibull distribution
that shall produce results similar to the Hill curve in certain limits.

This work uses the Hill curve, but it is reasonable to assume
that similar behaviors would result with any function π(q) that
possesses the following four properties: (a) it is zero for q = 0; (b) it
increases monotonically with q; (c) it approaches a value less than
or equal to one as q → ∞; and (d) its concavity near zero can be
adjusted as the parameter h in Eq. (1).

We write the dose-response curve as [29]

π(q) =
qh

Qh + qh
, (5)

where the half response charge, Q, is the charge at which the
expected response is half of the maximum probability, reached
when q → ∞. When h > 1, this curve has an inflection point,
defined by d2π/dq2|qinfl = 0, at
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FIGURE 1

The expected response. Plot of Eq. (5) for some values of h. The

curves are concave for h ≤ 1. When h > 1, the convex and the

concave parts are, respectively, at the left and right sides of the

inflection point, marked as a circle.

qinfl = Q

(

h− 1

h+ 1

)1/h

. (6)

As shown in Figure 1, when h ≤ 1, the curve is concave everywhere,
and when h > 1, the curve is convex at the left side of the inflection
point and concave at the right side. For h = 1, the expected
response is proportional to the pathogen charge when this charge
is low. For h < 1, minute charges have a high expected response.
For h > 1, the expected response is negligible below a pathogen
charge threshold.

2.2. The concavity of the response curve

When a group of people is submitted to the conditions
described in the previous section, with the probability P(q) of
receiving the charge q, its mean charge and variance are [30]

q̄ =
∫

qP(q) dq and σq
2 =

∫

(q− q̄)2P(q) dq , (7)

and the expected response of this population is

π̄ =
∫

π(q)P(q) dq . (8)

Since the response curve is not a linear function and the
population covers a range of pathogen charges, the population’s
expected response is not equal to the expected response of the mean
population charge, i.e., π̄ 6= π(q̄).

If the charge probability distribution is strongly peaked around
q̄, with dπ/dq|q̄ ≈ 0, π(q) in Eq. (8) approximated as a Taylor
expansion [31] up to the second-order around q̄, resulting in

π̄ ≈ π(q̄)+
σq

2

2

d2π

dq2

∣

∣

∣

∣

q̄

. (9)

This expression indicates that if two symmetric distributions
of pathogen doses have the same mean value, the wider one
will have a higher expected response if the second derivative

FIGURE 2

Expected response of a population. The solid line is Eq. (5) with

h = 4, with the convex part in blue and the concave part in red. The

shaded areas are the population distributions of the pathogen

charge in arbitrary units, with the middle distribution centered at the

inflection point. The circles are the average expected response of

each distribution, given by Eq. (8). The percentages are the relative

di�erence of the average expected response from the response

function at the center of the distribution (π̄/π (q̄)− 1). The

percentages between parenthesis are the same quantities calculated

with the approximation Eq. (9). (A) Narrow charge distributions

(σq = 0.05) result in the population’s expected response close to the

value of the response curve at the mean charge. (B) For broader

distributions (σq = 0.25), the population’s expected response is

above or below the response curve, respectively, at the convex and

concave parts of the curve.

is positive. Thus, broadly speaking, a wider population
will have a higher expected response if π(q) is convex
in the vicinity of q̄, and a lower expected response for
concave vicinity.

Figure 2 highlights the dependence of the population’s expected
response on the concavity of the response curve and the population
exposure distribution. If the population exposure is strongly
peaked, the population’s expected response is very close to the
value of the response curve at the mean population charge, as
shown in Figure 2A. On the contrary, if the population charge is
too diverse, the population’s expected response falls unmistakably
above or below the response curve, depending on the concavity, as
can be seen in Figure 2B. According to Eq. (9), an approximation
valid for small values of σq, the expected response should sit on
the curve for the middle distributions of Figure 2 since d2π/dq2 =
0 at their centers. The difference observed in the percentages of
Figure 2B manifests the inadequacy of Eq. (9) for large values
of σq.
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FIGURE 3

Gaussian distribution. Expected response as a function of σq, Eqs. (7), (8). The symmetry of the distributions is preserved by truncating them at

|q− q̄| > q̄. The curves are plotted up to the highest σq allowed by the truncation for each value of q̄/Q. The value of the curve with σq = 0 in Eq. (9)

is shown as the percentage in the legend. (A) h = 0.25, (B) h = 1, (C) h = 4.

2.3. Uniformly divided contact time

The total exposure, Eq. (4), is a sum of Nc equally distributed
random quantities γiκ1ti. We will now consider the situation
where Nc and 1ti are, respectively, multiplied and divided by
the same factor. This operation preserves the value of q̄ and,
by the Central Limit Theorem [30], makes standard deviation
proportional to 1/

√
Nc.

A simple concrete situation that exhibits that behavior is an
individual with an equivalent contact time τ , which is equally
divided among Nc people, resulting in the same time 1ti = τ/Nc

spent near each of them. FromEq. (4), the pathogen charge received
by this person is

q = κ
τ

Nc

Nc
∑

i=1

γi =
NI

Nc
κτ , (10)

where NI is the number of infected people met. The utmost
pathogen charge, κτ , is the charge a person would receive if all
people met were infected, i.e., if NI were equal to Nc. Instead, the
number of infected people follows the binomial distribution [30],

f (NI) =
(Nc

NI

)

γNI (1− γ )Nc−NI . (11)

From the mean value, N̄I = γNc, and the standard deviation,
σNI =

√

Ncγ (1− γ ), of the binomial distribution, the mean value,
and the standard deviation of the total charge received may be
obtained as

q̄ = γ κτ and σq = κτ

√

γ (1− γ )

Nc
. (12)

The standard deviation presents the 1/
√
Nc behavior

mentioned above. With the discrete distribution Eq. (11), the mean

value given by Eq. (8) becomes

π̄ =
Nc
∑

NI=0

f (NI)π

(

NI

Nc
κτ

)

. (13)

In the following lines, we obtain asymptotic expressions of π̄ at
the limitsNc → 0 andNc → ∞. If the mean number of encounters
with infected people is low enough, N̄I = γNc ≪ 1, most contacts
with infected people will be with just one person, and we can write
f (1) ≈ γNc. From Eq. (10), the charge of such encounter is κτ/Nc,
and by retaining only the NI = 1 term of Eq. (13), the following
approximation is valid for the expected response

π̄ ≈ γNc π

(

κτ

Nc

)

if γNc ≪ 1 . (14)

This expression is exact for Nc = 1. By handling Nc as a real
number, the maximum of Eq. (14) is approximately defined by
dπ̄/dNc|Nmax

c
= 0, resulting in

Nmax
c ≈

1

(h− 1)1/h
κτ

Q
if γNc ≪ 1 . (15)

At the limit γNc ≫ 1, the binomial distribution of q is strongly
peaked around the mean value, γ κτ , and by retaining only the
NI = round(γ κτ ) term of Eq. (13), the corresponding expected
response is

π̄ ≈ π(γ κτ ) if γNc ≫ 1. (16)

The value of the Eq. (15) is not real for h < 1, and π̄ given by
Eq. (8) grows monotonically from Nc = 0 to Nc = ∞. For h > 1,
the existence of a maximum Nmax

c > 1 requires π̄(Nc = 1) <

π̄(Nc = 2) and Eq. (14) results in

κτ < (2h − 2)1/hQ. (17)

If this condition is satisfied, there is a maximum at Nmax
c and

two minima, at Nc = 1 and Nc = ∞. The value κτ/Q|×,
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FIGURE 4

Flowchart of the Gaussian model. The inflection charge is given by

Eq. (6), and the critical charge is the largest value of q for which π̄ ,

defined by Eq. (8), is a increasing function of σ . The critical charge,

q∗, separates the values of q for which π̄ is an increasing or a

decreasing function of σq, as illustrated in Figure 3C.

that separates the values of κτ/Q with the global minimum at
Nc = 1 from the values with the global minimum at Nc =
∞, may be obtained by substituting Nc = 1 in Eq. (14)
and making it equal to Eq. (16) with Nc → ∞, and we
obtain

κτ

Q

∣

∣

∣

∣

×
=

(

γ 1−h − 1

1− γ

)1/h

. (18)

This expression define the ratio κτ/Q at which π̄ has the same
value at Nc = ∞ and Nc = 1, both being global minimum points.
At the left and the right of this quantity, the global minimum is,
respectively, at Nc = ∞ and Nc = 1.

3. Results

The analytical approximations, Eqs. (9), (14), and (16), help to
understand the qualitative properties of the mean response. This
section presents the exact numerical calculation of π̄ from Eq. (8),
with the Gaussian distribution and the binomial distribution,
Eq. (11).

The Gaussian population’s expected response illustrated by
Figure 2 suggests that the contagion rate may be reduced by
changing the distribution at the right of Figures 2A, B, i.e., it is
possible to reduce the expected response bymaking the distribution
wider at the concave part of the response curve. The standard
deviation increase leading to a reduction in π̄ illustrates this
behavior in Figures 3A, B, and for q̄/Q = 1.0, 1.4, and 2.0 of
Figure 3C. The response of the distributions at the left of Figure 2,
which is lower in Figure 2A than in Figure 2B, demonstrates the
reverse behavior, i.e., making the distribution thinner reduces the
response at the convex part of the function, as illustrated by the
curves with q̄/Q = 0.5 and 0.7 of Figure 3C.

Dividing the contact time with more people but spending
proportionally less time with each of them results in a thinner
distribution with the same mean value. The behavior demonstrated
by the distributions at the left of Figure 2 indicates that this would
be advisable for convex dose-response curves. The sequence of steps
for deciding, by the Gaussian model, if more contacts reduces or
increases the contagion probability is shown in Figure 4.

While the Gaussian distribution is a standard choice, more
realistic pictures require describing how the person divides
the contact time among several people. The minimalist model
discussed above results in the binomial distribution, Eq. (11),
investigated below.

We will determine the number of contacted people, Nc, that
minimizes the binomial distribution’s expected response. That
distribution emerges if a person can choose how many people to
meet, spending with each person a time inversely proportional
to the number of people met. For h ≤ 1, π̄ is a monotonically
increasing function of Nc, as can be seen in Figure 5. Therefore, for
h ≤ 1, as few people as possible should be contacted to reduce the
expected response.

In Figure 6, we can see π̄ for the binomial distribution as a
function of Nc for several combinations of h, γ , and κτ , with
h > 1. The values of Nmax

c predicted by Eq. (15), represented by
black dashed lines in Figure 6, are in good agreement with the exact
calculation assigned as hollow circles. The value of π̄ withNc → ∞
is plotted as the rightmost point of each function.

In order tominimize the expected response, it may be necessary
to increase or reduce the number of contacts, depending on the
values of h, γ , and κτ/Q. From Eq. (17), Nc = 1 is a maximum
of π̄ if κτ ≤ 0.78Q, 1.5Q, and 1.97Q, respectively, for h equal to
1.4, 2, and 4. As shown in Figure 6, if this condition is satisfied,
then π̄ is monotonically decreasing with Nc, and the minimum
expected response is obtained when the number of contacted
people is maximized.

A more detailed analysis is necessary to determine how to
minimize the expected response when Nc is finite and bigger
than one. Figure 7 summarizes the information required to
determine how to reduce the expected response in each case.
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FIGURE 5

Expected response with h ≤ 1. Binomial expected response as a function of Nc. It is calculated as a function of the number of contacts for the

binomial distribution of pathogen charge, Eqs. (10), (11) applied to Eq. (8). Although Nc is an integer variable, the functions are shown as lines to make

the plots less bulky. The filled circles are the values of π̄ at Nc → ∞, calculated as π (γ κτ ), Eq. (16). (A) κτ = Q, h = 0.25, (B) κτ = Q, h = 0.5, (C)

κτ = Q, h = 1, (D) κτ = 2Q, h = 0.25, (E) κτ = 2Q, h = 0.5, (F) κτ = 2Q, h = 1, (G) κτ = 4Q, h = 0.25, (H) κτ = 4Q, h = 0.5, (I) κτ = 4Q, h = 1.

The number of contacts that maximizes the expected response,
Nmax
c , is plotted as a function of κτ/Q in Figures 7A–C for some

combinations of h and γ . For low exposure time (κτ/Q →
0), the maximum is at Nmax

c = 1 and grows with κτ/Q in
steps of unitary height. When κτ/Q reaches a specific value,
Nmax
c becomes infinite, signaling that, for κτ/Q larger than

that value, π̄ is a monotonically growing function of Nc and
that the number of contacts must be minimized to reduce the
expected response.

If Nmax
c is finite, it is necessary to inspect the boundary values

of the expected response, π̄(Nc = 1) and π̄(Nc = ∞). These
quantities are plotted in Figures 7D–F, and their crossing point,
described by Eq. (18), are marked by circles. At the left of the
crossing point, π̄(Nc = 1) > π̄(Nc = ∞) and at the right of
the crossing point, π̄(Nc = 1) < π̄(Nc = ∞). To reduce the

expected response of each combination of h and γ , the number
of contacts should be infinite for κτ/Q less than crossing value,
and the number of contacts should be 1 for κτ/Q bigger than
the crossing value. The black lines of Figures 7G–I represent these
frontiers as a continuous function of γ .

The above conclusion is only valid if Nc can be freely chosen
in the interval 1 ≤ Nc ≤ ∞ (or that the maximum value of Nc is
big enough to be considered infinite). With other lower or upper
limits for Nc, a specific calculation may be needed. However, these
calculations are unnecessary if the minimum allowed number of
contacts is greater than Nmax

c , when the number of contacts should
always be maximized. Similarly, if the maximum allowed number
of contacts is less than Nmax

c , the number of contacts should always
be minimized. The color plot in Figures 7G–I represents the value
of Nc as a function of γ and κτ/Q.
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FIGURE 6

Expected response with h > 1. Expected response as a function of Nc. It is calculated as a function of the number of contacts for the binomial

distribution of pathogen charge, Eqs. (10), (11) applied to Eq. (8). Although Nc is an integer variable, the functions are shown as lines to make the plots

less bulky. The dashed vertical lines are the points of maximum predicted by the approximation Eq. (15). The hollow circles are the points of maximum

of each combination of h, κτ , and γ . The filled circles are the values of π̄ at Nc → ∞, calculated as π (γ κτ ), Eq. (16). (A) κτ = Q, h = 1.4, (B) κτ = Q,

h = 2, (C) κτ = Q, h = 4, (D) κτ = 2Q, h = 1.4, (E) κτ = 2Q, h = 2, (F) κτ = 2Q, h = 4, (G) κτ = 4Q, h = 1.4, (H) κτ = 4Q, h = 2, (I) κτ = 4Q, h = 4.

The sequence of steps for using the binominal model to
determine if contacting more people reduces or increases the
contagion probability is shown as flowchart in Figure 8.

4. Discussion

This study describes how people sharing a limited space
in an epidemic respond to the pathogen exposition from their
companions. They cannot avoid being close to each other but can
change the time spent near each person. The mathematical model
supposes five simplifying hypotheses: (a) the number of contacted
people changes but the number of nearby people averaged on
time is constant, (b) the same time is spent near every person
approached, (c) each contacted person can be infectious or not, with

no intermediate states, (d) the pathogen is received from nearby
infectious people at constant and identical rates, and (e) distant
people do not transmit the pathogen.

These hypotheses lead to a simple solution and make it evident
what are the main parameters controlling the results. However,
more information is necessary to build a detailed model, for
example, regarding the viral shedding dynamics [32–34].

Under the above hypothesis, reducing the number of people
met leads to an increase in the standard deviation, as expressed
by the dependence on 1/

√
Nc of Eq. (12). Most curves of π̄ in

Figure 3 decrease monotonically with σq, implying that cutting
down the number of contacted people, which increases σq,
diminishes the response. However, when h > 1, small values of
q̄/Q generate monotonically growing functions (Figure 3C with
q̄/Q = 0.5 and 0.7), originating a counter-intuitive behavior:
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FIGURE 7

Properties of the population’s expected response. (A–C) Number of contacts that result in a maximum probability of contagion for plots such as

Figure 6. The continuous black line is the value predicted by Eq. (15). (A) h = 1.4, (B) h = 2, (C) h = 4. (D–F) The dashed lines and the continuous line

are the expected response, respectively, at Nc = 1 and Nc = ∞, both relative to the maximum expected response, π̄max = π̄ (Nmax
c ). The circles mark

the crossings of π̄ (Nc = 1) and π̄ (Nc = ∞) with the same γ . (D) h = 1.4, (E) h = 2, (F) h = 4. (G–I) Equation (18), plotted as black lines, separates the

regions of the γ -κτ/Q phase space where the inequalities written on each side of the curve are observed. The color represents the Nmax
c of each

combination of γ and κτ/Q. (G) h = 1.4, (H) h = 2, (I) h = 4.

decreasing the number of contacted people increases the standard
deviation and the expected response. The narrower distribution of
the received pathogen charge is the cause of this startling evenness
curtailing in the expected response, observed in the convex part of
the response curve (Figure 2).

The following argument clarifies the origin of the evenness
curtailing. When the distribution of received doses is wide, a large
fraction of the population is exposed to doses much higher or
much lower than the average. If the response curve is convex, the
increase in the response of the overexposed people will be more
significant than the decrease in the response of the underexposed
people, leading to a positive net effect. The wider the distribution,
the stronger the average response.

As expressed by Eq. (9), the evenness curtailing is due to
the reduction, not in the average, but in the standard deviation.
Increasing the number of contacts while keeping the total contact

time constant homogenizes the exposition over a larger set of
individuals, reducing the standard deviation. Therefore, even if the
simplifying hypotheses (b)–(e) are not assumed, increasing contacts
should still lessen the response in certain situations.

Unfortunately, little is known about a central aspect of
this phenomenon: the parameter h. In the Section 2 of the
Supplementary material, we review some experimental works that
provide information suitable for estimating the value of h. By fitting
Eq. (5) to the experimental data, we find h ranging from 1.12 to 2.29.

As a concrete example of applying the approach presented here,
let us imagine a response curve with h = 2 and γ = 3 % of the
population transmitting the pathogen. This percentage is less than
the fraction of exposed or infected individuals since these patients
may not be shedding the pathogen. From Figure 7E, if κτ . 5.7Q,
the mean response will be lower for Nc → ∞ than for Nc = 1.
Suppose that a worker must spend 8 h in a workplace, sharing
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FIGURE 8

Flowchart of the binominal model. The average response as a

function of the number of contacts, π̄ (Nc), is calculated by applying

Eqs. (10), (11) on to Eq. (8). It is used to obtain the number of

contacts which results in the maximum probability of contagion,

Nmax
c .

a workstation with three colleagues, resulting in τ = 24 h of
equivalent contact time. Let us also assume that a 12 h exposition
to an infectious person, adding up to the charge Q = 12κ , leads
to a contagious probability of 50 %. Therefore, the worker’s utmost
pathogen charge is κτ = 2Q. If the workers keep their place for the
whole shift, they will contact the same three individuals through
their shift. In this case, Nc = 3 and from the data used to plot
Figure 6E, we obtain a contagion probability of 28 %. If the workers
change places every 4 h,Nc = 6 and the contagion probability drops
to 19 %. By changing place every 2 h, Nc = 12 and the contagious
probability is 12 %. By comparing Figures 6B, E, we conclude that
the reduction achieved by increasingNc would bemore robust if the
fraction of infectious people, γ , or if the utmost pathogen charge,
κτ were lower. Increasing the number of contacts alleviates more
the response when γ and κτ are small and h is large.

5. Conclusion

The dose-response curve quantifies the outcome (probability of
becoming infected, viral load, etc) as a function of the pathogen
doses received by the patient. It will be linear if these quantities
are proportional to each other. If the immune system easily
defeats modest exposure but succumbs drastically to sizeable
ones, the response curve is convex, i.e., it grows slowlier than
the linear function. Convex curves become concave for large
enough doses.

Consider person A, who stays some time close to other people.
In this study, this time is expressed by the quantity τ , which is
equal to the number of hours multiplied by the average number of
neighbors. For example, τ will be 4 h ·person if person A spends 1
h close to 4 people, 2 h close to 2 people, or 4 h close to 1 person.
For a uniform population, the expected value of the charge received
by person A will be the same in all the cases. However, if person A

spends 4 h close to person B, she will receive a large charge if person
B is infected, or none if not. On the contrary, if person A spends 1 h
close to four different people, she will have a higher chance of being
exposed but will receive a lower viral charge when exposed.

In the convex region of the reponse curve, it may be better
to have high probability of small doses than low probability of
large doses since the slow growth of the response curve means that
the average prognosis of one large charge is much worse than the
sum of the effects of the more often small charges. This study uses
a model of uniform infectiousness distribution to evaluate which
situation is preferable.

Some conditions must be satisfied for the existence of evenness
curtailing of response. First, the expected response must be
negligible for small pathogen charges and grow sharply at a certain
point. This condition is satisfied with h > 1 in Figure 1. The effect is
more substantial for large values of h, which translates into steeper
curves. Second, the ratio between the utmost pathogen charge,
κτ , and the 50 % response charge, Q, must be below a threshold.
The lower the fraction of infected people in the population, γ , the
higher the threshold, represented by the black lines of Figures 7G–I.
Therefore, the evenness curtailing is observed in activities where
the time spent close to other people is not high, with the population
primarily unexposed to the pathogen. People in such situations
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during an epidemic with h > 1 should move around instead of
staying too long near the same neighbors.

The present analysis does not encompass the whole dynamics
of such a complex phenomenon as the evolution of an epidemic.
Nevertheless, it is a tool for understanding specific responses
in certain circumstances and clarifying the dynamics’ details.
Furthermore, it demonstrates the importance of investigating the
precise shape of the dose-response curve and determining the curve
concavity, mainly for small pathogen charges.
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