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Why strengthening gap junctions
may hinder action potential
propagation

Erin Munro Krull1* and Christoph Börgers2

1Department of Mathematical Sciences, Ripon College, Ripon, WI, United States, 2Department of

Mathematics, Tufts University, Medford, MA, United States

Gap junctions are channels in cell membranes allowing ions to pass directly

between cells. They are found throughout the body, including heart myocytes,

neurons, and astrocytes. In cardiac tissue and throughout the nervous system,

an action potential (AP) in one cell can trigger APs in neighboring cells

connected by gap junctions. It is known experimentally that there is an ideal

gap junction conductance for AP propagation—lower or higher conductance

can lead to propagation failure. We explain this phenomenon geometrically in

branching networks by analyzing an idealized model that focuses exclusively

on gap junction and AP-generating currents. As expected, the gap junction

conductance must be high enough for AP propagation to occur. However, if the

gap junction conductance is too high, then it dominates the cell’s intrinsic firing

conductance and disrupts AP generation. We also identify conditions for semi-

active propagation, where cells in the network are not individually excitable but

still propagate action potentials.

KEYWORDS

gap junctions, excitability, excitable tissue, action potential propagation, cardiac tissue,
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1 Introduction

Gap junctions are found throughout the body [1–3]. In particular, gap junctions connect

astrocytes [4], neurons [5–8], especially during development [9, 10] and heart myocytes [11–

13]. More recently, gap junctions were observed in cancer cells [14, 15] and between soma

and germline cells [16].

Gap junctions allow ions to pass between cells, and so the voltage in one cell directly

influences the voltage in the neighboring cell. Suppose two excitable cells are connected, a

“trigger" cell and a downstream neighbor, and both are at rest. If there is a small voltage

deflection in the trigger cell, then we will see a proportional deflection in the neighbor.

This proportion is often referred to as the coupling coefficient [17]. If the gap junction

conductance is low, then an action potential (AP) in the trigger cell may only yield a

subthreshold response in the neighbor. This response is called passive propagation since

the neighbor’s firing currents are never fully activated. On the other hand, if the gap junction

conductance is high, then an AP in the trigger cell may yield an AP in the neighbor. We call

this active propagation since the neighbor’s firing currents amplify the response.

Active propagation of APs across gap junctions is seen in cardiac tissue [11–13] and

throughout the nervous system [18–25]. More recently, gap junctions were found to mediate

propagating calcium waves through smooth muscle tissues [26], neural progenitor cells [27],

possibly astrocytes [28–30], and retinal cells [31].

Several studies have reported that APs propagate most easily across a given network

for intermediate gap junction conductances; see Figure 1. Experiments in heart tissue
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FIGURE 1

Simulations of Hodgkin-Huxley-type neurons [39] connected by gap junctions in a 20-layer tree network where each cell has one upstream

neighbor and two downstream neighbors. The lead cell is stimulated until its voltage reaches approximately 1/2 the AP height of an unconnected

cell, marked by a black horizontal line. (See section 4 for simulation details.) We see propagation failure when the gap junction conductance g is

either too high or too low, and AP propagation when g is set to a medium amount.

show that reducing the gap junction conductance can allow APs to

propagate through expanding tissue [12, 32, 33]. These results are

corroborated in computational models of heart tissue, which show

that there is an ideal gap junction conductance that maximizes the

number of downstream neighbors that APs may propagate across

[34] and that maximizes the “safety factor,” a measure of ease of

propagation in terms of source-sink mismatch [34–38].

To understand these results, we consider a network of cells

connected by gap junctions with possibly many downstream

neighbors. If the gap junction conductance between cells is zero,

clearly APs cannot propagate through the network. As the gap

junction conductance is raised, propagation becomes possible.

However, if the conductance is raised too much, current shunted

to downstream neighbors may prevent APs from propagating.

Extending the study in [40] and [41], we use a one-dimensional

simplification of the FitzHugh-Nagumo equations to analyze when

active AP propagation is possible in branching networks. In

particular, our framework explains why increasing gap junction

conductance may hinder AP propagation beyond pointing to a

source-sink mismatch: AP propagation is the easiest when the

total gap junction conductance is large enough to overcome

the cell’s intrinsic conductance below the firing threshold, but

small enough to not interfere with the cell’s conductance above

the firing threshold. We illustrate this phenomenon for AP

propagation into a single cell and branching networks. We then

verify that our conclusions hold qualitatively for more realistic

biophysical models. Our analysis also predicts that if the gap

junction conductance reaches a threshold, we may see semi-active

propagation where individual cells in the network cannot fire an

AP independently from their neighbors, but the network can still

propagate APs.

2 Propagation into a single cell

2.1 Model of a single cell

Wemodel a single cell using the equation

dv

dt
= v(v− vT)(1− v) (1)

where vT is a parameter with 0 < vT < 1. We let F(v)

stand for the right-hand side of Eq. (1), illustrated in Figure 2.

We think of v as a non-dimensionalized membrane potential and

will therefore refer to it as voltage. We also think of F(v) as the

inward activation current (more accurately, current divided by

capacitance) and therefore may interpret F′(v) as the intrinsic

conductance of the cell. Equation (1) is one half of the FitzHugh-

Nagumo model [42]. We omit the other half, the slow variable

that drives v down when it is high. Our focus, for now, is on the

initiation, not on the termination of spikes. Single cell simulations

in the Supplementary material show that slow gating variables do

not appreciably change during AP initiation.

Equation (1) has a stable equilibrium at v = vR = 0, an unstable

one at v = vT representing the intrinsic threshold, and a stable

one at v = vF = 1 representing the AP firing voltage. If v is

perturbed slightly from 0, it returns to 0, but if it is raised above vT ,

it rises further to 1 instead. While we technically have a bi-stable

differential equation, since we are using this model to focus on AP

initiation, we still think of this as a model for excitability. In this

study, excitability always means the co-existence of a stable resting

state and an unstable threshold, with the property that perturbation

away from the stable resting state and past the threshold results in

a large excursion to the AP firing voltage. Once the voltage reaches

the AP firing voltage, we assume the recovery currents of the full

FitzHugh-Nagumo model would take the voltage back to rest.

The graph of F has a local minimum vmin and an inflection

point at vi = (vT + 1)/3. We assume vT < vi, which is equivalent

to

vT <
1

2
.

For neurons and myocytes, this is a natural assumption: The firing

threshold is closer to the resting voltage (v = 0) than to the peak

voltage (v = 1). So

vmin < vT < vi

as illustrated in Figure 2.

2.2 Gap junction connections with
neighbors held at fixed voltage

Consider a cell described in the previous section that is

connected by gap junctions to one upstream neighbor with voltage
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FIGURE 2

Graph of F with intrinsic threshold vT = 0.2.

FIGURE 3

(A) Cell with upstream and downstream neighbors at fixed voltages.

(B) By symmetry, we can collapse the downstream neighbors into a

single cell.

vu and k downstream neighbors with voltage vd = 0. The upstream

and downstream voltages are assumed fixed for now. Only the

central cell has dynamics. Simulations (not shown) verify that the

assumption vd = 0 is reasonable as long as the central cell’s voltage

is below threshold. We assume that all gap junction conductances

have the same strength g, and stimulation comes from the upstream

neighbor. See Figure 3 for an illustration with k = 3.

Our model now becomes

dv

dt
= v(v− vT)(1− v)+ g(vu − v)− gkv. (2)

As is customary, we assume here that gap junctions are governed by

Ohm’s law—current is proportional to voltage difference. The term

g(vu − v) models the effect of the upstream cell and −gkv models

the effect of the downstream cells. With the notation

G(v) = g(k+ 1)v− gvu, (3)

Eq. (2) becomes

dv

dt
= F(v)− G(v).

Figure 4A shows F and G in one figure. The graph of G intersects

the horizontal axis at (vu/(k + 1), 0), and the vertical axis at

(0,−gvu).

In general, there may be more upstream cells than just one.

There may also be more or fewer downstream cells coupled to the

central cell with varying conductances. What matters is that g is the

total gap junction conductance of connections between the central

cell and upstream cells and kg is the total gap junction conductance

of connections between the central cell and downstream cells.

Therefore, we will not assume k to be an integer any more, simply

thinking of it as the ratio of total downstream conductance over total

upstream conductance.

2.3 All neighbors at rest

We first discuss the equilibria of the central cell when the

upstream neighbors of the central cell are at rest (vu = 0) just like

the downstream neighbors. The formula for G(v) is now

G(v) = g(k+ 1)v.

Fixed points of Eq. (2) are solutions of

F(v) = G(v). (4)

If g(k+ 1) is not too large, then there are three equilibria, depicted

in the left panel of Figure 4B. As g(k + 1) increases, the graph of

G becomes steeper. This raises the threshold vt and lowers the AP

firing voltage vf but does not affect the resting voltage. Eventually,

the threshold and firing equilibrium points collide at a voltage

which we denote by vE; see themiddle panel of Figure 4B. For larger

g(k+ 1), there is only one equilibrium at v = 0.

We say that the cell is excitable if there are three equilibria—

an unstable threshold surrounded by two stable equilibria. This

is consistent with the common notion of an excitable cell, where

a small deflection in voltage across a threshold can cause a large

excursion to a much higher voltage. Hence, the cell is excitable if

g(k+ 1) < F′(vE) (5)

and is not for higher values of g(k+1). So gap junction connections

with neighbors held at rest, if they have high conductance or are

numerous enough, can make excitability disappear altogether. We

will see below that non-excitable cells can still amplify a response—

just not independently from other cells.

2.4 Firing triggered by raising the upstream
voltage

As vu is raised from 0 to some maximum value Vu > 0, the

graph of G moves downward. Depending on the values of Vu, k,

and g, the threshold and resting voltages may eventually collide and

annihilate each other in a saddle-node bifurcation, leaving the AP

firing voltage as the only equilibrium. We let vu,c be the bifurcation

point, where vmin < vu,c < vi; see Figure 5A.

As the right panel of Figure 5A shows, even when the central

cell is not excitable because it is too strongly connected to resting
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FIGURE 4

(A) Graph of F with the graph of G, a straight line with vertical intercept (0,−gvu) and v-intercept ( vu
k+1

, 0). In this example, vT = 0.2, g = 0.2, and k = 1.

(B) F and G for vu = 0 at di�erent values of g(k+ 1).

neighbors, raising vu may restore excitability by making the

threshold and AP firing voltage equilibria re-appear via a saddle-

node bifurcation. Then, at vu = vu,c, the resting and threshold

equilibria collide and disappear.

Definition 1. We say that the central cell fires or has a firing

response when vu rises from 0 to Vu if there is a saddle-node

bifurcation between the rest and threshold fixed points at some

critical value vu = vu,c with vmin < vu,c < vi.

Definition 2. The critical segment is the segment between v = vmin

and v = vi on the graph of F.

The left panel of Figure 5B shows the critical segment in bold.

The collision between the rest and threshold fixed points must

occur on the critical segment. Therefore, the following proposition

holds.

Proposition 1. Let g > 0 and k ≥ 0. The central cell fires when vu is

raised from 0 to Vu if and only if Lg,k (the graph of G with vu = Vu)

satisfies the following two conditions.

(1) Lg,k lies strictly below the critical segment

(2) Lg,k has slope< F′(vi).

We say Lg,k is admissible if it satisfies the conditions in

Proposition 1, as illustrated in the left panel of Figure 5B.

2.5 Region in (g,k)-plane with firing
response

We use Proposition 1 to derive a detailed description of the set

of the parameter pairs (g, k) for which the central cell has a firing

response. First, we note that Lg,k cannot be admissible if Vu ≤ vT .

We will therefore assume

vT < Vu.

Furthermore, since lowering k rotates Lg,k clockwise around the

point (0,−gVu), lowering k makes it easier to fire: For Lg,k to be

admissible for a given g, Lg,0 has to be admissible (this makes sense,

since lowering k lowers the current shunted to the downstream

neighbors). Therefore, we first analyze the case k = 0. Note that

Lg,0 passes through (Vu, 0). For Lg,0 to be admissible, g must satisfy

gmin < g < gmax

where Lgmin ,0 is tangent to the critical segment and Lgmax ,0 has slope

F′(vi), as illustrated by the right panel of Figure 5B. Since the slope

of Lg,0 is g, then gmax = F′(vi).

Now, we consider k > 0. Suppose g lies between gmin and gmax.

Then, Lg,0 is admissible. Other admissible lines, for the same value

of g, are obtained by rotating this line around the point (0,−gVu) in

the counter-clockwise direction until it touches the critical segment

or reaches slope F′(vi)—whichever comes first.

Which of these two does come first depends on g. If g is smaller

than some threshold value g∗ (discussed further below), then as

the line rotates counter-clockwise around (0,−gVu), it touches the

critical segment before it reaches slope F′(vi); see the left panel of
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FIGURE 5

(A) Raising vu shifts the graph of G. (B) The left panel shows an example of an admissible line Lg,k . The critical segment is the bold blue segment along

F. The right panel shows the lines Lg,k for the minimum and maximum values of g allowing a firing response. Both occur when k = 0. (C) The left

panel shows an example where the maximum k occurs when Lg,k is tangent to the graph of F. The right panel shows an example where the

maximum k occurs when Lg,k reaches F
′(vi).

Figure 5C. If g is larger than g∗, the line reaches slope F
′(vi) before

it touches the critical segment; see the right panel of the figure.

From Figure 5C, we see that g∗ is determined by the tangent to

F at (vi, F(vi)), which intersects the vertical axis at−g∗Vu. That is,

F′(vi) =
F(vi)+ g∗Vu

vi
, or

g∗ =
F′(vi)vi − F(vi)

Vu
. (6)

Is it possible that g∗ ≥ gmax = F′(vi)? According to (6), this

means

F′(vi)vi − F(vi)

Vu
≥ F′(vi)

or

Vu ≤ vi −
F(vi)

F′(vi)
. (7)

The right-hand side of this inequality is the v-intercept of the

tangent to F at (vi, F(vi))). So, g∗ ≥ gmax only if Vu happens to

be very small, just above vT .

For every g ∈ (gmin, gmax), the slope g(k + 1) of the admissible

line Lg,k is bounded above and the upper bound on g(k + 1)

translates into an upper bound on k. So, the parameter regime

where there is a firing response is of the form

gmin < g < gmax, 0 ≤ k < kmax(g),

and our next goal will be to understand what the graph of the

function kmax looks like.

When g∗ ≤ g < gmax, the constraint on the slope of Lg,k is

g(k+ 1) < F′(vi), and therefore

kmax(g) =
F′(vi)

g
− 1. (8)

For gmin < g < g∗, kmax(g) is obtained by computing the k where

Lg,k is tangent to the critical segment. The two pieces match up
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continuously at g∗, and we set

k∗ = kmax(g∗).

Our conclusions are summarized in Figure 6A.WhenVu is so small

that g∗ ≥ gmax, the dashed part of the blue boundary in Figure 6A is

simply absent. The dotted and dashed parts of the upper boundary

of the blue region in Figure 6A fit together continuously but not

differentiably.

In Figure 6A, we also indicate the regions in the (g, k)-plane,

where the central cell is excitable when the upstream cell is at rest

(vu = 0). From Eq. 5, the boundary of this region is defined by

k <
F′(vE)

g
− 1. (9)

We let kexc(g) stand for the right-hand side of (9) and describe how

excitability affects behavior in more detail in section 2.7.

2.6 Ideal gap junction conductance

In Figure 6A, we see that kmax(g) reaches a maximum point

at (gpeak, kpeak) at some g ∈ (gmin, g∗). We also see that for

all k < kpeak, as g increases AP propagation will first appear

and then disappear as illustrated in Figure 1. To understand

precisely how (gpeak, kpeak) corresponds to our model, we will

examine what happens to Lg,k when it is tangent to the critical

segment. In particular, we will follow what happens to the v-

intercept (Vu/(kmax(g)+ 1)) as g increases. As shown in Figure 6B,

initially, the v-intercept falls as g increases until it reaches vT . As

g continues to increase, the v-intercept rises again. Therefore, kmax

rises until the v-intercept reaches vT and then falls. We can solve

for (gpeak, kpeak) by setting Vu/(kpeak + 1) = vT , and therefore

kpeak =
Vu

vT
− 1. (10)

and since gpeak(kpeak + 1) = F′(vT),

gpeak =
F′(vT)

kpeak + 1
=

F′(vT)vT

Vu
. (11)

In other words, AP propagation is the easiest when the total

conductance g(k+ 1) is the same as the cell’s intrinsic conductance

when v = vT . At lower conductances, the gap junction current

may not overcome the cell’s current below threshold. At higher

conductances, the gap junction current may interfere with the cell’s

firing currents.

2.7 Active, semi-active, and passive
propagation

In Figure 6A, we see several distinct regions defined by kmax(g)

and kexc(g). Notably, kexc(g) intersects kmax(g) so that a cell may fire

without being excitable. Here, we describe these parameter regions.

Definition 3. The propagation region is the region of parameter

pairs (g, k) with 0 ≤ k < kmax(g). The active propagation region

is the section of the propagation regions where k < kexc(g), while

the semi-active propagation region is the section where k ≥ kexc(g).

The passive propagation region is the region where k ≥ kmax(g).

When (g, k) lies in the active propagation region (illustrated

in Figure 6A where the red and blue regions overlap), the central

cell is excitable for vu = 0 and fires when vu is set to Vu. When

(g, k) lies in the semi-active propagation region, the central cell

is not excitable for vu = 0, but as vu rises from 0 to Vu, first

excitability is restored, and then there is a firing response. In the

passive propagation region, raising vu from 0 to Vu still causes the

voltage of the central cell to rise but does not trigger firing.

To illustrate the difference between the three parameter

regions, Figure 7A shows solutions of (2) with v(0) = 0 and

vu =

{

1 for 0 ≤ t ≤ 30

0 for t > 30.

In the active propagation region, the central cell’s voltage rises

and converges to the AP firing voltage, indicating an AP would

occur in the full FitzHugh-Nagumo model. (Recall that our model

includes no explicit mechanism for bringing the voltage back down

after firing.) In the semi-active propagation region, the central cell’s

voltage also rises but drops back down to rest once vu is set back to

0—no matter how high the central cell’s voltage gets. In the passive

propagation region, the voltage rises much less and returns to zero

soon after vu is switched back to zero.

2.8 AP height can depend discontinuously
on g and k

For g > 0 and k ≥ 0, let v = v(t) be the solution of (2) with

vu = Vu and v(0) = 0. Let

v∞ = lim
t→∞

v(t). (12)

In other words, v∞ is the voltage obtained by setting the voltage

in the upstream cell to Vu, letting the voltage in the central cell

equilibrate, starting at v = 0; so, v∞ is the smallest equilibrium.

We view v∞ as a function of g and k, as illustrated in Figure 7B.

Notably, there is a discontinuous jump along the boundary defined

by kmax (the dotted blue curve). This boundary is discontinuous in

general, as stated in the following theorem.

Theorem 1. v∞(g, k) has jump discontinuities at parameter pairs

(g, k) with gmin ≤ g < g∗ and k = kmax(g) and is continuous

everywhere else.

Proof. Let g > 0 and k ≥ 0. As before, denote by Lg,k the graph

of G with vu = Vu. Then, v∞(g, k) is the v-coordinate of the left-

most intersection point of Lg,k and the graph of F. As illustrated in

Figure 5A, v∞ depends discontinuously on (g, k) if and only if Lg,k
is tangent to the graph of F along the critical segment. The (g, k) for

which Lg,k is tangent to the graph of F at the critical segment are

precisely the ones that define kmax(g) where g < g∗.
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FIGURE 6

(A) Firing occurs in the region in the (g, k)-plane below kmax (blue), and the region where the cell is excitable with all neighbors at rest is below kexc
(red). vT = 0.15, Vu = 1. (B) As g increases from gmin to g*, the v-intercept of the tangent through (0,−gVu) first moves left (left panel), then right (right

panel). Therefore, kmax(g) first increases until
Vu
k+1

reaches vT and then decreases.

FIGURE 7

(A) Responses to setting vu = 1 for 0 ≤ t ≤ 30 and then setting it back to 0, for k = 2 and g = 0.03 (top), g = 0.07 (middle), and g = 0.01 (bottom). (B)

Heat plot of v∞ as a function of g and k for vT = 0.15, Vu = 1. The blue curves are from Figure 6A. We see that v∞ is discontinuous along the dotted

blue curve but not along the dashed blue curve.

3 Propagation through branching
networks

3.1 Model

For motivation, first think about AP propagation through

a tree of cells connected by gap junctions, as shown in

Figure 8A. Assume that the cells are identical and each cell

has exactly one upstream and k downstream neighbors.

Propagation is triggered by raising the voltage of the leftmost

cell to v = 1.

By symmetry, the voltages in cells that are vertically

aligned in Figure 8A are identical. We therefore collapse

vertically aligned cells into a single cell and obtain the

equivalent chain shown at the bottom of Figure 8A. In

this chain, gap junction conductances are not symmetric:

g for upstream connections and kg for downstream

connections.
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FIGURE 8

(A) A tree network, where each cell has one upstream neighbor and k = 3 downstream neighbors. Propagation is triggered by setting the voltage in

the left-most cell to v = 1 (highlighted in red). The equivalent collapsed network is shown below. (B) A branching network where each cell has three

upstream neighbors and one downstream neighbor, so k = 1/3. The collapsed network is the same as panel A but now k < 1.

As we did earlier, we now drop the assumption that k is an

integer, viewing it more abstractly as the ratio of downstream

conductance over upstream conductance.We even allow k to be less

than 1. This models a situation in which a signal originates from a

large array of cells, propagating into a narrowing network: Think of

a signal propagating through a tree from the tips of the outermost

branches to the root, as shown in Figure 8B. We therefore consider

the collapsed chain in Figure 8A as a mathematical idealization of

many different kinds of branching networks.

We make the additional simplification that each cell responds

only to the voltage upstream of it and behaves as though its

downstream neighbors were held at zero voltage; its voltage

therefore rises to v∞, as defined in Eq. 12. Propagation through the

chain amounts to iterating the map

ϕ : vu 7→ v∞,

which maps [0, 1] into [0, 1].

3.2 AP propagation determined by
sequence of max voltages

A complication in our analysis is that the map ϕ need not be

continuous. To see this, first note that for any equilibrium v∞ of

eq. (2), that is, for any solution v∞ of

F(v∞)+ g(vu − v∞)− gkv∞ = 0,

we can solve for vu in terms of v∞:

vu = −
F(v∞)

g
+ (k+ 1)v∞.

FIGURE 9

(A) Function ψ mapping equilibria of Eq. (2) onto vu. In this example,

vT = 0.2, g = 0.058, and k = 2. (B) Corresponding function ϕ

mapping vu onto the smallest equilibrium of Eq. (2), highlighted in

bold.

We denote the right-hand side of this equation by ψ(v∞);

Figure 9A shows an example. The graph of ϕ is obtained by

swapping the v∞- and vu-axes, and using the minimum value of

v∞ for a given vu when there is ambiguity; see Figure 9B.

Because of the discontinuity, we will not use the standard

theory of iterated one-dimensional maps to understand the effect

of iterating ϕ, but explicitly construct the iterates. Starting with

v0 = 1, we define v1, v2, . . . by vj+1 = ϕ(vj) and j = 0, 1, 2, . . ..

Given vj, vj+1 is the smallest solution of F(v)+ g(vj − v)− gkv = 0

or

F(v) = g(k+ 1)v− gvj. (13)

The graph of the right-hand side of this equation is the line Lg,k
with Vu = vj, which passes through the point (vj, gkvj). To find

vj+1 from vj, we first draw the line P(v) = gkv as a reference and

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2023.1186333
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Munro Krull and Börgers 10.3389/fams.2023.1186333

FIGURE 10

(A–C) Construction of vj+1 = ϕ(vj) starting with v0 = 1. For each iterate, we follow the dotted black line up to P(v) = gkv (black solid line) and then Lg,k
(red solid line) down to the lowest intersection with F. In (A) P does not intersect F above v = 0 and so the iterates of ϕ converge to 0. In (B) P

intersects F above v = 0, but Lg,k through the point (v0,gkv0) is not admissible and so the iterates of ϕ also converge to 0. In (C) P intersects F above

v = 0 and all Lg,k through (vj,gkvj) are admissible, so the iterates of ϕ converge to v+ (the highest intersection between P and F). (D) Definitions of v+,

v−. Note that v− ≤ vE ≤ v+, where vE is illustrated in Figure 4. (E) Illustration of the condition for persistent propagation. The line P(v) = gkv (black)

must intersect, or at least tangentially touch, F(v) to the right of v = 0, and Lg,k through the point (v+, F(v+)) (red) must clear the critical segment, or at

most touch it tangentially. (F) Construction of gmin, below which no persistent propagation is possible.

then draw Lg,k through the point (vj, gkvj). The v-coordinate of the

smallest intersection of Lg,k with F is vj+1. The construction of vj+1

from vj is illustrated by Figures 10A–C.

From Figure 10, we read off the following theorem on the

convergence of the vj. In this theorem, vE is defined as in Section

2.3 (Figure 4).

Theorem 2. Suppose gk ≤ F′(vE) and v+ is the maximum solution

to F(v) = gkv. Then limj→∞ vj = v+ if the line Lg,k through

(v+, F(v+)) is admissible or is tangent to F(v) along the critical

segment. In all other cases, limj→∞ vj = 0.

If limj→∞ vj = v+, we say that there is persistent propagation. If the

line Lg,k through (v+, F(v+)) is tangent to F(v), we say it satisfies the

tangency condition.

3.3 The region of persistent propagation

Our aim now is to understand for which values of g and

k—that is, for which total upstream gap junction conductances

and degree of expansion in our branching network—there can

be persistent propagation. The result will be that the region of

persistent propagation in the (g, k)-plane is of the form g ≥ gmin

and 0 ≤ k ≤ kprop(g), as shown in Figure 11. In particular, there

is an “ideal” conductance which maximizes the k that can support

persistent propagation.

The geometric construction described by Figures 10A–C and

theorem 2 mean that there is persistent propagation precisely if the

line P(v) = gkv (depicted in black in Figure 10E) intersects or at

least touches F(v) at some positive value v+ ≥ vE and with vu = v+
(depicted in red) lies below the critical segment or at most touches

it in a single tangency point.
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FIGURE 11

Region of propagation in the (g, k)-plane for vT = 0.2. The dotted

part of the curve indicates where kprop(g) is determined by the

tangency condition; the dashed part indicates where

kprop(g) = F′(vE)/g.

To better understand the shape of the region of persistent

propagation (Figure 11), we fix g and ask how Figure 10E changes

as k is increased (illustrated in Figure 12). The slopes of both

P(v) (black) and Lg,k (red) increase with k. Because the slope of

P(v) increases, v+ decreases. Therefore, the vertical intercept of Lg,k
(−gv+) also increases. This implies that Lg,k rises and is closer to

the critical segment if it was admissible before.

We conclude that for a fixed g, the range of values of k that allow

persistent propagation is either empty or an interval of the form

[0, kprop(g)] with kprop(g) ≥ 0. In particular, if there is persistent

propagation for any k at all, there is persistent propagation for

k = 0. Since the vertical intercept of Lg,0 (red) is−g, the minimum

possible g is gmin, where Lgmin ,0 is tangent to the critical segment

(Figure 10F).

For a given g > gmin, we obtain the range of values of k

for which there is propagation by watching how P(v) = gkv and

Lg,k (black and red lines) rotate as k increases, starting at k = 0.

Figure 12 shows two examples. This leads to the following result.

Theorem 3. The region of persistent propagation in the (g, k)-

plane is defined by

g ≥ gmin, 0 ≤ k ≤ kprop(g),

where Lgmin ,0 is tangent to the critical segment and kprop is

continuous with kprop(gmin) = 0. For small g, kprop is defined by

the tangency condition (described in Theorem 2 and illustrated in

Figure 10E). For large g, kprop(g) = F′(vE)/g.

Since kprop is 0 at gmin and tends to zero as g → ∞, there is

always a value of g that is “optimal” for propagation in the sense

that kprop is maximal. Figure 11 shows the region of propagation

for vT = 0.2. Numerical simulations suggest that the peak still

occurs approximately where g(k + 1) = F′(vT). This reflects our

results for a single cell, that AP propagation is the easiest when the

total gap junction conductance and cell’s intrinsic conductance at

the threshold balance.

4 Comparison with more realistic
models

We apply our analysis to see if we can predict AP propagation

in simulations using more realistic models of a neuron and a

cardiac myocyte. We use a four-dimensional Hodgkin-Huxley-

type model of the neuronal axon [39], which serves as a base

model for hippocampal axons connected by gap junctions in

several studies [43, 44]. For the cardiac myocyte, we use the

eight-dimensional Luo-Rudy model [45], which captures many

of the complexities in the cardiac action potential [46]. We used

Anaconda Jupyter notebooks [47] with Python 3 to run simulations

and apply our analysis. Numerical simulations were conducted

using solve_ivp in the Scipy Integrate library (version 1.10.1,

[48]) using implicit differentiation specified by the ‘BDH’ option.

The code for all simulations and analysis are available in the

Supplementary material.

4.1 A neuronal model

To start, we compare the single cell analysis of Section 2 with

simulation results for a model of the neuronal axon. We consider a

single cell with downstream neighbors held at rest (vR = 0 in [39]).

To apply our analysis, we construct the activation curve for this

model, FHH, by taking the right-hand-side of the voltage differential

equation and replacingm withm∞(v), and keeping n and h (which

are slower than v near vR) fixed at resting values. Using FHH, we

calculate vF , the AP firing voltage of the disconnected cell, and

vE, the maximum possible threshold voltage (see Figure 4 and the

Supplementary material).

Using the full four-dimensional model, we run simulations of

a single cell connected to fixed up- and downstream neighbors

(Figure 3) for many (g, k) pairs under two different conditions:

1. The upstream cell is held at v = vF for the entire simulation.

2. The upstream cell is held at v = vF until the cell’s voltage reaches

vE.

For each simulation, we calculate the maximum voltage of the cell

over the entire simulation for conditions 1 and 2. If the cell’s voltage

rises beyond vE under both conditions, then we say that active

propagation is possible. However, if the cell’s maximum voltage

goes beyond vE only under the first condition, then only semi-active

propagation is possible since the cell cannot maintain a full AP on

its own. These results are shown in Figure 13A.

We then calculate kmax(g) and kexc(g) using FHH, and compare

them directly to the simulation results. Figure 13A shows that

kmax(g) for a single cell matches the simulated active propagation

region boundary quite well for small g, with a discontinuous jump

in the voltage height up to g∗. While the simulated boundary for

the semi-active propagation is sharp as predicted in our framework,

the simulated boundary lies to the left of the predicted boundary.

The boundary matches the simulated active propagation regions,

especially for g < g∗, which confirms that fast activation currents

are primarily responsible for AP initiation in a single cell.

For the branching network, we make modifications in both

the analysis and the simulations. In the simulations, we model 20

layers of cells and record the maximum voltage of the penultimate

cell to indicate whether APs propagated through the network. We

also only hold downstream neighbors for the last cell fixed at

v = 0. In our analysis, we therefore adjust the assumption that

downstream neighbors are held at v = 0. Instead, we make a cell’s

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2023.1186333
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Munro Krull and Börgers 10.3389/fams.2023.1186333

FIGURE 12

Left: For small g, the largest k for which there is persistent propagation is determined by the condition that the line Lg,k through (v+,gkv+) with slope

g(k+ 1) touches F tangentially. Here, we see P(v) and Lg,k for k = 0 (highlighted in bold) and then see how P(v) and Lg,k move as k increases, until Lg,k
is tangent to F. Right: For large g, the largest k for which there is persistent propagation is determined by the condition gk = F′(vE). Again, the case

k = 0 is highlighted in bold.

FIGURE 13

Behavioral regions for a Hodgkin-Huxley-type neuronal model and the Luo-Rudy myocyte model. (A) The heat map in the top graph shows the

maximum voltage in mV over the entire simulation for a single Hodgkin-Huxley-type neuron where the upstream cell’s voltage is held at vu = vF . The

heat map in the bottom graph shows the maximum voltage when we only hold vu = vF until v = vE and then set vu = 0. Both heat maps range from

vR to vF . The dashed blue curves show the predicted kmax. The solid green curve shows the predicted active-passive boundary kexc. (B) The heat

maps show the maximum voltage in mV for the penultimate cell in a branching network of Hodgkin-Huxley-type neurons, where v0 = vF for the

entire simulation in the top graph and v0 = vF only until v1 = vE in the bottom graph. Both heat maps range from vR to vF . The curves kprop (dashed

blue), g(k+ 1) = F′HH(vT ) (dotted blue), and kexc (solid green) are both adjusted for the assumption that the downstream cell’s voltage is proportional

to the cell’s voltage. (C, D) Single cell and branching network results for the Luo-Rudy myocyte model. Interestingly, the shape of the simulated

propagation region in the branching network is di�erent than the predicted shape and the shape for a single cell possibly due to activation of slower

calcium currents.
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FIGURE 14

Simulations of the branching network for Hodkin-Huxley-type neurons with k = 2 showing the full range of behaviors. The top row shows results for

condition 1, while the bottom panel shows results for condition 2 (also shown in Figure 1). In Figure 1, we saw propagation failure for g = 0.1 µS. In

this figure, we see that the network will propagate if we hold the stimulation until more of the network is depolarized. However, we will always get

propagation failure for very high values of g, such as g = 0.3 µS. The black horizontal line marks vE . There are 20 cell layers in the network. The

penultimate cell is highlighted in bold.

downstream neighbor voltages proportional to the cell’s voltage

[49], which follows the steady-state condition when there are only

passive currents. The details of this modification are explained in

the Appendix in the Supplementary material.

In Figure 13B, we see that the simulated active propagation

region for the branching network lies entirely within the predicted

region and has a similar shape. That kprop over-estimates the

boundary for AP propagation is to be expected since our analysis

does not take the duration of an AP into account. (Though

higher-order factors may shape the region as well, see section 5.)

Regardless, we may still use the curve g(k+ 1) = F′(vT) to estimate

the peak, where the total gap junction conductance matches the

cell’s conductance at the intrinsic threshold. In Figure 13B, we

see that the peak of the simulated active propagation region lies

to the right of the peak curve. As predicted, there is a sharp

boundary between the simulated semi-active propagation and

active propagation regions. However, kexc(g) lies to the right of

the simulated boundary. Figure 14 illustrates the behavior seen

in each region of Figure 13B for k = 2, and Figure 15 gives an

example of AP propagation on both sides of the simulated semi-

active propagation boundary. In particular, in Figure 15, we see APs

propagate in the branching network only if cells in multiple layers

are depolarized enough to fire.

4.2 A myocyte model

We compare simulations using the full eight-dimensional Luo-

Rudy myocyte model [45] to our analysis in a similar manner to

the neuron model above. We construct the activation curve FLR
by replacing m with m∞(v) and holding all other gating variables

(which are slower than v near vR) fixed at their resting values. For

ease of calculation, we also re-center FLR(v) so that the resting fixed

point is vR = 0. Using the same simulation setup as in section 4.1, in

Figures 13C, D, we again see that simulated AP propagation into a

single cell matches the predicted boundaries very well, especially for

FIGURE 15

Simulations on both sides of the semi-active propagation boundary

reveal that AP propagation may depend on depolarization of

multiple downstream cells. Simulations of the branching network

for Hodkin-Huxley-type neurons with k = 2. Top panels show

results for condition 1, bottom panels show results for condition 2.

Under condition 2 on the left, the first cell’s voltage dips down

immediately after stimulation ends but is eventually pulled up when

multiple layers fire. On the right, the downstream cells pull the first

cell down, and they never recover. They all fail to propagate an AP at

once. The black horizontal line marks vE . There are 20 cell layers in

the network. The penultimate cell is highlighted in bold.

small g. Similarly, for the branching network, the simulated active

propagation region lies entirely within the predicted boundary but

does not quite have a similar shape. This may be due to the fact that

slower calcium currents in the Luo-Rudy myocyte model allow APs

to propagate for low g [38]. Similar to the neural model, the peak

of the simulated active propagation region lies to the right of the

peak curve. There is a sharp boundary between the semi-active and

active propagation regions, which lies to the left of the predicted

boundary.
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5 Discussion

We explained why AP propagation through a branching

network of excitable cells connected by gap junctions depends

non-monotonically on gap junction conductance. We did this by

reducing models to one-dimensional firing currents, which allows

us to visualize how the firing currents and gap junction currents

interact. From this visualization, we estimate that AP propagation

is easiest when the total gap junction conductance matches the cell’s

conductance at its intrinsic threshold. We also found a discrete

behavioral region where cells may propagate APs but are so strongly

connected that they are no longer individually excitable.

We believe this framework can give a simple and efficient

method for understanding where AP propagation may occur and

may add guidelines on whether to raise or lower gap junction

conductance to enhance propagation. For example, cells in

realistic networks have a heterogenous number of connections.

Our framework may predict when AP propagation failure and

subsequent re-entry occurs at cells with higher connectivity [12, 43,

50]. Currently, simulations are used to determine whether APs will

propagate through any given network. For instance, whole heart

simulations are a promising diagnostic tool in heart patients but

can be computationally costly [51]. While cellular automata may

alleviate the computational cost [52], our framework can inform

phenomenological rules and greatly reduce the parameter space

that needs to be searched. Finally, our framework outlines how

the AP height, threshold, and subthreshold response changes with

gap junction conductance [53]. These measures may be useful in

determining the state of a network and predicting network-wide

phenomena such as synchronization.

Moreover, this framework may be used to understand how

network behavior may change with changes in connectivity, gap

junction conductance, and firing currents. Cardiac arrhythmia

can be brought about by pathogenic stressors [54, 55], adrenergic

stimulation [56], or myocardial ischemia (buildup of plaques)

associated with decreased gap junction coupling [57, 58]. Abnormal

gap junction ubiquitination can affect both the heart and nervous

system [59]. Gap junctions may be sensitive to toxins [60]. Epilepsy

has been tied to gap junctions connecting networks of pyramidal

cell axons, interneurons, and astrocytes, each of which play a

different role in network excitability [61–64]. Furthermore, gap

junctions are indicated in Parkinson’s disease [65], Alzheimer’s

disease [66], nerve injury [67–69], and degenerative diseases in

the retina [70]. Modulating gap junction conductance may help

with several of these conditions; however, questions remain on how

much gap junctions can be modulated without producing adverse

side effects [71, 72]. An alternative may be to modulate firing

currents through gene therapy [73]. There are alsomany conditions

where external stimulation is applied as a part of therapeutic

treatment [51, 74–77]. We hope that our framework can give

insight on appropriate ranges to maintain proper function in a

variety of networks.

Our study is closely related to several other studies. We directly

extend the theory presented by Keener [40], which addresses the

conditions where AP propagation may occur in a chain of cells

with no branching. Our study also extends the study of Kouvaris

et al. [41], who analyzed a bistable system where both the high and

low resting voltages are fixed. This matches our analysis for AP

propagation into a single cell, so their bifurcation diagram matches

our bifurcation diagram for a single cell (Figure 6). We take a more

geometric approach, which clearly shows that the analysis depends

only on the qualitative shape of the activation curve. This allows

us to analyze the peak value of k for AP propagation. We also

show how connectivity affects the AP firing voltage, which then

determines whether persistent propagation is possible. Wang and

Rudy first showed a biphasic relationship between gap junction

conductance and an expansion ratio using simulations of cardiac

tissue [34]. Several experimental and computational studies show

a biphasic relationship between gap junction conductance and the

safety factor [34, 38, 78, 79]. While our framework can predict

where AP propagation is possible, the safety factor measures the

source-sink mismatch from a recording or simulation based on the

incoming current vs. outgoing current in a single cell. Finally, there

are other studies that show an ideal gap junction conductance for

propagation using a mean-field model [80], in a network using

small-world topology [81], and an ideal cable diameter for AP

propagation [82, 83].

We note that our framework only provides simple guidelines

outlining where AP propagation may occur. While this theory

can give a first estimate on when to expect AP propagation,

there are many ways we could increase the accuracy of this

prediction. For instance, we could link different versions of ϕ(v)

to model AP propagation through a network with heterogenous

numbers of downstream neighbors. We may also improve the

prediction by taking the connectivity of downstream neighbors

more fully into account. In fact, AP propagation may not only

depend on the number of immediate downstream neighbors,

but on the number of neighbors several steps away [43].

Future studies may incorporate multiple layers of downstream

neighbors. The predicted AP propagation regions in our framework

overestimate the regions found in the original models. Preliminary

results show that for the Fitzhugh-Nagumo model, the simulated

boundary may be better predicted by taking into account the

time to reach the threshold. However, a correction based on

the timing still does not quantitatively predict the region in

higher-order models. This may be due to higher-dimensional

interactions within the cell, such as calcium currents in the Luo-

Rudy myocyte model which may allow APs to propagate for

low g [38].

Our framework studies propagation assuming the first cell

is firing. It does not address getting the first cell to fire in the

first place but rather reproduces the situation where the cell is

voltage clamped. As gap junction conductance increases, it may

take an increasing amount of current to bring the first cell to the

desired voltage. In some cases, we may need to depolarize multiple

downstream neighbors in the network to get AP propagation,

similar to what is seen in semi-active propagation.

Overall, reduction of cell models to one-dimensional firing

currents gives insight into how gap junction currents allow active

propagation, semi-active propagation, or passive propagation. The

shape of the firing currents explains how the threshold and

peak firing voltage change with gap junction conductance and

allows us to approximate an ideal gap junction conductance for

AP propagation. This framework gives further insight into the

mechanisms of these networks - which play a key role in both

normal biophysiological function and disease.
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Glossary

active response: a cell is excitable and fires as vu increases from

0 to Vu

admissible: Lg,k lies below the critical segment

AP: action potential

critical segment: segment on the graph of F between vmin and vi
excitable cell: a cell with a stable resting voltage and unstable

threshold when vu = 0

fire: in a single cell, a saddle-node bifurcation occurs on the

critical segment as vu increases from 0 to Vu

F(v): inward activation current

g: total upstream gap junction conductance

gmin: minimum g where firing is possible

gmax: maximum g where firing is possible in a single cell

gpeak: g where kmax(g) attains its maximum

g∗: value of g where the condition determining kmax(g) changes

G(v): outward gap junction current (see Eq. 3)

k: ratio of downstream gap junction conductance over upstream

conductance

kexc(g): maximum k where a single cell is excitable

kmax(g): maximum k where a single cell can fire

kpeak: maximum value of kmax(g)

kprop(g): maximum k where limj→∞ vj = v+ as a function of g

k∗: kmax(g∗)

Lg,k: graph of G when vu = Vu

passive response: single cell doesn’t fire as vu increases from 0

to Vu

semi-active response: single cell isn’t excitable but fires as vu
increases from 0 to Vu

vd: voltage of a downstream cell

vE: value v where a saddle-node bifurcation occurs as g(k + 1)

increases and vu is fixed at 0, rendering the cell unexcitable

vF : intrinsic AP height of single cell without gap junction

connections

vf : AP height of a single cell with gap junction connections

vi: inflection point of F(v)

vj: voltage of cells in the jth layer of a branching network

vmin: v where F(v) attains its local minimum

vR: the resting equilibrium point of a single cell

vT : intrinsic threshold of single cell without gap junction

connections

vt : threshold of a single cell with gap junction connections

vu: voltage of an upstream cell

Vu: maximum voltage or AP height of an upstream cell

vu,c: bifurcation value of vu as a single cell fires

v∞: lowest fixed point in a single cell when vu = Vu

v+: maximum intersection of F and P(v) = gkv if gk ≤ F′(vE)

ϕ(vu): v∞ as a function of vu

ψ(v): vu that will produce a fixed point at v
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