
TYPE Original Research

PUBLISHED 06 July 2023

DOI 10.3389/fams.2023.1179301

OPEN ACCESS

EDITED BY

Quoc Thong Le Gia,

University of New South Wales, Australia

REVIEWED BY

Sabah Jassim,

University of Buckingham, United Kingdom

Francesco Marchetti,

University of Padua, Italy

*CORRESPONDENCE

Amish Mishra

amishra2019@fau.edu

RECEIVED 03 March 2023

ACCEPTED 21 June 2023

PUBLISHED 06 July 2023

CITATION

Mishra A and Motta FC (2023) Stability and

machine learning applications of persistent

homology using the Delaunay-Rips complex.

Front. Appl. Math. Stat. 9:1179301.

doi: 10.3389/fams.2023.1179301

COPYRIGHT

© 2023 Mishra and Motta. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Stability and machine learning
applications of persistent
homology using the
Delaunay-Rips complex

Amish Mishra* and Francis C. Motta

Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, United States

Persistent homology (PH) is a robust method to compute multi-dimensional

geometric and topological features of a dataset. Because these features are often

stable under certain perturbations of the underlying data, are often discriminating,

and can be used for visualization of structure in high-dimensional data and

in statistical and machine learning modeling, PH has attracted the interest

of researchers across scientific disciplines and in many industry applications.

However, computational costs may present challenges to e�ectively using

PH in certain data contexts, and theoretical stability results may not hold in

practice. In this paper, we define, implement, and investigate a simplicial complex

construction for computing persistent homology of Euclidean point cloud data,

which we call the Delaunay-Rips complex (DR). By only considering simplices that

appear in the Delaunay triangulation of the point cloud and assigning the Vietoris-

Rips weights to simplices, DR avoids potentially costly computations in the

persistence calculations. We document and compare a Python implementation

of DR with other simplicial complex constructions for generating persistence

diagrams. By imposing su�cient conditions on point cloud data, we are able to

theoretically justify the stability of the persistence diagrams produced using DR.

When the Delaunay triangulation of the point cloud changes under perturbations

of the points, we prove that DR-produced persistence diagrams exhibit instability.

Since we cannot guarantee that real-world data will satisfy our stability conditions,

we demonstrate the practical robustness of DR for persistent homology in

comparison with other simplicial complexes in machine learning applications.

We find in our experiments that using DR in an ML-TDA pipeline performs

comparatively well as using other simplicial complex constructions.

KEYWORDS

persistent homology, topological data analysis, machine learning, persistence diagram,

stability, Delaunay triangulation, Vietoris-Rips, simplicial complex

1. Introduction

As the volume and complexity of data collected in the experimental sciences and in

industry applications continues to grow, scientists and engineers often turn to methods

that transform data into more compact and manageable representations, while retaining

crucial characteristics that enable meaningful data analysis, visualization, and support the

development of high-performing predictive models. Tools from the applied computational

topology subfield Topological Data Analysis (TDA) offer several solutions to address some

of the challenges with processing and analyzing complex or high-dimensional data. TDA

leverages results from algebraic topology to measure and quantify qualitative, shape-based

features of data and continues to attract the interest of researchers across computational,

mathematical, and experimental disciplines including financial networks [1], signals in

images [2], cancer detection [3], forensics [4], and material science [5].

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2023.1179301
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2023.1179301&domain=pdf&date_stamp=2023-07-06
mailto:amishra2019@fau.edu
https://doi.org/10.3389/fams.2023.1179301
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2023.1179301/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

Persistent homology (PH) is the flagship method within TDA

and provides a robust method to encode multi-dimensional

geometric/topological features of a dataset in a compact

representation known as a persistence diagram (PD). PH is

often computed from point cloud data, i.e., a finite collection

of points in a metric space. One begins by associating to the

cloud a nested family of topological spaces—namely a collection

of simplicial complexes consisting of simplices of various

dimension (e.g., points, edges, triangles, tetrahedra, etc.)—that

is parameterized by a (real) scale parameter. This filtration of

simplicial complexes is meant to capture geometric/topological

structures in the point cloud across scales. From the filtration, a

PD, consisting of a collection of ordered pairs above the diagonal

in R
2. Each (birth, death)-pair represents a topological feature

of a fixed dimension (connected component, hole, void, etc.)

which appears at the birth scale and disappears at the death

scale.

Construction of a filtration depends on two factors: which

simplices to include in the family of complexes, and determination

of the scales at which each simplex should appear. Both factors

contribute to the overall computational burden to compute PH

on point cloud data, and may represent barriers to deploying PH

on large or high-dimensional data sets. For instance, an appealing

and often used construction known as the Rips filtration requires

only knowledge of the pairwise dissimilarities between points. This

makes computing the scales at which all simplices should appear

quite straightforward. However, the size of the Rips complex grows

exponentially in the number of points. An alternative to the Rips

filtration is the Alpha complex filtration [6], which restricts the

complexes to simplices in the Delaunay triangulation of the cloud.

However, this method assigns scales to simplices according to the

neighborship of the Voronoi cells associated with each data point,

which can be an expensive computation. Some other solutions

[7–9] have more recently been proposed to reduce the size of

the complexes ingested by the PH algorithm, which has been

implemented in a variety of languages (C++, Python, Julia, etc.) and

optimized to further improve computational efficiencies [10–12].

In this work, we take inspiration and combine the

computational efficiencies of the Rips and Alpha filtrations

to define a new filtration on Euclidean point cloud data. This new

construction is built on what we refer to as the Delaunay-Rips

(DR) complex. The DR complex may be viewed as a special case

of the lazy-witness complex [9, 13], in that the simplices in the DR

complex and DR filtration (by extension) are those in the Delaunay

triangulation of the point cloud. We also establish that, generically,

this filtration will inherit previously established stability results

which guarantee that, roughly, certain small changes in the

underlying data will result in small changes in the PD [14, 15].

That said, we further prove that, for certain configurations of

points, the DR filtration suffers from an instability in which an

arbitrarily small perturbation of the underlying data can result in a

non-infinitesimal change in the PD.We provide an unconventional

proof using an exact reduction of the boundary matrix constructed

by the DR filtration and show the explicit persistence calculation to

demonstrate the instability. This instability is due to the instability

in the Delaunay triangulation itself at degenerate configurations

of points.

Much of the fundamental appeal of PH technologies is due

to the numerous stability results that show the transformations

sending data to diagrams and/or diagrams to vectorized topological

representations are Lipschitz continuous transformations [16].

However, it is often the case in practice that the topological

representations derived from PDs—and used in data analysis

and statistical model development—are not stable, despite the

purported success of the models on which theyre based. Thus,

we are further motivated to ask, to what extent does the

instability observed in the DR filtration matter in practice? To

the best of our knowledge, the effects of persistence diagram

instabilities on trained model performance has not been done,

although this investigation is important in assessing model

fidelity. We interrogate this question empirically by performing

systematic comparisons of the performance and costs of the

Alpha, Rips, and DR filtrations on synthetic and real datasets

and machine learning (ML) modeling tasks. We find the effect

of the instability is negligible in these cases while the practical

computational advantages enjoyed by DR can be significant. Thus,

the contributions of this paper are:

• We define the DR complex, which is a refinement of the

Vietoris-Rips simplices on the data using the Delaunay

triangulation as a backbone.

• Weoffer an algorithm and a Python implementation of the DR

filtration.

• We document some empirical runtime comparisons for

constructing the PD using DR with popular implementations

of the Rips [11] and Alpha [17] filtrations.

• We provide a straightforward proof of the stability of the

Delaunay triangulation in some neighborhood of a generic

point cloud, which establishes stability of the DR filtration on

an appropriately chosen neighborhood of the data.

• We provide a rare proof of an instability in a filtration used for

computing PH.

• We examine the practical impact of the instability on synthetic

and real-world classification tasks and find the instability has

limited impact on model performance.

This paper is organized as follows: In Section 2 we briefly

review the necessary mathematical preliminaries. Section 3

formally introduces the DR filtration, provides psuedo-code of

the implementation we used to compute the DR filtration on

point cloud data, and compares the empirical runtime of this

algorithm to implementations of Rips and Alpha constructions

across increasing point cloud size and dimension. In Section

3.3 we discuss the stability properties of the DR filtration and

demonstrate—through a by-hand calculation of a family of PDs—

how a discontinuity in the transformation from point cloud to PD

can arise given a perturbation in the underlying cloud. In Section

4 we report the result of several systematic comparisons of ML

model performance trained on topological features derived from

Alpha, Rips, and DR flirtations on synthetic and experimental data,

including using random forest classifiers trained on persistence

image (PI) vectorizations [18] of persistence diagrams, and support

vector machines trained on persistence statistics feature vectors

derived from ECG time-series data [19].

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

2. Background

To extract topological features from a point cloud, one often

begins by treating the points as the vertices of a so-called simplicial

complex that consists of vertices, edges (pairs of vertices), triangles

(sets of three vertices), tetrahedra (sets of four vertices), and

higher-dimensional analog (sets of n > 4 vertices), to construct

an object with well-defined notions of “shape.” Our interest

is in computing algebraic objects, namely persistent homology

groups, that characterize topological (homological) invariants

(e.g., connected components, holes, voids, etc.) across scales. We

briefly review these notions here. For a deeper treatment of the

mathematical foundations of these sections, we refer the reader

to Edelsbrunner and Harer [20] and Hatcher [21]. For a more

computational treatment with many practical considerations and

examples, we recommend Otter et al. [22].

2.1. Simplicial homology

Definition 2.1. Let K0 be a finite set and P(K0) the powerset (i.e.,

the set of all subsets) of K0. An abstract simplicial complex built

on K0 is a collection, K ⊂ P(K0), of non-empty subsets of K0 with

the properties that {v} ∈ K for all v ∈ K0, and if σ ∈ K then τ ∈ K

for all τ ⊆ σ .

In this paper we are concerned with simplicial complexes

built from point clouds such that the points are identified with

the singleton sets in the complex. In general, the elements of a

simplicial complex, K, will be called simplices, while we may refer

to sufficiently small subsets by other names. For example, we will

refer to singleton sets as vertices of K, size-two sets as edges, etc.

We say that a simplex has dimension p or is a p-simplex if it

has size p + 1; so vertices are dimension 0 simplices, edges are

dimension 1, triangles are 2-simplices, etc. We denote a p-simplex

by [v0v1 . . . vp] if it contains the 0-simplices vi, i = 0, . . . p. Kp

denotes the collection of all p-simplices and the k-skeleton of K

is the union of the sets Kp for all p ∈ {0, 1, . . . , k}. If τ and σ are

simplices such that τ ⊂ σ , then we call τ a face of σ . We say that

τ is a face of σ of codimension q if the dimensions of τ and σ

differ by q. The dimension of K is defined as the maximum of the

dimensions of any of its simplices.

Definition 2.2. Let K be a simplicial complex and p ≥ 0. A p-chain

of K is a formal sum of p-simplices in K written as

c =
∑

aiσi

where ai ∈ F is a field, and σi are p-simplices. The p-chains then

form a vector space of p-chains over a field F, which we denoted

Cp(K).
Cp(K) and Cp−1(K) are naturally related by a linear map called

the boundary map that sends each p-chain to its boundary (p −
1)-chain.

Definition 2.3. Let K be an n-dimensional simplicial complex and

σ = [u0u1 . . . up] ∈ Cp(K). The p-boundary map, ∂p is defined on

p-simplices to be

∂pσ =
p

∑

j=0
(−1)j[u0 . . . ûj . . . up]

where the hat indicates that uj is omitted. Extending via linearity,

∂p :Cp(K) → Cp−1(K) is further defined on any p-chain, c =
∑

i aiσi, by

∂pc =
∑

i

ai∂pσi.

Intuitively the chain of codimension-1 faces of a simplex encode

the boundary of that simplex. Let’s take a look at some examples.

The boundary of the triangle [abc] is the chain [bc] − [ac] + [ab],

consisting of the three edges that form its boundary. Extending to

chains, the boundary of the two edges that meet at the vertex b

(namely [ab] + [bc]) would be [b] − [a] + [c] − [b] = [c] − [a],

reflecting the fact that the boundary of this 1-dimensional object

consists only of its two terminal vertices. Connecting the chain

groups via their boundary maps forms a chain complex

0→ Cn(K)
∂n−→ . . .Cp+1(K)

∂p+1−−−→ Cp(K)
∂p−→ Cp−1

∂p−1−−−→
. . .C0(K)→ 0,

where the first map is the trivial linear map that sends the 0-vector

in the trivial vector space, 0, to the 0-vector in Cn(K).

Informally, a p-dimensional hole in a simplicial complex will

be represented by a (p − 1)-chain that could be (but is not)

the boundary of a p-chain. For example, as we have seen the

boundaryless 1-chain [bc]+ [ac]+ [ab] is the boundary of a 2-chain
(the 2-simplex [abc]). However, if [abc] were not in the simplicial

complex, we would be justified in saying the complex contained

a hole enclosed by the edges of the missing triangle. To make

these notions precise we introduce two subspaces of Cp(K) that

respectively encode all the p-chains that are without boundary, and

those which are actually boundaries of p+ 1 chains.

Definition 2.4. A p-cycle, γ ∈ Cp(K), is a p-chain with no

boundary, i.e., ∂pγ = 0. The collection of all p-cycles in a simplicial

complex K is denoted Zp(K) and forms a subspace of Cp(k) because

Zp(K) = ker ∂p.

Definition 2.5. A p-boundary, β ∈ Cp(K), is a p-chain that is

the boundary of a (p + 1)-chain, i.e., ∂p+1σ = β for some σ ∈
Cp+1(K). The collection of p-boundaries in the simplicial complex

K, denoted Bp(K), is also a subspace of Cp(K) since Bp = im ∂p+1.
With p-cycles and p-boundaries defined, we can formally define

the object which captures representatives of holes in a simplicial

complex: those cycles which are not boundaries.

Definition 2.6. The p-th homology group isHp = Zp(K)/Bp(K) =
ker ∂p/im ∂p+1. The p-th Betti number is the dimension of the

quotient vector space, βp = rank Hp.

Hp is then the vector space of equivalence classes of p-cycles,

where two p-cycles are equivalent if they differ by a p−boundary.
The fact that Hp is well-defined relies on the fundamental result

that ensures the boundary of a boundary chain must be empty, so

that Bp is actually a subspace of Zp.

Lemma 2.7. (Fundamental lemma of homology [20]) The

composition of any two consecutive boundary maps in the chain

complex is trivial. That is,

∂p∂p+1(σ) = 0

for every integer p and every (p+ 1)-chain σ .

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

As suggested, the p-th Betti number corresponds to the

number of p-dimensional “holes” in the corresponding simplicial

complex. In fact, the 0-th Betti number counts the number of

connected components, the 1-st Betti number counts the number

of (independent) loops, the 2-nd Betti number counts the number

of (independent) voids, etc.

2.2. Persistent homology

Although simplicial homology is sufficient for capturing some

intrinsic shape characteristics of a fixed simplicial complex, the

natural question that arises with point cloud data is how to

construct a simplicial complex from the points to provide a

meaningful representation of latent structure in the cloud. In fact,

there may be topological features of interest for one complex built

on the data (for instance at some fine scale), and another set of

topological features (at a larger scale) of interest from another

complex. A promising approach to deal with this question is

persistent homology, an extension of homology that considers

a parameterized family of simplicial complexes, rather than

just one.

Definition 2.8. Let Ks be a simplicial complex for each s ∈ R

such that Ks ⊂ Kt for all s ≤ t. We refer to such a collection of

complexes as a filtration. When each Ks ⊆ K, for some fixed finite

simplicial complex K, and Kt = K for some t ∈ R, we’ll refer to the

parameterized collection as a filtration of K.

Note that a filtration on a finite simplicial complex K necessarily

only contains finitely many distinct sub-complexes, which we can

relabel

∅ : = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn = K.

Here we have relabelled Ki : = Ksi for the scales si ≤ si+1, at
which the sub-complexes change. Each simplex σ ∈ K may also

be assigned the minimum scale at which it appears in the filtration.

In other words, one may define f :K → R by f (σ) = t if σ ∈ Kt

and σ /∈ Ks for any s < t. Thus, a filtration induces a so-called

monotonic function on the simplices of K, where f (σ) ≤ f (τ) if σ

is a face of τ . Conversely, any monotonic function f :K → R with

the property that f (σ) ≤ f (τ) if σ ⊆ τ , defines a filtration on K by

taking Ks = f−1(∞, s].

Definition 2.9. Let ∅ ⊆ K1 · · · ⊆ Kn = K be a filtration of K. The

p-th persistent homology groups of the filtration are then formally

defined as

H
i,j
p = Zp(Ki)/

(

Bp(Kj) ∩ Zp(Ki)
)

.

for 0 ≤ i ≤ j ≤ n. The corresponding p-th persistent Betti

numbers are the ranks of these groups,

β
i,j
p = rank H

i,j
p .

An element of H
i,j
p corresponds to a cycle in the filtration

that persisted from Ki to Kj (i.e., a cycle in Ki that did not

become a boundary in Kj) and the content of all the p-th

persistent homology groups of a filtration can be summarized

in a dimension-p persistence diagram which tracks the pairs

of indices in the filtration at which homological features

first appear and later disappear. It is common practice

to say a feature is “born" in complex Ki and “dies" in

complex Kj if the scale it became a cycle (without being a

boundary) is in Ki and earliest complex it becomes a boundary

is Kj.

Definition 2.10. Let µ
i,j
p be the number of p-dimensional classes

born in complex Ki that die entering complex Kj. Then

µ
i,j
p = (β

i,j−1
p − β

i,j
p)− (β

i−1,j−1
p − β

i−1,j
p).

The p-persistence diagram of the filtration given by f :K → R,

denoted Dgmp(f), is a multiset of pairs (si, sj) in the extended

real plane R̄
2 with multiplicity µ

i,j
p . Each pair (si, sj) represents a

nontrivial persistent homology class that is born in complex Ki =
Ksi and dies upon entering complexKj = Ksj because it merges with

a homology class that was born before Ki.

Now, we can define a metric we can use to find the distance

between two p-persistence diagrams.

Definition 2.11. LetX and Y be two p-persistence diagrams. Define

||x − y||∞ : = max{|x1 − y1|, |x2 − y2|} for x = (x1, x2) ∈
X, y = (y1, y2) ∈ Y . We define the bottleneck distance between

the diagrams as

W∞(X,Y) = inf
η :X→Y

sup
x∈X
||x− η(x)||∞

where the infimum is taken over all bijections η. Note that X and

Y have countably infinitely many copies of the diagonal (points

with no persistence), thus allowing η to be a bijection that may pair

non-zero persistence points to the diagonal.
A valuable property of persistence diagrams built from

filtrations on a fixed complex K is their stability with respect to

changes in the monotonic function determining filtrations on K:

Theorem 2.12. [20] Let K be a finite simplicial complex and

f , g :K → R two monotonic functions. For each dimension p, the

bottleneck distance between the diagrams Dgmp(f) and Dgmp(g)

satisfies

W∞
(

Dgmp(f), Dgmp(g)
)

≤ ||f − g||∞,

where ||f − g||∞ = maxσ∈K |f (σ)− g(σ)|.
We will also use a notion of distance between subsets of ametric

space to control the distance between point clouds living in R
D.

Definition 2.13. Let X and Y be two non-empty subsets of a metric

space (M, d). We define theirHausdorff distance dH(X,Y) by

dH(X,Y) : = inf{ε > 0 ; X ⊆ Yε and Y ⊆ Xε},

where

Xε : =
⋃

x∈X
{m ∈ M ; d(x,m) ≤ ε}.

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

For finite subsets X,Y ⊂ (M, d) (i.e., finite point clouds), the

Hausdorff distance reduces to the maximum distance from a point

in one set to the closest point in the other set. We prove a related

statement in Lemma 3.3.

The formal notion of a filtration on a simplicial complex and

its persistent homology groups defined in this section provide

a means to extract multiscale structure from point cloud data,

and thereby alleviate some of the concern about which complex

may best capture structure in the cloud. Still, the methods of

constructing a filtration from a point cloud are numerous and come

with advantages and disadvantages that depend on the nature of the

data.

2.3. Vietoris-Rips and Alpha complexes

One of the simplest and most commonly used methods to build

a filtration on a finite point cloud, X ⊂ (M, d), is to treat the points

as vertices and add simplices at a scale determined by their diameter

in the metric space.

Definition 2.14. Let X ⊂ R
D be a point cloud and ε ≥ 0. The

Vietoris-Rips complex at scale ε is defined as

VRε(X) = {σ ⊆ X | d(x, x′) ≤ 2ε, ∀x, x′ ∈ σ }.

In other words, for a given scale ε ≥ 0, if d(x, x′) ≤ 2ε for x, x′ ∈ X,

one adds the p-simplex σ = [x0x1 . . . xk] to the complex at the

largest scale of any of its edges.

Although an algorithm to compute the Rips complex at any

scale is simple to implement, constructing it on point cloud, X,

with large numbers of points results in a computational challenge:

eventually (at scales at and beyond half the diameter of the point

cloud) the Rips complex will be equal to the powerset of X and

so will contain 2|X| simplices. Moreover, the Rips complex will

eventually contain simplices of all dimensions (up to the size of the

point cloud minus 1), and so will contain homological information

even beyond the dimension of the cloud (assuming the data lives in

a finite-dimensional vector space). In practice this can be mitigated

by imposing a restriction on the maximum dimension of simplices

included in any complex in the filtration. Moreover, it is often the

case in practice that, as the scale increases, additional simplices may

appear in the complex that do not affect its homology [23, 24].

Filtration methods which avoid inclusion of “extraneous” simplices

may be preferable for large point clouds [7–9]. Before defining

examples of such methods, it will be helpful for the remainder of

the paper to define when a Euclidean point cloud is in “general

position".

Definition 2.15. A set of points in a d-dimensional Euclidean space

is in general position if no d + 2 of them lie on a common

(d − 1)-sphere.

For example, this means for a set of points to be in

general position in R
2, no 4 of them can be co-circular. This

condition ensures that each subset of d + 1 points lie on a

unique d-dimensional sphere which will ensure a unique Delaunay

triangulation, defined below.

Let X ⊂ R
D be a finite point cloud. Let x ∈ X and define

Vx : = {p ∈ R
D | d(p, x) ≤ d(p, x′) ∀x′ ∈ X}.

Each Vx is called a Voronoi cell of X and captures all points

which are not closer to any other point in X than x. Note that

{Vx}x∈X forms a cover of RD. This cover is known as the Voronoi

decomposition of RD with respect to X. To construct the Delaunay

triangulation from this cover, we define

Del(X) : = {σ ⊂ X |
⋂

x∈σ
Vx 6= ∅}.

It is known that Del(X) is itself a simplicial complex [20]. An

n-simplex σ ∈ Del(X) will be referred to as a Delaunay simplex.

We will use Del(X) as the underlying structure when defining the

Delaunay-Rips complex in Section 3.1.

First we recall another commonly used filtration construction,

known as the Alpha filtration, well studied for point clouds X ⊂
R
D. We recall the definition given in III.4 of Edelsbrunner and

Harer [20].

Definition 2.16. Let ε ≥ 0 and let Sx(ε) : = Vx∩Bx(ε), where Bx(ε)
is the d-dimensional ball of radius ε centered on x ∈ X. The Alpha

complex at scale ε ≥ 0 is

Alphaε(X) = {σ ⊆ X |
⋂

x∈σ
Sx(ε) 6= ∅}.

Note that since Sx(ε) ⊆ Vx, the set of 1-simplices of the Alphaǫ

complex form a subcomplex of the 1-skeleton of the Delaunay

triangulation.

By construction, VRε(X) and Alphaε(X) are simplicial

complexes for all ε ∈ R, and if s ≤ t, both Alphas ⊆ Alphat
and VRs ⊆ VRt . Thus, each filtration construction yields an

ordering on a set of simplices in a simplicial complex built on

the point cloud X. For Vietoris-Rips, the scale of each simplex

is determined by the distance between the farthest two vertices

that define the simplex. However, Vietoris-Rips also assigns a

non-zero weight to every subset of a set of vertices which is an

exponentially slow computation in the number of vertices. Alpha,

on the other hand, does not compute scales for every subset of

the set of vertices. Rather, the scales assigned to simplices are

determined by when the restricted epsilon balls on the Voronoi

cells intersect. This additional computation is what we seek to

avoid in our construction of the Delaunay-Rips complex in the

subsequent section.

3. The Delaunay-Rips complex and
stability

3.1. Definition and construction

Combining the Alpha and Rips constructions provides an

alternative method of building a family of complexes on a point

cloud X ⊂ R
d. The idea is similar to the construction of

the Delaunay-C̆ech complex defined in Bauer and Edelsbrunner

[25] and can be seen as a special case of a lazy weak witness

complex [9]. Delaunay-Rips utilizes the conceptual simplicity of

the Vietoris-Rips complex while cutting down on the number of

high dimensional and potentially extraneous simplices. The idea is

that we build the Vietoris-Rips complex on X but only add edges if

the edges occur in the Delaunay 1-skeleton of the point cloud. The

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

higher dimensional p-simplices are then added in the traditional

Vietoris-Rips manner, i.e., if and only if their 1-skeletons appear.

Definition 3.1. TheDelaunay-Rips (DR) complex for a given scale

ε ≥ 0 is defined,

DRε(X) = {σ ⊆ Del(X) | d(x, x′) ≤ 2ε, ∀x, x′ ∈ σ }.

Just as previously with Vietoris-Rips and Alpha filtrations, the

Delaunay-Rips filtration can be thought of as a method for building

a complex on a point cloud and assigning a scale, and thus a

monotonic ordering, to the simplices in our complex built on X.

Figure 1 illustrates and compares examples of Rips, Alpha, and

Delaunay-Rips filtrations, built on a cartoon point cloud inR
2, and

their associatedH0 andH1 persistence diagrams. The Rips filtration

produces a homology class that is born at scale value 7.26 and

persists until dying at scale value 10.21. This is represented by the

birth and death coordinates of the single orange point in the PD.

Notice that although there are two loops in the topological surface

of the overlapping circles at scale value 8.55, Rips does not capture

the second loop in the upper portion because a triangle is added

as soon as its 3 boundary edges appear. This is in contrast to the

Alpha filtration which produces a homology class at scale value 7.26

that persists until scale value 10.88 and another H1 class born at

8.55 and dies at scale value 9.23. Recall that the Alpha complex

at a particular scale value requires the balls centered at each 0-

simplex of a d-simplex in R
D to be restricted to the Voronoi cells

of the respective 0-simplex. Hence, the d-simplex is only added

to the complex when all of the restricted balls intersect. In our

example, the dashed red edge—which appears at scale 8.55, along

with the higher dimensional triangles it creates, in the Rips and

DR filtrations—does not appear until scale value 9.23 in the Alpha

filtration due to the aforementioned property of the Alpha complex.

Particularly, that edge needs to wait until the radii of the balls equals

the radius of the circle containing the 3 points that make up the

simplex that edge lies on.

The DR filtration produces an H1 homology class that persists

from scale value 7.26 to 10.86. In the DR construction, we add

triangles as soon as their 3 edges appear in the complex: this is

illustrated as a shaded triangle in the figure. Notice how at r = 18

although many balls overlap, we have only added the simplices that

appear in the Delaunay triangulation of the point cloud. Observe

that for a fixed point cloud, X ⊂ R
D, the abstract simplicial

complex built on X (Definition 2.1) according to both the Alpha

and Del-Rips filtrations is the Delaunay triangulation of X, Del(X).

Of course, the weights assigned to the simplices of Del(X) by Del-

Rips may differ from the weights assigned by the Alpha filtration. A

notable comparison here is that the Del-Rips PD shows an H1 class

born at the same scale value as it was in the Rips filtration, but it

persists for longer (due to the combinatorial cut down in simplices).

Another notable comparison is that Del-Rips does not capture a

second H1 class in the PD like Alpha and the only H1 class that is

captured does not persist for quite as long as the corresponding H1

class in Alpha.

As a remark, the reader may wonder if that second loop should

be captured in the PD or not. Although there is a scale value

at which the balls overlap in such a way as to reveal two loops

in the data, it is not clear whether capturing the less persistent

Input: P = (p1, . . . , pn), dim = maximum homology

dimension to compute

Output: Delaunay Rips Filtration

triangulation ← Delaunay(P)

filtration ← [([i], 0)] for 1 ≤ i ≤ n /* Add the

0-simplices into the filtration */

for each simplex ∈ triangulation do

for d← 1 to dim+ 1 do

faces← all d-simplex subsets of current

simplex

for each face ∈ faces do

if face /∈ filtration and d == 1 then

value← distance(face[0], face[1])

/* Calculate the euclidean distance

*/

filtration.append((face, value)) /* Append

1-simplices */

end

if face /∈ filtration and dim > 1 then

find subface of face with greatest value

filtration.append((subface, value)) /* Add

higher order simplices */

end

end

end

end

Algorithm 1. An algorithm to compute Delaunay-Rips filtration

loop would be valuable in any particular application. Employing

Alpha certainly captures that other loop well, but at the cost of

computational efficiency as it seeks to balance the weights on

the simplices across varying dimensions appropriately. Section 4

partially addresses whether we can sacrifice the fidelity of Alpha to

the underlying topological structure of the data for the advantage

of a computational speed-up.

3.2. Implementation and runtime analyses

Here we show empirical results of the performance of

computing persistence diagrams using the Delaunay-Rips filtration

on varying datasets. We fix our field of coefficients to be Z2 when

computing persistent homology groups. Algorithm 1, which we

have implemented in Python [26], constructs the DR filtration

across scales. This filtration then gets passed to the Persistent

Homology Algorithms Toolbox (PHAT) [27] to construct the

boundary matrix, reduce the boundary matrix, and extract the

persistent pairs. Experiments were run on a computer with an

Intel i7-10875H processor running at 2.3 GHz, 64 GB of RAM,

and running Ubuntu 20.04.5 LTS. The runtimes are measured as

the time between the data set being input into the corresponding

algorithm and the persistence diagram being produced. For

comparison, we choose the Python module Ripser [11] and a

Python Alpha implementation from the Python package Cechmate

[17]. Figure 2 shows how runtimes vary with the number of points

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

FIGURE 1

On the left, from top to bottom are the Rips, Alpha, and Delaunay-Rips filtrations on a point cloud with 8 points in R
2 (black dots). On the right are

the corresponding H0 and H1 persistence diagrams associated to each filtration. In each filtration the shaded circles have radii r at each scale value,

and edges and triangles are introduced according to definition of the given filtration at the specified scale. The dotted gray lines in the Alpha filtration

show the boundaries of the Voronoi cells. In the PDs, the blue points represent the H0 classes (connected components) and the orange points

represent the H1 classes (loops).

being sampled from a noisy 2-sphere. Each data point on the plot

is the median of 10 trials. The box-and-whisker plots on each data

point show the max, min, and interquartile ranges of the runtimes.

Similarly, Figure 3 shows the runtimes as we vary the dimension of

the sphere.

Notice that the Rips computation slows down in higher

dimensions because we insist Ripser compute simplices up to the

ambient dimension of the data set as is computed for Alpha and DR

filtrations. For example, for data points on a 3-sphere (inR
4), Rips,

Alpha, andDR computeH0,H1,H2, andH3 classes. Particularly, for

Rips, this increase in dimension exponentially increases the number

of simplices and thus increases the size of the boundary matrix

which causes computational slowdown.

Notice that the Alpha computation slows down dramatically

compared to DR even though both rely on computing the

Delaunay triangulation. This is due to the computational overhead

computing the scales at which multiple Voronoi cells intersect

to assign simplex weights. Since DR avoids this computation,

which is expensive in the Python implementation of Alpha in

Cechmate, the practical speedup is significant. It is important to

note that alternative implementations of Alpha [such as GUDHI

[28]] may show speedups over the Python implementation of DR

due to implementation details (e.g., the choice of implementation

language), and while the the filtered complexes built by Alpha and

Del-Rips are the same, we expect DR to enjoy some advantage in

practice due to fast(er) calculation of simplex scales in optimized

versions of these methods.

To further illustrate the increased severity of the impact on

time complexity with increased data and (maximum homological)

dimension, we compute persistence pairs using Rips, Alpha, and

DR and document the runtimes in Figure 4. Figure 4A indicates

the expected exponential increase of the Rips runtime as the

number of points increases within a fixed dimension, with the

degree of efficiency gained by DR increasing dramatically with

increasing ambient and homological dimension. Comparing Alpha

to DR in Figure 4B, we observe a roughly constant ratio of

runtimes over the number of points (consistent with Figure 2) that

decreases by a factor of approximately 1.9 and 1.6 when increasing

the maximum homological dimension from 2 to 3 and 3 to 4,

respectively.

3.3. Stability properties of the
Delaunay-Rips complex

Toward understanding the impact of a perturbation of the

underlying point cloud data has on the resulting DR persistence

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

FIGURE 2

Runtime comparison of Rips, Alpha, and Delaunay-Rips as number of points are increased. Data set is taken from the surface of a 2-sphere of radius

1 with 0.1 noise. The maximum runtime allowed was 7 seconds.

FIGURE 3

Runtime comparison of Rips, Alpha, and Delaunay-Rips as dimension of d-sphere increases (Note that 1, 2, 3 on the x-axis correspond to 1-sphere,

2-sphere, 3-sphere). Data set is 100 points from the surface of a d-sphere of radius 1 with 0.1 noise. The maximum runtime allowed was 45 seconds.

diagram, we adopt the notion of an ε-perturbation of a point cloud

from Weller [29]. If P = {p1, . . . , pn} ⊂ R
D denotes a point

cloud we let P′ = {p′1, . . . , p′n} denote a perturbation of P, where

we imagine placing ε <

(

minpi ,pj∈P{d(pi, pj)}
)

/2 balls around

each point pi ∈ P and selecting from each ball a perturbed point

p′i ∈ P′.

Definition 3.2. We call P′ = {p′1, . . . , p′n} an ε-perturbation of

P = {p1, . . . , pn} if for each p ∈ P there is exactly one p′ ∈ P′ such

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

FIGURE 4

Boxplots of ratio of runtimes when computing persistence pairs using the Delaunay-Rips filtration to runtimes on the same data using (A) Rips and (B)

Alpha filtrations for increasing number of points sampled from a noisy d-sphere. Each boxplot summarizes 10 instantiations with outliers removed.

Data dimensions (d+ 1) and maximum homological dimension (d) increase from left to right.

that d(p, p′) < ε and, conversely, p is the only point in P within ε of

p′. We refer to each p, p′ as a perturbation pair.

In other words, there is a bijection ρ : P → P′ associating to

each point pi ∈ P a point p′i ∈ P′, so that d(pi, ρ(pi)) < ε.

Lemma 3.3. Given that P′ is an ε-perturbation of a P ⊂ R
D, there

exists a perturbation pair pi ∈ P and p′i ∈ P′ such that

dH(P, P
′) = d(pi, p

′
i).

Proof. First, identify the perturbation pair, x ∈ P and x′ ∈ P′

which are farthest from one another among all pertubation pairs

and let

δ : = d(x, x′) = max
p∈P,p′∈P′

(

d(p, p′)
)

. (1)

By such a choice, we ensure that for any p′ ∈ P′, it must be that

p′ ∈ Pδ since d(p, p′) ≤ d(x, x′) = δ. Similarly, for any p ∈ P,

d(p, p′) ≤ d(x, x′) = δ and so P ⊆ P′δ . Therefore dH(P, P
′) ≤ δ by

Definition 2.13.

Now, assume λ < δ. For any p′ ∈ P′

d(x, p′) ≥ min
p′∈P′

(

d(x, p′)
)

= d(x, x′) = δ > λ.

Therefore x /∈ P′λ since it is not in any λ-ball around the points

of P′, therefore dH(P, P′) > λ for every λ < δ. Thus, dH(P, P
′) =

δ = d(x, x′). That is to say, the Hausdorff distance between P and

P′ is exactly equal to the largest distance a point in P was perturbed

within an ε-perturbation.

To leverage Theorem 2.12 we will pursue conditions that ensure

the underlying Delaunay triangulation does not change under a

perturbation of the points. We say that a finite P ⊂ R
D and

an ε-perturbation, P′ have the same Delaunay triangulation with

respect to the perturbation pairing if σ = [pi0 . . . pik] ∈ Del(P)

if and only if σ ′ = [p′i0 . . . p′ik] ∈ Del(P′) for all 0 ≤ k ≤ D,

where p′il is the unique point in P′ uniquely associated to pil , with

d(pil , p
′
il
) < ε. As abstract simplicial complexes, Del(P) and Del(P′)

are indistinguishable, since the association of perturbation pairs

induces a bijection between simplices. Thus we will not distinguish

the associated simplices in these complexes.

Theorem 3.4. Let P ⊂ R
D be a point cloud and P′ an ε-

perturbation of P with the same Delaunay triangulation with

respect to the perturbation pairing; call it K. Let fP, fP′ :K → R

be monotonic functions defined by assigning the Delaunay-Rips

scales to the simplices of K as viewed in P and P′, respectively. For

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

each dimension p, the bottleneck distance between the persistence

diagrams is bounded from above by twice the Hausdorff distance

between the point clouds P and P′:

W∞
(

Dgmp(fP), Dgmp(fP′)
)

≤ 2dH(P, P
′).

Proof. We will leverage the result of Theorem 2.12. Since P is a

finite point cloud, there will be a simplex σ ∈ K such that

||fP − fP′ ||∞ = |fP(σ)− fP′ (σ)|.

Since the Delaunay-Rips scale of a simplex is determined by the

two points that are the farthest apart in the simplex, there exists

p, q ∈ P and r′, s′ ∈ P′, all of which are 0-simplices in σ , such that

fP(σ) = d(p, q) and fP′ (σ) = d(r′, s′). It could be that p, q and r′, s′

form two perturbation pairs (e.g., p′ = r′ and q′ = s′) but this need
not hold in every case. For instance, the perturbation of the points

p and q that determine the scale of σ in Del(P) may have moved

to p′ and q′ (both of which are necessarily in σ in Del(P′)) closer
together than the points r′ and s′ that determine the scale of σ in

Del(P′) We consider these two cases separately.

Case 1: p′ = r′ and q′ = s′. Without loss of generality, assume

d(p, q) > d(p′, q′).

Then

|fP(σ)− fP′ (σ)| = |d(p, q)− d(r′, s′)|
= |d(p, q)− d(p′, q′)|
= d(p, q)− d(p′, q′)

≤ d(p, p′)+ d(p′, q′)+ d(q′, q)− d(q′, p′)

= d(p, p′)+ d(q′, q)

≤ d(x, x′)+ d(x, x′)

= 2dH(P, P
′),

where x ∈ P and x′ ∈ P′ are the paired points farthest from one

another in P and P′ as in Lemma 3.3. Case 2: p′ 6= r′ or q′ 6= s′. As
mentioned,

d(r′, s′) ≥ d(p′, q′) (2)

d(p, q) ≥ d(r, s), (3)

by assumption of which pair of vertices in σ determine the

scales of in Del(P) and Del(P′). Now, there are two sub-cases to

consider.

Case 2a: d(p, q) ≥ d(r′, s′). Using Equation 2 we have

|fP(σ)− fP′ (σ)| = |d(p, q)− d(r′, s′)| =
d(p, q)− d(r′, s′) ≤ d(p, q)− d(p′, q′)

and the rest follows by the same argument as in Case 1.

Case 2b: d(p, q) < d(r′, s′). Using Equation 3 we have

|fP(σ)− fP′ (σ)| = |d(p, q)− d(r′, s′)| =
d(r′, s′)− d(p, q) ≤ d(r′, s′)− d(r, s)

and the rest follows as in Case 1 with appropriate relabeling.

Finally, by applying Theorem 2.12, we conclude that the

bottleneck distance between the persistence diagrams associated

with P and P′, respectively, is bounded from above by twice the

Hausdorff distance between the two point clouds:

W∞
(

Dgmp(fP), Dgmp(fP′)
)

≤ ||fP − fP′ ||∞ ≤ 2dH(P, P
′).

We see that when the underlying Delaunay triangulation

on our point clouds is fixed (with respect to the perturbation

pairing), assigning scales to simplices using the DR algorithm

guarantees stability of the corresponding persistence

diagram. Although it is known that for a point cloud,

FIGURE 5

Persistence diagrams of 4 point example as the right-most point moves horizontally to the right on the x-axis. Notice that in the first two stages

(from the left), there is an H1 class with non-zero persistence in the diagrams. The H1 class disappears in the last two stages.

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

P in general position, there exists a sufficiently small

ε > 0 such that every ε-perturbation P′ will have the

same Delaunay triangulation [30], the size of ε may be

quite small, which casts doubt on the practical utility of

the above stability result for real applications in which

there is measurement uncertainties. In the next section, we

explore what can happen when the underlying Delaunay

triangulation does change as a result of perturbing

data points.

3.4. Persistence diagram instability

The DR construction gains computational efficiency at the cost

of stability. We demonstrate a simple, yet clear example of how

a discontinuity in the transformation from data to diagram can

arise under a perturbation of the underlying data. In Figure 5,

moving from left to right, we imagine moving the right-most

point (in red) to the right toward the unique inscribing circle

for the other three points. When the right-most point is inside

the circle, there is an H1 class with non-zero persistence. This

class disappears immediately when the 4 points lie on the same

circle. Informally, this means that DR sees the 4 point form a

loop in the first two stages and then immediately loses sight

of the loop when the points become cocircular. In the figure,

we have marked the Delaunay triangulation of the points to

showcase the position of the right-most (red) point at which

an edge flip occurs (namely when all four points lie on the

same circle). What we are seeing is point clouds that are very

similar in structure visually, but are producing very different

persistence diagrams. An arbitrarily small perturbation of the right-

most point to inside the circle gives a very different persistence

diagram from an arbitrarily small perturbation to outside the

circle. We now proceed to formally prove the instability of the

persistence diagrams associated with this particular configuration

of points.

Lemma 3.5. Let P′ = {(−1, 0), (12 ,
√
3
2), (12 ,−

√
3
2), (1 − x, 0)} with

0 < x < δ < 2 −
√
3. Using the Delaunay-Rips complex to

construct a filtration on this point cloud, there is only one H1

homology class with non-zero persistence.

Proof. We have P′ = {(−1, 0), (12 ,
√
3
2), (12 ,−

√
3
2), (1 − x, 0)} with

0 < x < δ < 2 −
√
3. Our filtration has 4 key scale values,

t = 0 <
√
1− x+ x2 <

√
3 < 2− δ as shown in Figure 6.

We construct a boundary matrix B with entries from the

field Z2 and reduce it to B using the standard reduction

algorithm found in Chapter VII of Edelsbrunner and Harer

[20], which computes the pairing of simplices which respectively

give rise to and kill off persistent homology classes in the H0

and H1 persistence diagrams. The ordering of the columns of

B is determined by the ordering of the simplices given by

the DR filtration, while ensuring each simplex appears after

its faces.

B =

a b c d bd cd ab ac ad abd acd

a 0 0 0 0 0 0 1 1 1 0 0

b 0 0 0 0 1 0 1 0 0 0 0

c 0 0 0 0 0 1 0 1 0 0 0

d 0 0 0 0 1 1 0 0 1 0 0

bd 0 0 0 0 0 0 0 0 0 1 0

cd 0 0 0 0 0 0 0 0 0 0 1

ab 0 0 0 0 0 0 0 0 0 1 0

ac 0 0 0 0 0 0 0 0 0 0 1

ad 0 0 0 0 0 0 0 0 0 1 1

abd 0 0 0 0 0 0 0 0 0 0 0

acd 0 0 0 0 0 0 0 0 0 0 0

B =

a b c d bd cd ab ac ad abd acd

a 0 0 0 0 0 0 1 0 0 0 0

b 0 0 0 0 1 1 1 0 0 0 0

c 0 0 0 0 0 1 0 0 0 0 0

d 0 0 0 0 1 0 0 0 0 0 0

bd 0 0 0 0 0 0 0 0 0 1 1

cd 0 0 0 0 0 0 0 0 0 0 1

ab 0 0 0 0 0 0 0 0 0 1 1

ac 0 0 0 0 0 0 0 0 0 0 1

ad 0 0 0 0 0 0 0 0 0 1 0

abd 0 0 0 0 0 0 0 0 0 0 0

acd 0 0 0 0 0 0 0 0 0 0 0

.

By computing the scales of each simplex, the persistence pairs for

the H0 class with their persistence diagram coordinate (birth/death

pair) are found to be

(a,N/A) :(0,∞)

(b, ab) :(0,
√
3)

(c, cd) :(0,
√

1− x+ x2)

(d, bd) :(0,
√

1− x+ x2).

Likewise the H1 persistence pairs are

(ad, abd) :(2− x, 2− x)

and

(ac, acd) :(
√
3, 2− x).

The only H1 class with non-zero persistence is (
√
3, 2− x).

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

FIGURE 6

Filtration with 4 key scale values where 0 < x < δ < 2−
√
3.

Theorem 3.6. Let (P , dH) be the space of point clouds equipped

with the Hausdorff metric and let (D, W∞) be the space of

persistence diagrams equipped with the bottleneck metric. Let

Pers1 :P → D

where Pers1(P) is the persistence diagram of the H1 classes of a

point cloud P ∈ P constructed using the Delaunay-Rips complex.

This map is discontinuous.

Proof. Let P ∈ P be P = {(−1, 0), (12 ,
√
3
2), (12 ,−

√
3
2), (1, 0)}. Note

that the points all lie on the unit circle, so the Delaunay 1-skeleton

has an edge between every pair of points (See the third frame in

Figure 5). For this configuration of points, the vertical edge between

the points (12 ,
√
3
2) and (12 ,−

√
3
2) appears at the exact same scale

value as the cycle formed by all four points. Therefore in the DR

filtration, the H1 class whose boundary is the four outer edges dies

at the same time as it is born.

Fix ε = 0.1. We now show that for any δ > 0, there exists

P′ ∈ P such that dH(P, P
′) < δ, butW∞

(

Pers1(P), Pers1(P
′)
)

≥ ε.

Take P′ = {(−1, 0), (12 ,
√
3
2), (12 ,−

√
3
2), (1 − x, 0)} with 0 < x <

min{δ, 2−
√
3

2 }. This is a small perturbation of P gotten by pushing

the point (1, 0) inside the unit circle, thereby putting the points in

general position (See the second frame in Figure 5 for an example).

It is straightforward to compute the Hausdorff distance dH between

P and P′ as

dH(P, P
′) = x < δ.

Recall that Pers1(P) has no H1 class with non-zero persistence.

Thus, to computeW∞
(

Pers1(P), Pers1(P
′)
)

, we must match theH1

class of Pers1(P
′) with the diagonal. The H1 class of Pers1(P

′) has
birth

√
3 and death 2 − x as calculated in Lemma 3.5. Using the

max norm, we find

W∞(Pers1(P), Pers1(P
′)) = (2− x)− (

√
3) ≥

2− 2−
√
3

2
−
√
3 ≥ 0.1 = ε.

So Pers1 is discontinuous at P.

As a remark, note that any metric on the space of point clouds

that is bounded above by the Hausdorff distance will produce this

discontinuity (for example, the Gromov-Hausdorff distance). This

gives us insight into when the DR construction of the persistence

diagram may experience an instability—namely when points are

not in general position.

Thus far, we have mathematically shown theoretical stability of

the persistence diagram of a data set whose Delaunay triangulation

does not change under the influence of a perturbation of the point

locations. However, it should not be expected that in real-world

applications the conditions guaranteeing stability will be met, and

we have shown in this section that when the underlying Delaunay

triangulation does change, the degree of change between diagrams

may not be controlled by the degree of change in the underlying

data. We are thus led to ask, to what extent does such an instability

matter in practice?

4. Machine learning model
performance using Rips, Alpha, and
Delaunay-Rips filtrations

Although we have special cases where instability in the PD

may arise (as shown in Section 3.4), we show here that this

instability may have little impact in applications. We demonstrate

the robustness of DR for machine learning in a synthetic data

context and a real data context. For the synthetic data, we work with

random forest classifiers for a multi-class classification task. For the

real data, we train support vector machines with linear kernel for a

binary classification task.

4.1. Classification of synthetic shape data

To test the robustness of DR to changes in the degree of

perturbation to the locations of points in point cloud data,

we develop ML classification models using Rips, Alpha, and

DR filtrations on point clouds generated by randomly sampling

various manifold and adding random noise to perturb the

points [31]. Although the persistence diagrams produced using

the DR filtration enjoy stability when the underlying Delaunay

triangulation is unchanged (see Section 3.3), in reality, the

underlying Delaunay triangulation of the point is expected to

change even for modest levels of noise.

Figure 7 shows the general pipeline for our experiment. We

generated 100 point clouds consisting of 500 data points for each

of 6 shape classes (circle, sphere, torus, random, three clusters, and

Frontiers in AppliedMathematics and Statistics 12 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

FIGURE 7

The first step is to generate data points based on 6 shape classes. The next step is to compute the persistence diagram for each data set for each

dimension up to 3 (the image above is the H1 persistence diagram for 500 random points in 3 dimensions). Then, the diagrams are turned into PIs

with a 2× 2 resolution grid. Finally, we flatten the image into a vector and train a random forest classifier to distinguish the 6 shape classes.

three clusters within three clusters) as subsets of R3. For a fixed

level of noise ν, points in each cloud were perturbed by randomly

chosen vectors from the ambient space with maximum magnitude

equal to ν. For each cloud, we computed the 0, 1, and 2-persistence

diagrams using Rips, Alpha, and DR filtrations and then vectorized

the resulting diagrams using PIs from the Python package “persim”

in the scikit-tda library [32]. The resulting feature vectors were then

used to train a random forest classifier using the implementation in

scikit-learn [33]. To evaluate and compare the different filtrations,

we computed the median classification accuracy of the trained

models on held out data using 10-fold cross validation.

Fixing a homology class and fixing a noise level ν for the

perturbation of the point cloud, we determine the birth and

persistence ranges of persistence pairs produced over all filtration

methods and over all samples, and we segment this region into

2 × 2 resolution persistence images. For example, we iterate

through all H1 persistence diagrams for all three of our filtration

methods that were produced using ν = 0.20. Then, we find the

maximum birth range and persistence range and use those values

to set a 2 × 2 resolution grid to produce the PIs. The purpose

of doing this was to ensure that if we compared pixels of the PIs

corresponding to different filtration methods, we would make a fair

comparison because corresponding persistence pairs would land

in corresponding pixels (we leverage this design when assessing

feature importance).

Figure 8 shows themedian accuracy of ourmodel for increasing

noise levels (we plotted box-whisker plots to show the spread of the

accuracy from 10-fold cross validation). As a baseline comparison,

note that if our ML model was randomly classifying the test data,

we expect to see accuracy of 1/6 ≈ 17%. Since we are seeing over

70%median accuracy for each noise level, ourmodel truly is finding

distinguishing features between the 6 shape classes.

Notably, as is evident in Figure 8, the degradation of ML

model performance with increasing noise levels is very similar

between DR, Alpha, and Rips filtrations. We do note that the

median classification accuracy using Alpha filtrations to generate

persistence diagrams is slightly better than the other methods

across all noise levels. However, except for a single noise level

(0.15), all median accuracies are within the ranges of the other two

methods.

In addition to model accuracy, an important consideration is

which features are being used to achieve said accuracy. Identifying

salient features provides a level of model interpretability [34], and

may guide the modeler to methods to reduce the dimension of

the input, which may further improve model performance. To

further compare the three filtration methods, we compared the

most important topological features learned during training as

determined by a random forest classifier. We began with the PDs

produced from the ν = 0.20 noisy data. We generated PIs with the

following resolutions for each persistence diagram:

• H0 diagram resolution: 5× 1

• H1 diagram resolution: 5× 5

• H2 diagram resolution: 5× 5

As a result, we produced 55-dimensional feature vectors for

each of the 600 samples (100 samples each of 6 classses). We

trained a random forest classifier with the same parameters as

before, once using a train-test split of 70–30, and used the built-

in assessment [33] of the Gini importance to quantify feature

importance. The Gini importance of a feature is calculated as

the amount of reduction to the Gini index [35] brought by

that feature. Thus, the higher the Gini importance, the more

important the feature is formaking classification decisions. Figure 9

shows heatmaps indicating feature importance. Notice how for the

different filtrations we used to obtain the PDs, the PIs generated

have similar corresponding pixels that the ML model found

important. For example, among the 5+25+25 pixel feature space for

the DR-based random forest classifier, the most important features

were the bottom-left (dark blue)H2 pixel with Gini importance 0.19

and the bottom H0 pixel with Gini importance 0.17. These were in

similar regions to the most important features for Alpha and Rips

based classifiers. Hence, we have reason to believe that regardless of

the filtration method used, the ML model learned the importance

of similar features which are distinguishing between the shapes.

4.2. Classification of sleep state

We next investigate the applicability of DR to a classification

problem involving biophysical data. The goal is to showcase the

comparable effectiveness of DR with Alpha and Rips filtrations

in terms of model performance metrics on a problem in which

computational efficiency may be a relevant constraint. Our

application is a reanalysis of the data and methodology employed

in Chung et al. [19], in which the authors develop an ML

Frontiers in AppliedMathematics and Statistics 13 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

FIGURE 8

A plot of the median random forest classification accuracy computed on Rips, DR, and Alpha based persistence diagrams across varying noise levels

for the original point clouds. The box-and-whisker plots for each noise level show the range of the accuracy across 10-fold cross validation.

FIGURE 9

Heatmaps of H0, H1, and H2 persistence diagram PI vectorizations. We took the 55 features for training the random forest classifier based on each

filtration function and found their importance in their corresponding classifier models. The number in each pixel is the Gini importance of that pixel

in our random forest’s classification decisions. The higher the number, the more important the pixel.

model to classify sleep stages of a participant using observed

instantaneous heart rate (IHR) time series collected using ECG. A

high-level visualization of the data-to-model development pipeline

we implement [36] is provided in Figure 10. As a note, the authors

of this manuscript (that investigates the properties and usage of

the DR filtration) did not work directly with the data; instead, the

Frontiers in AppliedMathematics and Statistics 14 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

FIGURE 10

A flowchart of the data-to-model pipeline used. Starting in the upper-left, an example of a 30 second wake epoch followed by its delay embedding

into R
3, the corresponding persistence diagrams computed from DR, Alpha, and Rips filtrations on the cloud, and finally the subsequent

vectorizations using persistence statistics which are used to train and validate a support vector machine binary classification model.

processed data was obtained with permission from the authors of

Chung et al. [19]. For details on the original study that produced

the original data, the study participants, data collection protocols,

board approvals, and lab equipment see Malik et al. [37].

The authors of Chung et al. [19] trained a machine learning

model to predict sleep state, trained on statistics of topological

features of high dimensional point clouds that were built from delay

embeddings of IHR time series. This approach is premised on the

idea that delay embeddings of observed time series can recover

dynamical features of underlying attractors in an unknown state

space as implied by the well known theorem of Takens [38]. The

topological/geometric features of these attractors (as represented by

PDs) may be discriminating between dynamic states. Applications

based on similar rationale have also been found in contexts such as

3D motion capture data [39].

The data on which models were trained and tested comprised

90 ECG recordings fromChang GungMemorial Hospital (CGMH)

as the CGMH-training database. Each recording was sampled at

200 Hz and each 30s epoch was manually annotated into either

“awake” or “asleep” states. Sleep states were further categorized

into one of 5 different sleep stages: stage 1 through 4 or REM

sleep, giving a potential for a 6-class classification problem. To

each recording a standard R-peak detection algorithm with a 5-

beat median filter to remove artifacts was applied [similarly done

in Xu and Schuckers [40]]. From this preprocessed data, IHR

time series were computed at 4 Hz. For efficiency, we performed

delay embeddings of the IHR time series into R
3, choosing a delay

parameter between consecutive coordinates of 5 (i.e., our delay

vectors consisted of points (xi, xi+5, xi+10) ∈ R
3, taking every

5th point in the time series as the coordinate for our embedded

points.) The number of indices between the starting coordinate

of consecutive delay vectors (i.e., the stride) was set to 1 so as to

include all timepoints in at least one delay vector.

After embedding each epoch intoR3, we computedH0,H1, and

H2 persistence diagrams using the DR, Rips, and Alpha filtrations

of the embedded point clouds. Following Chung et al. [19], the

resulting PDs were converted to fixed-length feature vectors by

computing sample statistics of the persistence pairs in the diagrams.

In particular, for each homological dimension p = 0, 1, 2, we

construct two sets:Mp, the set of means of all persistence pairs and

Lp, the persistence of each pair (the death minus the birth). For

each set, we calculate the mean, standard deviation, skew, kurtosis,

25th percentile, 50th percentile, 75th percentile, and persistent

entropy [41]. The result was 16 persistence statistics corresponding

to each dimension-p persistence diagram. NaN was assigned to

empty Hp diagrams and these samples were later dropped from the

training set. In total, from each sample a total of 48 persistence

statistics (16 for each dimension p = 0, 1, 2) were computed,

Frontiers in AppliedMathematics and Statistics 15 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

TABLE 1 (a) The median and interquartile ranges across 27 validation participants of each classificaiton model performance metric obtained from 3

classifiers trained either on topological features determine by DR, Rips, or Alpha filtrations.

(a) Rips Alpha Del-Rips

median iqr median iqr median iqr

se 0.565217 0.428794 0.569892 0.380411 0.555556 0.433198

sp 0.925065 0.271714 0.917511 0.270439 0.917271 0.272863

acc 0.852941 0.161052 0.848276 0.154095 0.852573 0.161564

pr 0.439636 0.316970 0.448718 0.344648 0.424307 0.301726

f1 0.517986 0.140499 0.489655 0.136024 0.472727 0.170183

auc 0.866199 0.083241 0.864330 0.079358 0.866646 0.096021

aps 0.594109 0.180105 0.555916 0.160430 0.552859 0.159507

kappa 0.393895 0.178491 0.368380 0.197346 0.356587 0.192436

(b) p-value for Rips vs. Del-Rips p-value for Alpha vs. Del-Rips

se 1.000000 1.0

sp 1.000000 1.0

acc 1.000000 1.0

pr 1.000000 1.0

f1 0.276303 1.0

auc 1.000000 1.0

aps 0.102470 1.0

kappa 1.000000 1.0

(b) The Mood’s median test p-values after comparing DR model performance metrics against Rips and Alpha model performance metrics.

resulting in a 48 dimensional feature space on which an SVMmodel

was trained.

A total of 67,188 48-dimensional topological feature vectors

(one for each 30 second epoch) were used to train a support

vector machine with a linear kernel and balanced class weights to

account for imbalance in the numbers of sleep and wake samples.

In total 3 models were trained, one for each filtration method. The

trained models were each validated on 27 held-out participants

in the CGMH-validation by computing sensitivity (se), specificity

(sp), accuracy (acc), precision (pr), F1 score (f1), AUC-score (auc),

average precision score (aps), and kappa coefficient (kappa) for

the epochs of each validation participant. To assess the statistical

significance of any differences in performance metrics between DR

and either Rips or Alpha filtrations, we applied Mood’s median test

from SciPy [42] to the distributions of each performance metric

across the 27 validation participants, comparing separately Rips to

DR and Alpha to DR filtrations. In this context, Mood’s median

test tests the null hypothesis that the median of each performance

metric is the same.

Our model construction differs from the one in the original

paper in several key ways. First, the authors of Chung et

al. [19] derived topological features from considerably high

dimensional (120) delay embeddings of the IHR time series.

Such high dimensional embeddings pose a challenge for Alpha

and DR filtrations since they both require computing Delaunay

triangulations, which do not scale efficiently to high dimensions.

Furthermore, the original model was trained on statistics derived

only from H0 and H1 diagrams, while we included H2 diagrams as

well. We note that these changes come at a modest reduction in

model performance compared to what is reported in Chung et al.

[19], although our goal was to assess differences between filtrations

and not to improve over previously published classificationmodels.

The median and interquartile ranges of each model

performance metric across the validation participants as well

as the p-values of Mood’s median test of are shown in Table 1. We

observe very similar performance metrics for all three filtration

methods, with either DR, Alpha, or Rips exhibiting the best median

performance, depending on the metric. For Mood’s median test, a

small p-value indicates that there is a notable difference between

the medians of the corresponding performance metric between the

two classification models. Notice that the p-values in Table 1 are all

very large, with the exception of the average precision score (aps)

when comparing Rips vs. DR. This suggests that, given the spread

of model performance on different validation participants, we do

not have enough evidence to reject the null hypothesis that the

median performance metrics are the same.

5. Conclusion

In this paper, we have defined and implemented the

Delaunay-Rips (DR) filtration for point cloud data, compared its

computational efficiency in practice to other standard filtrations

built on point cloud data, characterized some of its stability

properties, and demonstrated its application on various datasets

in an ML pipeline. We proved that under sufficiently small

perturbations of the locations of points in the cloud, the persistence

diagrams vary continuously with the data, provided the underlying

Frontiers in AppliedMathematics and Statistics 16 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

simplicial complex on the data set remains fixed. This was done

by bounding from above the bottleneck distance between the

persistence diagrams by twice the Hausdorff distance between the

original data and its perturbed counterpart. In the case when the

Delaunay triangulation changes as a result of a larger perturbation,

we examined the instability of the DR filtration by carefully proving

a discontinuity of the map between the data metric space and

the diagram metric space. As far as we know, this result is a first

of its kind to use the standard reduction algorithm to compute

persistence diagrams on symbolic variables in service of a formal

proof. Since the theoretical condition on stability may not always be

met in practical applications, we investigated whether the instability

in the diagrams generated using DR poses a significant problem

when used in an ML pipeline and found that it needs not.

There are several limitations of this study and avenues of

further inquiry. For one, we expect the relative performance of each

filtration method used to derive topological features for an ML

modeling task to be problem specific. Thus we cannot be certain

the insensitivity of model performance to filtrationmethod, and the

comparable performance of DR to Rips and Alpha we observed will

generalize to other contexts.

Our stability results were simplified by insisting we maintain

the underlying Delaunay triangulation to keep the space of

simplices fixed. While our results in Section 3.4 indicate that,

in general, a change in the underlying Delaunay triangulation

can cause a discontinuity in the transformation sending data to

diagram, a more precise characterization of the degree of the

discontinuities is not known, and so we are limited to an empirical

evaluation.

In Section 3.2, we compared a Python implementation of DR

with other filtration methods. Implementation details including

the choice of language may have implications for the relative

performance gains of DR over other filtration methods. With a

C/C++ implementation of DR, how does the runtime of computing

persistence diagrams based on DR compare with runtimes of

computing persistence diagrams using other complexes (Cech,

Witness, etc.)? Along the same lines, how does our implementation

(or a C/C++ implementation) of DR compare in runtime with

implementations of other TDAmethods in other software packages

(e.g., Javaplex [43], Perseus [44], Dionysus [45], Dipha [46], Gudhi

[47])? Finally, during the drafting of this paper, an updated version

of the software package Ripser was released named Ripser++ [48].

The new approach makes use of GPU acceleration to parallelize

processing simplices and finding persistence pairs. How does the

runtime of DR for persistent diagram computation compare with

that of Ripser++? Is there a way to harness parallelization to

computationally benefit DR? These comparisons are outside the

scope of this work.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

FM contributed the conceptualization of the ideas of the paper,

formal analysis, methodology, project administration, computing

resources, supervision, validation of results, writing of the original

draft, and review and editing of the final draft. AM contributed

the conceptualization, data curation, formal analysis, investigation,

methodology, software design, validation of results, creation of

visualizations, writing of the original draft, and review and

editing of the final draft. FM and AM adopt the Contributor

Roles Taxonomy (CRediT, https://credit.niso.org/) for author

attributions. All authors contributed to the article and approved the

submitted version.

Acknowledgments

The contents of this manuscript have appeared online in a

preprint at arXiv:2303.01501 [49]. The authors would like to

acknowledge and thank Yu-Min Chung and Hau-Tieng Wu for

their help in obtaining the processed ECG heart rate data. The

authors would like to express their sincere gratitude to the reviewers

for their valuable feedback, which enhanced the quality and clarity

of this manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Leibon G, Pauls S, Rockmore D, Savell R. Topological structures in
the equities market network. Proc Nat Acad Sci. (2008) 105:20589–94.
doi: 10.1073/pnas.0802806106

2. Chung MK, Bubenik P, Kim PT. Persistence diagrams of cortical surface data.
In: International Conference on Information Processing in Medical Imaging. Springer
(2009). p. 386–397. doi: 10.1007/978-3-642-02498-6_32

3. Qaiser T, Sirinukunwattana K, Nakane K, Tsang YW, Epstein D, Rajpoot
N. Persistent homology for fast tumor segmentation in whole slide histology
images. Procedia Comput Sci. (2016) 90:119–24. doi: 10.1016/j.procs.2016.0
7.033

4. Asaad A, Jassim S. Topological Data Analysis for Image Tampering Detection.
In: Kraetzer C, Shi YQ, Dittmann J, Kim HJ, editors. Digital Forensics and

Frontiers in AppliedMathematics and Statistics 17 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://credit.niso.org/
https://doi.org/10.1073/pnas.0802806106
https://doi.org/10.1007/978-3-642-02498-6_32
https://doi.org/10.1016/j.procs.2016.07.033
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Mishra and Motta 10.3389/fams.2023.1179301

Watermarking. Cham: Springer International Publishing (2017). p. 136–46.
doi: 10.1007/978-3-319-64185-0_11

5. Kramár M, Goullet A, Kondic L, Mischaikow K. Quantifying force networks in
particulate systems. Physica D. (2014) 283:37–55. doi: 10.1016/j.physd.2014.05.009

6. Edelsbrunner H. The union of balls and its dual shape.Discr Comput Geom. (1993)
13:415–40. doi: 10.1007/BF02574053

7. Sheehy DR. Linear-size approximations to the Vietoris-Rips filtration. In:
Proceedings of the twenty-eighth annual symposium on Computational geometry. (2012).
p. 239–248. doi: 10.1145/2261250.2261286

8. Guibas LJ, Oudot S. Reconstruction using witness complexes.Discr Comput Geom.
(2007) 40:325–56. doi: 10.1007/s00454-008-9094-6

9. de Silva V, Carlsson GE. Topological estimation using witness complexes. In:
Symposium on Point Based Graphics. (2004).

10. Bauer U. Ripser: efficient computation of Vietoris-Rips persistence barcodes. J
Appl Comput Topol. (2021) 5:391–423. doi: 10.1007/s41468-021-00071-5

11. Tralie C, Saul N, Bar-On R. Ripserpy: A lean persistent homology library for
python. J Open Source Softw. (2018) 3:925. doi: 10.21105/joss.00925

12. Cufar M. Ripserer jl: flexible and efficient persistent homology computation in
Julia. J Open Source Software. (2020) 5:2614. doi: 10.21105/joss.02614

13. Silva VD. A weak characterisation of the Delaunay triangulation. Geometriae
Dedicata. (2008) 135:39–64. doi: 10.1007/s10711-008-9261-1

14. Chazal F, Cohen-Steiner D, Guibas LJ, Mamoli F, Oudot SY. Gromov-
hausdorff stable signatures for shapes using persistence. Comput Graph Forum. (2009)
28:1393–403. doi: 10.1111/j.1467-8659.2009.01516.x

15. Cohen-Steiner D, Edelsbrunner H, Harer J. Stability of persistence diagrams.
Discr Comput Geom. (2005) 37:103–20. doi: 10.1007/s00454-006-1276-5

16. Skraba P, Turner K.Wasserstein stability for persistence diagrams. arXiv preprint
arXiv:2006.16824. (2020).

17. Tralie C, Saul N. Cechmate. (2021). Available online at: https://github.com/
scikit-tda/cechmate (accessed June 26, 2023).

18. Adams H, Emerson T, Kirby M, Neville R, Peterson C, Shipman P, et al.
Persistence images: A stable vector representation of persistent homology. J Mach
Learn Res. (2017) 18:1–35.

19. Chung YM, Hu CS, Lo YL, Wu HT. A persistent homology approach to heart
rate variability analysis with an application to sleep-wake classification. Front Physiol.
(2021) 12:637684. doi: 10.3389/fphys.2021.637684

20. Edelsbrunner H, Harer J. Computational Topology: An Introduction. New York:
American Mathematical Society. (2010). doi: 10.1090/mbk/069

21. Hatcher A. Algebraic Topology. Cambridge: Cambridge University Press. (2002).

22. Otter N, Porter MA, Tillmann U, Grindrod P, Harrington HA. A roadmap
for the computation of persistent homology. EPJ Data Sci. (2017) 6:1–38.
doi: 10.1140/epjds/s13688-017-0109-5

23. Matouek J, LC reductions yield isomorphic simplicial complexes. Contrib Discr
Mathem. (2008) 1:3. doi: 10.11575/cdm.v3i2.61933

24. Adamaszek M, Adams H, Motta F. Random cyclic dynamical systems. Adv Appl
Math. (2017) 83:1–23. doi: 10.1016/j.aam.2016.08.007

25. Bauer U, Edelsbrunner H. The Morse theory of Tech and Delaunay complexes.
Trans AmMathem Soc. (2016) 369:3741–62. doi: 10.1090/tran/6991

26. Mishra A.Delaunay-Rips. (2022). Available online at: https://github.com/amish-
mishra/cechmate-DR (accessed June 26, 2023).

27. Bauer U, Kerber M, Reininghaus J, Wagner H. Phat persistent homology
algorithms toolbox. J Symb Comput. (2017) 78:76–90. doi: 10.1016/j.jsc.2016.03.008

28. Rouvreau V. Alpha complex. In: GUDHI User and Reference Manual 3rd ed
GUDHI Editorial Board. (2023).

29. Weller FU. Stability of voronoi neighborship under perturbations of the sites. In:
CCCG. (1997).

30. Boissonnat JD, Dyer R, Ghosh A. The stability of Delaunay triangulations. Int J
Comput Geom Appl. (2013) 23:303–33. doi: 10.1142/S0218195913600078

31. Mishra A. Classification of synthetic data into shape classes. (2022). Available
online at: https://github.com/amish-mishra/TDA-shape-classification-using-DR
(accessed June 26, 2023).

32. Saul N, Tralie C, Motta F, Catanzaro M, Angeloro G, Sheagren C. Persim. (2021).
Available online at: https://persim.scikit-tda.org/en/latest/ (accessed June 26, 2023).

33. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: Machine Learning in Python. J Mach Learn Res. (2011) 12:2825–30.

34. Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?"
Explaining the predictions of any classifier. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. (2016). p. 1135–1144. doi: 10.1145/2939672.293
9778

35. Krzywinski M, Altman N. Points of Significance: Classification and regression
trees. Nat Methods. (2017) 14:757–8. doi: 10.1038/nmeth.4370

36. Mishra A. ML-Del-Rips-sleep-wake-classification. (2022). Available online at:
https://github.com/amish-mishra/ML-Del-Rips-sleep-wake-classification (accessed
June 26, 2023).

37. Malik J, Lo YL. Wu Ht Sleep-wake classification via
quantifying heart rate variability by convolutional neural network.
Physiol Measur. (2018) 39:085004. doi: 10.1088/1361-6579/a
ad5a9

38. Takens F. Detecting strange attractors in turbulence. In: Rand D,
Young LS, editors. Dynamical Systems and Turbulence, Warwick 1980. Berlin,
Heidelberg: Springer Berlin Heidelberg (1981). p. 366–81. doi: 10.1007/BFb009
1924

39. Venkataraman V, Ramamurthy KN, Turaga P. Persistent homology
of attractors for action recognition. In: 2016 IEEE International Conference
on Image Processing (ICIP). (2016). p. 4150–4154. doi: 10.1109/ICIP.2016.75
33141

40. Xu X, Schuckers S. Automatic detection of artifacts in heart
period data. J Electrocardiol. (2001) 34:205–10. doi: 10.1054/jelc.2001.
28876

41. Chintakunta H, Gentimis T, Gonzalez-Diaz R, Jimenez MJ, Krim H.
An entropy-based persistence barcode. Patt Recognit. (2015) 48:391–401.
doi: 10.1016/j.patcog.2014.06.023

42. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D,
et al. SciPy 10: fundamental algorithms for scientific computing in python. Nature
Methods. (2020) 17:261–72. doi: 10.1038/s41592-019-0686-2

43. Tausz A, Vejdemo-Johansson M, Adams H. JavaPlex: A research software
package for persistent (co)homology. In: Hong H, Yap C, editors. Proceedings
of ICMS 2014 Lecture Notes in Computer Science. (2014). p. 129–136. Available
online at: http://appliedtopology.github.io/javaplex/ (accessed June 26, 2023).
doi: 10.1007/978-3-662-44199-2_23

44. Nanda V. Perseus, the Persistent Homology Software. (2013). Available online at:
http://wwwsasupennedu/vnanda/perseus (accessed March 1, 2023)

45. Morozov D. Dionysus. (2023). Available online at: https://pypi.org/project/
dionysus/ (accessed June 26, 2023).

46. Reininghaus J. DIPHA (A Distributed Persistent Homology Algorithm). (2017).
Available online at: https://github.com/DIPHA/dipha (accessed June 26, 2023).

47. Maria C, Boissonnat JD, Glisse M, Yvinec M. The gudhi library: Simplicial
complexes and persistent homology. In: Mathematical Software ICMS 2014: 4th
International Congress, Seoul, South Korea. Berlin Heidelberg: Springer (2014). p.
167–174. doi: 10.1007/978-3-662-44199-2_28

48. Simon Zhang MX, Wang H. GPU-accelerated computation of Vietoris-Rips
persistence barcodes. arXiv preprint arXiv:2003.07989 (2020).

49. Mishra A, Motta FC. Stability and machine learning applications of persistent
homology using the Delaunay-Rips complex. arXiv preprint arXiv:2303.01501 (2023).

Frontiers in AppliedMathematics and Statistics 18 frontiersin.org

https://doi.org/10.3389/fams.2023.1179301
https://doi.org/10.1007/978-3-319-64185-0_11
https://doi.org/10.1016/j.physd.2014.05.009
https://doi.org/10.1007/BF02574053
https://doi.org/10.1145/2261250.2261286
https://doi.org/10.1007/s00454-008-9094-6
https://doi.org/10.1007/s41468-021-00071-5
https://doi.org/10.21105/joss.00925
https://doi.org/10.21105/joss.02614
https://doi.org/10.1007/s10711-008-9261-1
https://doi.org/10.1111/j.1467-8659.2009.01516.x
https://doi.org/10.1007/s00454-006-1276-5
https://github.com/scikit-tda/cechmate
https://github.com/scikit-tda/cechmate
https://doi.org/10.3389/fphys.2021.637684
https://doi.org/10.1090/mbk/069
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.11575/cdm.v3i2.61933
https://doi.org/10.1016/j.aam.2016.08.007
https://doi.org/10.1090/tran/6991
https://github.com/amish-mishra/cechmate-DR
https://github.com/amish-mishra/cechmate-DR
https://doi.org/10.1016/j.jsc.2016.03.008
https://doi.org/10.1142/S0218195913600078
https://github.com/amish-mishra/TDA-shape-classification-using-DR
https://persim.scikit-tda.org/en/latest/
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1038/nmeth.4370
https://github.com/amish-mishra/ML-Del-Rips-sleep-wake-classification
https://doi.org/10.1088/1361-6579/aad5a9
https://doi.org/10.1007/BFb0091924
https://doi.org/10.1109/ICIP.2016.7533141
https://doi.org/10.1054/jelc.2001.28876
https://doi.org/10.1016/j.patcog.2014.06.023
https://doi.org/10.1038/s41592-019-0686-2
http://appliedtopology.github.io/javaplex/
https://doi.org/10.1007/978-3-662-44199-2_23
http://wwwsasupennedu/vnanda/perseus
https://pypi.org/project/dionysus/
https://pypi.org/project/dionysus/
https://github.com/DIPHA/dipha
https://doi.org/10.1007/978-3-662-44199-2_28
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	Stability and machine learning applications of persistent homology using the Delaunay-Rips complex
	1. Introduction
	2. Background
	2.1. Simplicial homology
	2.2. Persistent homology
	2.3. Vietoris-Rips and Alpha complexes

	3. The Delaunay-Rips complex and stability
	3.1. Definition and construction
	3.2. Implementation and runtime analyses
	3.3. Stability properties of the Delaunay-Rips complex
	3.4. Persistence diagram instability

	4. Machine learning model performance using Rips, Alpha, and Delaunay-Rips filtrations
	4.1. Classification of synthetic shape data
	4.2. Classification of sleep state

	5. Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

