
TYPE Original Research

PUBLISHED 22 June 2023

DOI 10.3389/fams.2023.1155356

OPEN ACCESS

EDITED BY

Andreas M. Tillmann,

Technical University of Braunschweig, Germany

REVIEWED BY

Alberto Ochoa Zezzatti,

Universidad Autónoma de Ciudad Juárez,

Mexico

José Alberto Hernández-Aguilar,

Autonomous University of the State of Morelos,

Mexico

Sebastian Stiller,

Technical University of Braunschweig, Germany

Tim Niemann,

Technical University of Braunschweig,

Germany, in collaboration with reviewer SS

*CORRESPONDENCE

Jorin Dornemann

jorin.dornemann@tuhh.de

RECEIVED 31 January 2023

ACCEPTED 08 June 2023

PUBLISHED 22 June 2023

CITATION

Dornemann J (2023) Solving the capacitated

vehicle routing problem with time windows via

graph convolutional network assisted tree

search and quantum-inspired computing.

Front. Appl. Math. Stat. 9:1155356.

doi: 10.3389/fams.2023.1155356

COPYRIGHT

© 2023 Dornemann. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Solving the capacitated vehicle
routing problem with time
windows via graph convolutional
network assisted tree search and
quantum-inspired computing

Jorin Dornemann*

Institute of Mathematics, Hamburg University of Technology, Hamburg, Germany

Vehicle routing problems are a class of NP-hard combinatorial optimization

problems which attract a lot of attention, as they havemany practical applications.

In recent years there have been new developments solving vehicle routing

problems with the help of machine learning, since learning how to automatically

solve optimization problems has the potential to provide a big leap in optimization

technology. Prior work on solving vehicle routing problems using machine

learning has mainly focused on auto-regressive models, which are connected to

high computational costs when combined with classical exact search methods

as the model has to be evaluated in every search step. This paper proposes a

new method for approximately solving the capacitated vehicle routing problem

with time windows (CVRPTW) via a supervised deep learning-based approach in

a non-autoregressive manner. The model uses a deep neural network to assist

finding solutions by providing a probability distributionwhich is used to guide a tree

search, resulting in a machine learning assisted heuristic. The model is built upon

a new neural network architecture, called graph convolutional network, which

is particularly suited for deep learning tasks. Furthermore, a new formulation for

the CVRPTW in form of a quadratic unconstrained binary optimization (QUBO)

problem is presented and solved via quantum-inspired computing in cooperation

with Fujitsu, where a learned problem reduction based upon the proposed

neural network is applied to circumvent limitations concerning the usage of

quantum computing for large problem instances. Computational results show that

the proposed models perform very well on small and medium sized instances

compared to state-of-the-art solution methods in terms of computational costs

and solution quality, and outperform commercial solvers for large instances.

KEYWORDS

deep learning, graph convolutional network, beam search, vehicle routing, timewindows,

quadratic unconstrained binary optimization

1. Introduction

The capacitated vehicle routing problemwith time windows (CVRPTW) is a well-known

combinatorial optimization problem that arises in a variety of practical contexts, including

delivery scheduling, emergency response planning, and supply chain management. In the

CVRPTW, a fleet of vehicles must be routed to deliver goods to a set of customers, subject to

capacity constraints and time window constraints, which specify the allowable time periods

for the deliveries to be made. Finding the optimal routes for the vehicles is a challenging

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2023.1155356
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2023.1155356&domain=pdf&date_stamp=2023-06-22
mailto:jorin.dornemann@tuhh.de
https://doi.org/10.3389/fams.2023.1155356
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2023.1155356/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Dornemann 10.3389/fams.2023.1155356

problem, as it involves balancing the conflicting objectives of

minimizing the total distance traveled and maximizing the number

of deliveries that can be made within the time window constraints.

Over the years, a wide range of solution approaches have

been proposed for the CVRPTW, including exact algorithms, such

as branch-and-cut and branch-and-price [1], and heuristics, such

as genetic algorithms, simulated annealing, and tabu search [2].

These methods differ in their complexity and the quality of the

solutions they produce. In recent years, there has been a growing

interest in developing approximate algorithms for the CVRPTW, as

these methods can scale to large-sized instances and produce high-

quality solutions in reasonable time. Examples of such algorithms

include the adaptive large neighborhood search and the variable

neighborhood search [3, 4].

Heuristics for routing problems can be divided into two

categories: construction heuristics and improvement heuristics [1].

Similarly, machine learning-based methods for solving routing

problems also feature these characteristics. Some approaches, such

as those in [5] and [6], focus on iteratively improving an existing

solution, while others, such as those developed by [7], [8], and [9]

generate a solution for the CVRP by adding one node at a time.

Improvement approaches typically rely on an initial solution that

they can then refine over time. However, it may be challenging to

find a suitable starting solution for more complex problems like the

CVRPTW. In fact, finding a first feasible solution for the CVRPTW

with a fixed number of vehicles is an NP-hard problem on its own

[10]. Furthermore, improvement approaches often requiremultiple

iterations to arrive at good solutions, and the number of iterations

required tends to escalate with an increase in problem complexity.

This non-linear relationship between problem size and iteration

count implies that more complex problems require substantially

greater computational resources to attain optimal solutions using

iterative improvement methods. On the other hand, constructive

methods can generate solutions within a set number of steps that

is linearly dependent on the size of the problem. But the limited

information available about the other tours while constructing

new tours node by node can lead to inefficient constructions and

obtaining additional information in the space of solutions that are

constructed sequentially becomes expensive quickly.

Moreover, there has been a surge of interest in quantum

computers and the potential they hold for solving complex

optimization problems, that are beyond the capabilities of classical

computers. Quantum computers have the ability to perform certain

types of optimization tasks much faster and more efficiently than

classical computers. As quantum computers might become more

advanced and accessible in the nearer future, the development of

models for optimization problems that can take advantage of their

unique capabilities becomes increasingly relevant.

Our goal in this work is to merge the latest advances in

deep learning techniques for routing problems with quantum

computing. We do this by adapting the work of [11] for the

CVRPTW and creating a constructive heuristic for the CVRPTW

that utilizes a deep learning model. We then proceed by developing

a novel formulation of the CVRPTW as a quadratic unconstrained

binary optimization problem and derive a binary quadratic

program from this formulation. We then use the deep learning

model as a form of learned problem reduction [12] to reduce

the problem instances to a size that can be handled by quantum-

inspired computers from Fujitsu and conduct computational

experiments for both approaches. We show that our constructive

deep learning heuristic model outperforms commercial state-

of-the-art solvers such as Gurobi [13] for larger instance sizes

for the CVRPTW, while being close to competitive with the

highly-optimized LKH heuristic [14] and Google’s OR-Tools [15]

on smaller instances in terms of solution quality, showing the

power deep learning has to handle difficult constraints such as

time windows. But for large instances a shortcoming of the

constructive nature of the model becomes apparent, as the very

limited information on which the next decision is based prevents

finding the best solutions. Our quadratic unconstrained binary

optimization model, which is solved through quantum-inspired

computing, aims at overcoming some of these challenges due to

its non-constructive nature. Our results show the potential that the

combination of deep learning and quantum computing holds.

The remaining paper is organized as follows: In Section

2, a comprehensive overview of related work on constructive

approaches for solving the CVRPTW and variants using deep

learning tools is provided. The proposed models are described

in detail in Section 3. In Section 4, the computational results

obtained from the developed models are presented and discussed.

A summary of the results and an outlook for future research is given

in Section 5.

2. Related work

Building on the work of [16], who introduced the Pointer

Network (PtrNet), which is a deep neural network that uses

attention to output a permutation of the input and was trained

in a supervised way to solve the Traveling Salesman Problem

(TSP), many improvements for this constructive approach have

been proposed. An extension to reinforcement learning for using

the PtrNet to solve TSPs was proposed by [17]. Nazari et al.

[7] adapted this for the CVRP, but replaced the recurrent neural

network part [18] of the encoder by a linear embedding layer

with shared parameters. Reinforcement learning as the training

strategy was also pursued in various other models for TSP variants

[19–21] as well as for the CVRP [8, 20, 22, 23], since supervised

learning approaches depend on the availability of large sets of high-

quality solutions, as noted in [24]. One commonality among these

constructive methods is that they are auto-regressive, which means

the model must be evaluated every time a new node is added to

the tour.

Unlike these auto-regressive methods, Joshi et al. [11] used

supervised learning to train a graph neural network to produce a

tour for the TSP in the form of an adjacency matrix. This matrix

is then converted into a feasible solution for the TSP using beam

search, a limited-width breadth-first search [25]. They build on the

work of [26], who followed a similar approach to approximately

solve the TSP by using a graph neural network [27], but their

model performed poorly even on smaller instances. Instead of

using graph neural networks, Joshi et al. [11] use deep graph

ConvNets [28], which are graph convolutional neural networks

that are able to learn from larger training sets, and were able to

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2023.1155356
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Dornemann 10.3389/fams.2023.1155356

outperform all other learning-based approaches for the TSP. This

outcome is unsurprising since supervised learning techniques tend

to perform better than reinforcement learning techniques when

enough training data is available. Our approach builds on the work

of [11].

However, incorporating time window constraints is a difficult

task, and there have been only a few recent proposals for

constructive approaches to the CVRPTW that utilize deep learning.

The first constructivemethod using deep learning for the CVRPTW

was proposed by [9]. They use the attention model from [8] for

the CVRP, which constructs one route at a time by treating all not

yet visited nodes as actions and learning a policy model to choose

the next node via reinforcement learning. Falkner and Schmidt-

Thieme [9] extend this approach for the CVRPTW by constructing

multiple routes simultaneously and using the information of all

partially constructed routes to choose the next node. Although

the computational results of this model are promising, it is

computationally intensive to use. Furthermore, theirmain objective

is not to minimize the total distance traveled, but a combination of

total distance traveled, waiting times for the vehicles and number

of vehicles used as well as also considering soft time windows,

where violating time window constraints is penalized rather

than forbidden, but through appropriate weighting the objective

function could be adjusted to focus on one goal. Falkner et al.

[29] extend the work of [9] by replacing the self-attention layers of

their model by graph neural networks to encode the problem and

propose a Large Neighborhood Search using a learned construction

heuristic via reinforcement learning to re-construct partially

destructed solutions in an auto-regressive manner. A hierarchical

reinforcement learning model based on pointer networks was

proposed by [30]. This model involves learning to obtain feasible

solutions at a lower level and using these solutions as input for

a second decoder to minimize the total distance. However, this

approach is only effective for relatively small numbers of customers.

Two improvement-based methods for the CVRPTW have been

proposed recently. The first one by [31] uses an enhanced version

of the graph attention network [32] to learn a heuristic for Very

Large-scale Neighborhood Search that includes both improvement

and destruction operators. They are able to approximately solve

instances with up to 400 nodes, with respect to standard heuristics

the improvements in terms of solution quality are at around 4–5

%. Silva et al. [33] propose a reinforcement learning-based model

that learns eight different neighborhood functions for a Variable

Neighborhood Descent heuristic with tabular Q-learning.

Exact solution methods for the CVRPTW can be divided into

three categories according to [1]: Branch and Cut and Price, Branch

and Cut, and reduced set partitioning. Most successful algorithms

have been based on column generation, where the problem is

decomposed into a restricted master problem that selects new

routes from a subset of candidate routes and a pricing subproblem

that generates new routes to be considered in the restricted master

problem. In general, the pricing subproblem obtained is a shortest

path problem with resource constraint (SPPRC) [34] which is NP-

hard [35]. To obtain better lower bounds in the Branch and Bound

search tree different methods have been proposed. Kohl et al. [36]

proposed adding valid inequalities dynamically to strengthen linear

relaxations, which results in a Branch and Cut and Price algorithm.

Other families of inequalities were subsequently proposed over the

years [37–39]. Other approaches aim at strengthening the pricing

subproblem by using algorithms to generate new routes which

include labeling algorithms [34, 40, 41] and heuristics [2, 42], but

solving the SPPRC exactly remains an obstacle. Baldacci et al. [43]

therefore developed a different relaxation approach for the pricing

subproblem, where a set partitioning formulation is used in which

routes are dynamically generated via column generation. Their

algorithm can be seen as a three-step method, where calculated

lower and upper bounds are used to enumerate a subset of all

feasible routes whose reduced cost with respect to the dual solution

is less than or equal to the gap between the lower and upper bound.

Afterwards the CVRPTW is formulated as a mixed integer program

(MIP), where the previously determined subset of feasible solutions

is incorporated, and solved using a commercial MIP solver. For an

extensive review of all exact solution approaches, we refer to the

surveys of [44] and [1].

To the best of our knowledge, the combination of quadratic

unconstrained binary optimization with techniques from deep

learning to solve combinatorial problems has not yet been

proposed. Just recently, [45] and [46] proposed unconstrained

binary models for variants of the TSP. We refer to [47] for

an overview of quadratic unconstrained binary optimization for

routing problems. Bengio et al. [24] present a recent survey on

combinatorial optimization with machine learning techniques.

3. Problem setting and model

The purpose of this chapter is to provide a comprehensive

introduction to the CVRPTW, along with a detailed explanation

of the design of the deep neural network. Furthermore, we present

two distinct methods for constructing solutions and elaborate on

how the information obtained from the network is utilized in

both approaches.

3.1. Problem setting

The Capacitated Vehicle Routing Problem with TimeWindows

(CVRPTW) is an extension of the classical and best known routing

problem, the Traveling Salesman Problem (TSP). Given a fleet of K

vehicles, the goal is to find routes, such that all nodes are visited and

the capacity and time window constraints are met.

More specifically, a CVRPTW instance is given as a directed

fully connected graph G = (V ,E) with n+1 nodes, where node 0 is

the special depot node. The cost for edge e = (i, j) is given by cij and

represents the transit costs from node i to j. Besides its coordinates,

each node has additional attributes, namely a demand and a time

window, imposing conditional constraints on the nodes. Therefore,

we can define a problem instance of the CVRPTW to consist of:

• X = {x1, . . . , xn}, where xi ∈ [0, 1]2 are the coordinates of

node i in the two-dimensional unit square.

• The location of the depot, given as x0 ∈ [0, 1]2.

• The demands at each node i ∈ [n], given as D = {d1, . . . , dn}.

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2023.1155356
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Dornemann 10.3389/fams.2023.1155356

• T = {[a0, b0], [a1, b1], . . . , [an, bn]}, where [ai, bi] are the time

windows for each node i ∈ [n] and [a0, b0] represents the

planning horizon regarding earliest possible departure from

and latest possible return to the depot.

• The capacity of the vehicles C.

Moreover each node i ∈ V requires a specific service duration hi.

The aim is to find routes rk, k ∈[K], such that all nodes are visited. A

tour rk is a sequence of nodes, starting and ending at the depot node

0, representing the order in which vehicle k visits the nodes. A set

of tours R = {r1, . . . , rK} is considered a solution, if ∪k∈[K]rk = V ,

∩k∈[K]rk = {0} and all tours satisfy the capacity and time window

constraints. The capacity constraint is given as
∑

i∈rk
di ≤ C and

the time window constraint states, that the time service starts at

node i, si, has to satisfy ai ≤ si ≤ bi. An arrival at node i before

ai is considered valid, the vehicle then has to wait until ai to start

the service.

The components of the instances contain a few assumptions.

We assume a homogenous fleet of K vehicles, so that the capacity

and travel time is equal for all vehicles. Furthermore, the edge

weights cij represent the transit costs from node i to node j

and without loss of generality include the service durations hi of

node i.

There are different approaches to formulate the objective

function. The classical objective function is to minimize the total

distance traveled over all vehicles. But there are more advanced

formulations of the objective, for example [9] take a more holistic

perspective by also including the waiting times into the objective,

searching for a good trade-off between total distance, waiting

times and number of vehicles. On the other hand, especially

in the operations research literature, the main objective is to

minimize the number of vehicles, including the total distance just

as a secondary, which has its source in cost reduction being the

main focus. Other objectives include minimizing the total distance

traveled while using all K vehicles (see [48]). In this work, we

focus on the classical approach by minimizing the total distance,

but pursuing other objectives would only need small changes in

our models.

3.2. Graph convolutional network

For our model we use a graph neural network called Residual

Gated Graph ConvNet (GCN) (see [28]), which was adapted for

the TSP in [11]. They provide a framework to solve routing

problems using the GCN, however, they only adapt it to solve

the TSP with no consideration of time windows. In this section,

we present our extension to address the CVRPTW, which relies

on modifying the layers to adapt additional constraints within

the framework and modify the search method for constructing

full solutions.

The neural network outputs probabilities over the edges of

the graph in order to predict which edges are most promising

to be included in a solution. Complete solutions are obtained by

converting these probabilities received from the model to valid

tours via beam search [25], straightforward heuristics or quantum-

inspired computing.

3.2.1. Input layer
The input for the node features is five-dimensional. For node

i we have the two-dimensional coordinates xi ∈ [0, 1]2, the time

window given as [ai, bi] and the normalized demand di/C, where

we set d0 = 0 for the depot. These features are concatenated to

the five-dimensional input feature vector yi and are then embedded

to a h
2 -dimensional representation , where h denotes the hidden

dimension of our network. Similar to [49], the special depot node

gets a separate learned initial embedding parameter. For that, define

ŷ0 ∈ {0, 1}n+1 to be the unit vector with entry one at the first

position and zeros otherwise. This is put together as the node input

feature as follows:

αi = A1yi ⊕ A2ŷ0, (1)

where A1 ∈ R
h
2×5, A2 ∈ R

h
2×(n+1) and · ⊕ · is the

concatenation operator.

For the input edge feature, the edge values cij are embedded

as a h
2 -dimensional feature vector. We do not integrate the K-

nearest neighbor feature used in [11], since, in contrast to the TSP

without time windows, the assumption that a node in the solution

is usually connected to nodes in its close proximity (see [11]) does

not necessarily hold with time window constraints. Instead, we use

an indicator function δij of an edge which has the value one for

edges connecting nodes i and j, with i 6= j and i, j not the depot, and

value two for edges connecting nodes with itself. To tag the depot

as a special node, the indicator function δij furthermore has value 3

for edges to and from the depot and value 4 for the depot self-loop.

Together, the edge input feature is given as:

βij = A3cij ⊕ A4δij, (2)

where A3 ∈ R
h
2×1 and A4 ∈ R

h
2×4. As for the parameters

A2, we apply a separate embedding layer to learn the embedding

parameters A4 for our indicator function δij.

3.2.2. Graph convolution layer
In each of the Graph Convolution layers the model updates the

edge and node embeddings. Following [11], we leverage the design

of the Residual Gated Graph ConvNet developed in [28] by adding

an edge feature representation. Let ℓ be the current layer and for

node i and edge (i, j), let xℓ
i be the node features vector and eℓij the

edge features vector. We define the features for layer ℓ + 1 in the

following way:

xℓ+1
i = xℓ

i + ReLU

BN

Wℓ
1x

ℓ
i +

∑

j∈N(i)

ηℓ
ij ⊙Wℓ

2x
ℓ
j

 , (3)

eℓ+1
ij = eℓij + ReLU

(

BN
(

Wℓ
3e

ℓ
ij +Wℓ

4x
ℓ
i +Wℓ

5x
ℓ
j

))

, (4)

where Wk ∈ R
h×h for k ∈ [5], σ is the sigmoid function, ε is

a small value, ReLU being the rectified linear unit, BN stands for

batch normalization,N(i) denotes the neighborhood of node i, ·⊙ ·

denotes the Hadamard product operator and ηℓ
ij being defined as

ηℓ
ij =

σ (eℓij)
∑

j′∈N(i) σ (e
ℓ
ij′)+ ε

.

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2023.1155356
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Dornemann 10.3389/fams.2023.1155356

For the input layer, we set x0i = αi and e
0
ij = βij. We implementWℓ

5

as a separate parameter in order to allow the model to distinguish

different directions of edges, since in the context of CVRPTW we

have directed edges in our solutions. The training labels for the

edges are also set accordingly, meaning if edge (i, j) is contained

in the solution, then edge (j, i) will have label zero, although edge

(i, j) is labeled with a one (see [49]). Batch normalization is a

mechanism that normalizes layer inputs in order to reduce internal

covariate shifts which allows the usage of higher learning rates and

hence accelerates the learning of deep architectures (see [50] for

more details).

3.2.3. MLP classifier
A Multi-layer Perceptron (MLP), which is a fully connected

feedforward neural network with a number ℓC of hidden layers,

is used for generating the desired output, a finite measure that

represents probabilities over the edges of our fully connected graph.

For each edge embedding eLij of the last Graph Convolution layer L,

the MLP outputs the probability pij that this edge is included in the

tours of the CVRPTW solution:

pij = MLP(eLij). (5)

The edge representations are linked to the ground-truth tour

through a softmax output layer, which allows us to train the model

parameters end-to-end by minimizing the cross-entropy loss via

gradient descent (see [11]).

In the following sections, we describe two methods which use

these edge probabilities to build valid solutions.

3.3. Beam search

To create valid solutions from our network model’s output, we

cannot simply select the edges with the highest probability until all

nodes are visited, as this often results in invalid tours. Instead, we

use beam search [25], a limited-width breadth-first tree search, to

construct solutions.

Starting from the root node (which may be the depot but can

also contain an initial partial solution), in each layer of the search

tree, only a subset of the nodes with regard to a scoring policy are

further explored. The descendants of a node i in layer ℓ are those

nodes that are eligible as the next stop for the partially constructed

tour represented in i. In the context of CVRPTW, where we have

dynamic parts of partial solutions, such as the current point of

time and the already occupied capacity of the vehicle, we apply a

masking strategy to efficiently build valid solutions. This is done by

masking out invalid descendants in layer ℓ + 1 with respect to the

time window and demand constraints as well as the already visited

nodes in this partial solution. Then, from the set of all nodes in

layer ℓ + 1, only a subset containing the b best nodes (with respect

to the scoring function) are retained, the other nodes are discarded.

The parameter b is called the beam width. In our case, the scoring

function are the probabilities gained by the GCN and we choose

the b nodes whose connecting edges hold the highest probability.

This is done iteratively, until all nodes in the graph are visited. If a

node contains a full solution, the solution is evaluated and stored.

The beam search stops when no more branches are possible on

the current level, i.e., when b complete solutions have been found.

The final solution then is the one which yields the highest score

with respect to the scoring function, which translates to having

the highest probability out of the b found solutions regarding the

output of our neural network.

Beam search is asymptotically optimal for b = n · 2n, but

choosing a smaller b allows us to trade quality for computational

performance and memory needed, since it decreases the search

space but possibly the best solution is pruned. Furthermore, the

beam search can take a sparse graph instead of a fully connected

graph as an input to accelerate the tree search. This enables us to

utilize the neural network in a second manner, as we can set a

threshold to the edge probability given by the neural network for

an edge to be included in the sparse graph, which is then given

as input for the beam search. This can be interpreted as a learned

problem reduction [12]. We use a low threshold of at least 10−4,

which already excludes most of the edges. For details about the

reduction see Section 4.3.1.

The approach of choosing the solution with the highest

probability produced by the beam search is called GCNBS

in the following. However, out of the b solutions found, we

can also select the one having the overall shortest tour. This

follows the approach in [17], where they sample a set of

solutions and select the shortest one as the final solution out

of this set, and can be interpreted as a shortest tour heuristic

[11], which is therefore called GCNBSSTH in the rest of

the paper.

3.4. Quadratic unconstrained binary
optimization

In this section, we present a second approach to build

feasible solutions to the CVRPTW using our proposed neural

network model. In recent years, the development in quantum

technologies led to bigger interest in formulating combinatorial

optimization as quadratic unconstrained binary optimization

problems (QUBO), as these formulations are suited best to

be solved via quantum computing (see [47]). The CVRPTW

imposes time window constraints, which are expressed as

inequality constraints. Generally speaking, inequalities are known

to be particularly difficult to handle within QUBO models (see

[45]).

Building on the work of [46], we develop a new formulation for

the CVRPTW as an quadratic unconstrained binary optimization

problem. We work with an integer linear programming (ILP)

formulation based on edge presentations as a starting point, as

this approach is best suited to benefit from our learning-based

problem reduction presented in Section 3.2. We derive a novel

QUBO formulation for the CVRPTW and asymptotically calculate

the number of variables needed to model this formulation. From

this QUBO formulation, we derive a binary quadratic program

(BQP), which is then used to solve the CVRPTW on hardware

specialized for solving BQPs and QUBO problems. We use the

BQP because it allows us to solve larger problem instances on said

hardware. This is explained in detail in Section 3.4.5.

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2023.1155356
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Dornemann 10.3389/fams.2023.1155356

3.4.1. Introduction to QUBO
Oftentimes, optimization problems can be formulated as

finding the minimum of a function f which models problem p.

The global minimum of f represents the optimal solution of p.

Quadratic unconstrained binary optimization aims at formulating

optimization problems as quadratic polynomials, where the

decision variables are binary. In detail, a QUBO problem is of

the form

min f = xTQx,

where x is our decision vector containing the binary decision

variables and Q is a square upper-triangular matrix taking values

in the reals. The goal is to find the vector x∗ that minimizes f . This

general form includes quadratic as well as linear objective functions,

ifQ is a diagonal matrix and one notices that x2i = xi for xi ∈ {0, 1}.

A more comprehensive introduction into QUBO can be found

in [51].

3.4.2. General approach from ILP to QUBO
In general, given an ILP problem of the form

min

k
∑

i=1

cizi w.r.t. (6)

k
∑

i=1

aizi = b (7)

zi ∈ {0, 1}, (8)

where ai, b ∈ R, we can obtain a QUBO formulation by

transforming the equality constraints into the objective function:

min

k
∑

i=1

cizi + P(

k
∑

i=1

aizi − b)2,

obtaining a new function which is equal to the original ILP if and

only if the binary decision variables zi fulfill the equality constraint.

The value for the penalty constant P ∈ R≥0 has to be set to weigh

the constraints. Now, lets assume we are given an ILP problem,

where the variables zi are not binary, but rather integer variables

with bounds zℓi ≤ zi ≤ zui . Since a QUBO problem is only able to

handle binary variables, we have to convert the integer variables to

binary by replacing each z with its binary expansion:

B(z, zℓ, zu) : = zℓ +

kz−2
∑

j=0

2jxz,j +

zu − zℓ −

kz−2
∑

j=0

2j

 xz,kz−1, (9)

where kz : = ⌈log2(z
u − zl + 1)⌉ and xz,j are new binary variables.

If linear inequality constraints are given of the form

k
∑

i=1

aizi ≤ b,

they must be converted into equality constraints by adding slack

variables λ to derive
∑k

i=1 aizi + λ = b. These additional integer

slack variables also have to be optimized, resulting in a larger

representation of the original problem after applying the binary

expansion (9). In order to bound the number of additional variables

needed, we can define sharp upper and lower limits for the value the

slack variables can take. Generally speaking, it holds that

0 ≤ λ ≤ −

k
∑

i=1

min(aiz
ℓ
i , aiz

u
i)− b

 , (10)

but problem specific knowledge oftentimes allows to find

sharper bounds.

3.4.3. ILP formulation of the CVRPTW
Given the directed graph G = (V ,E), with V = {0, . . . , n} and

0 being the depot, and a fleet of K vehicles each with a capacity of

C, let the decision variables xi,j for i, j ∈ V , with i 6= j, be defined as

xi,j =

{

1 if edge (i, j) is used by a vehicle

0 else.
(11)

Note that in order to minimize the number of decision variables

needed, the point in time in which the edge is used is not specified

with the decision variable. To model the time window constraints,

let the variable si represent the time at which the vehicle arrives at

node i. Each node i ∈ [n] has an associated time window [ai, bi] and

demand di and the edge costs representing the travel time between

nodes is given as cij for edge (i, j). Let yi be the available capacity of

the vehicle after visiting node i ∈ [n]. The ILP for the CVRPTW

can be formulated as follows:

min

n
∑

i,j=0

cijxi,j w.r.t. (12)

n
∑

i=0

xi,j = 1 ∀j ∈ [n] (13)

n
∑

i=1

x0,i −

n
∑

j=1

xj,0 = 0 (14)

n
∑

i=0

xi,h −

n
∑

j=0

xh,j = 0 ∀h ∈ V (15)

yj ≥ yi − djxi,j − Q(1− xi,j) ∀i, j ∈ V , i 6= j (16)

0 ≤ yi ≤ Q ∀i ∈ V (17)

sj ≥ si + cijxi,j −M(1− xi,j) ∀i, j ∈ V , i 6= j (18)

ai ≤ si ≤ bi ∀i ∈ V (19)

n
∑

j=1

x0,j ≤ K (20)

xi,j ∈ {0, 1} ∀i, j ∈ V , i 6= j (21)

si, yi ∈ Z+ ∀i ∈ [n], (22)

where (13) are the assignment constraints requiring each customer

to be served by exactly one vehicle (note that the depot is excepted),

(14) and (15) are the flow constraints, (16) and (17) are the capacity

constraints, where (16) guarantees the demands at each nodes are

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2023.1155356
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Dornemann 10.3389/fams.2023.1155356

loaded and (17) restricts the maximal load to the capacity of the

vehicle. (18) linearizes the conditional statement that, if edge (i, j)

is used, then the arrival time at node j is at least the arrival time

at node i plus the cost to get from i to j. The constant M can be

set to maxi,j{bi + ci,j − aj} (see [52]). Constraint (19) guarantees

the arrival time to be within the time window, while constraint

(20) sets the maximum number of vehicles to be used. Finally, (21)

and (22) are the binary and integer constraints. Before we start

transforming the ILP problem to a QUBO formulation, we can

simplify this ILP formulation in order to minimize the number

of variables needed. We are able to remove the inequalities stated

in constraint (17) and (19), since the upper and lower bounds

for the integer variables are already used while converting those

integer variables to binary and therefore are not explicitly needed

in the formulation. Note that we do not need to include subtour

elimination constraints, as the time window constraints impose a

unique route direction and therefore eliminate any subtours (see

[52]).

A more natural way to formulate the CVRPTW as an ILP is to

define the decision variables as

xi,j,k =

{

1 if edge (i, j) is used by vehicle k

0 else.

With the decision variables being structured by also having index k

for specific vehicles, one could keep track of the capacity constraints

by simply adding the inequality

∑

i∈V

di
∑

j∈V

xi,j,k ≤ C (23)

for each vehicle k ∈ [K], which eliminates the need for the

additional integer variables yi. By using this formulation, the

number of inequalities needed to model the CVRPTW would

decrease significantly. Specifically, constraint (23) would add

only K inequalities, instead of the n2 inequalities required for

our formulation of the capacity constraint (16). This reduction

in the number of inequalities also leads to a decrease in the

number of slack variables needed to reformulate all inequalities

to equalities. The final QUBO formulation requires that both

integer variables and slack variables are represented in binary

form. As a result, the number of variables in the final formulation

increases for each additional integer and slack variable. But

on the other hand the number of decision variables x would

increase to n2K. Since we utilize Fujitsu’s Digital Annealer [53]

to solve our QUBO formulation, which can handle inequalities

without additional slack variables (see Section 3.4.5), we found

that our current formulation, that uses a smaller number of

decision variables and more inequality constraints, is better

suited for our computational experiments, as the higher number

of inequalities is comparatively insignificant to the number of

decision variables.

3.4.4. QUBO formulation of the CVRPTW
In order to transform this ILPmodel into a QUBO formulation,

we have to change the inequalities to equalities by introducing slack

variables. To convert those slack variables into binary variables

we have to define upper bounds for each slack variable. Let us

start with slack variable λ16i,j for inequality (16). Formula (10)

gives us

λ16i,j ≤ −min{yℓ
i , y

u
i } −min{−yℓ

j ,−yuj } −

min{−djx
ℓ
i,j,−djx

u
i,j} −min{xℓ

i,j, x
u
i,j} + Q ≤ 2Q+ dj.

For the slack variable λ18i,j for constraint (18) we have

λ18i,j ≤ −min{sℓi , s
u
i } −min{−sℓj ,−suj } −

min{cijx
ℓ
i,j, cijx

u
i,j} −min{xℓ

i,j, x
u
i,j} +M

≤ −ai + bj +M.

The slack variable for constraint (20) clearly can be bounded

by λ20 ≤ K. Now we are able to state the full quadratic

binary polynomial fQ modeling the CVRPTW. Following [46], for

simplicity we state the function including all constraints including

those which hold ai + cij > bj. Applying the binary expansion

function B, which is defined in (9), with the defined upper bounds

for our integer variables and slack variables, the function can be

stated as

f CVRPTWQ = P1 · fobj + P2 · froute + P3 · fcap + P4 · ftw, (24)

with

fobj =
n
∑

i,j=0
cijxi,j,

froute =
n
∑

j=1

(

n
∑

i=0
xi,j − 1

)2

+

(

n
∑

i=1
x0,i −

n
∑

j=1
xj,0

)2

+
∑

h∈V

(

n
∑

i=0
xi,h −

n
∑

j=0
xh,j

)2

,

fcap =
∑

i∈V

∑

j∈V

(

B(yi, 0,Q)− B(yj, 0,Q)− djxi,j − Q(1− xi,j)+ B(λ16i,j , 0, 2Q+ dj)
)2

+

(

n
∑

j=1
x0,j + B(λ20, 0,K)− K

)2

,

ftw =
∑

i∈V

∑

j∈V
(

B(si, ai, bi)− B(sj, aj, bj)+ cijxi,j −M(1− xi,j)+

B(λ18i,j , 0,−ai + bj +M)
)2

.

The penalty constants Pi ∈ R≥0, i ∈ [4], have to be adjusted

accordingly, such that a violation of the constraints in froute, fcap
or ftw results in a larger increase of the function value than

the decrease it might produces in the value of fobj. Selecting

penalty constants for the constraints greater than the optimal

tour length provides a theoretical assurance that the QUBO

solution with the lowest energy corresponds to a feasible solution.

Computational experiments have shown that the performance from

the QUBO solver we applied is best when choosing the penalty

constants sufficiently large, but not arbitrarily large. Fujitsu’s Digital

Annealer offers the functionality to automatically adjust the penalty

coefficients during the optimization process, a description of that

process is found in Section 3.4.5.

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2023.1155356
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Dornemann 10.3389/fams.2023.1155356

Utilizing the lower and upper bounds of integer variables

for the binary expansions allows the prevention of excessively

large coefficients for the newly introduced binary variables in

the majority of cases. But using these binary expansions is still

problematic as it can cause difficulties for solvers to find the

correct assignments [54]. For example, if an integer variable’s

value needs to be changed from 16 (binary encoding: 10000)

to 15 (binary encoding: 01111) during the optimization process,

five bit switches are required. This becomes increasingly more

challenging as the values of the integer variables increase, as it leads

to large coefficients for the binary variables, further complicating

the process of finding the correct assignment for each binary

variable. In Section 4, we will investigate the impact of an increasing

number of binary expanded variables on the solver’s ability to

identify solutions.

We are now able to determine the number of variables required

for this formulation. For the binary representation of the integer

and slack variables, let us look at equation (9) again. For each

integer variable z, the number of new binary variables added to the

model is exactly kz = ⌈log2(z
u − zl + 1)⌉. The integer variables

si, yi and slack variables λ16i,j , λ
18
i,j , λ

20 therefore require at most

⌈log2(maxi bi − ai + 1)⌉, ⌈log2(Q + 1)⌉, ⌈log2(maxi 2Q + di)⌉,

⌈log2(maxi,j −ai + bj + M)⌉ and ⌈log2(K + 1)⌉ binary variables,

respectively. If we define δ to be

δ : = ⌈log2(max{max
i,j

(−ai+bj+M), max
i
(2Q+di),K+1})⌉, (25)

then for every integer and slack variable at most δ binary variables

are required for the binary encoding. Overall, we need O(n2)

variables to represent the xi,j. For the integer variables si, yi we

haveO(nδ) variables for the binary encoding. Since we haveO(n2)

inequalities, we need O(n2δ) additional slack variables in binary

form. Thus, in total O(n2 + n2δ) variables are required for our

QUBO formulation of the CVRPTW.

As pointed out earlier, some variables can be removed

beforehand in order to lower the total number of variables needed.

This holds for example if ai+ cij > bj for some i, j ∈ V or we do not

have a fully connected graph to begin with. In the first case we can

simply set xi,j = 0. In the latter case, the overall number of variables

needed is reduced toO(|E|2 + |E|2δ).

3.4.5. Fujitsu’s Digital Annealer
We use Fujitsu’s Digital Annealer (DA) [53] to solve the QUBO

formulations presented in Section 3.4.4. We call this approach

GCNDA. The DA is a product developed by Fujitsu to fill in

the performance gap between classical computers, which hit their

limit rather quickly when solving larger QUBO formulations, and

quantum computers, which are still in its experimental stage.

The DA is a hardware system built by Fujitsu specialized on

finding the minimum of binary quadratic polynomials by using

parallel computation.

The Digital Annealer in its 3rd generation is able to handle

optimization problems with up to 100,000 decision variables, a

major improvement from the 8192 supported decision variables in

its 2nd generation. This is done by joiningmultiple Digital Annealer

Units (DAU) together. These DAUs are dedicated processors

executing the minimization algorithm parallel tempering and can

be seen as 2nd generation DAs. Unlike the 2nd generation DA,

the 3rd generation DA cannot solve QUBO formulations with

up to its maximum number of decision variables fully on the

dedicated processor. Using additional software, the large QUBO

formulation is decomposed into smaller QUBO formulations,

which are then minimized on one or multiple DAUs, depending on

the problem size.

Another major improvement from its 2nd to 3rd generation

is the ability to handle inequalities. As shown in Section 3.4.4,

formulating inequality constraints as binary quadratic polynomials

on the one hand is connected to a lot of work, as one needs to

convert those inequalities to equalities by adding slack variables.

To limit the number of variables needed for the formulation,

finding sharp upper and lower bounds for those slack variables

is important. On the other hand, adding those slack variables

and subsequently converting them to binary variables adds a large

number of decision variables to the formulation, which makes it

harder to solve. All this is obsolete when using the DA, as one

can declare the inequalities separately from the QUBO formulation

and is therefore able to solve optimization problems in the form of

binary quadratic programming problems (BQP). This means that

inequality constraints are not converted to a penalty term and

thus do not use any decision variables. Using this feature, we can

remove fcap and ftw from the energy function in (24), leaving us

with a substantially smaller BQP. A detailed experimental analysis

of the size of the problem formulation with and without inequalities

is done in Section 4.3.1. There is no sharp upper bound for

the number of inequalities the DA is able to handle, but it is

limited to a number in the lower 6-digits range. It depends on

the complexity of the BQP formulation to solve, which has to be

examined experimentally.

The Digital Annealer has additional features such as Auto-

Scaling, which automatically scales the penalty factors in the energy

function (24). For that, the minimization and penalty terms are

passed separately to allow the adjustment of the penalty coefficient

Ppenalty. Starting from an preset initial value, Ppenalty is multiplied

with an increase value in [1, 2] every time the objective value is

not improved for a set number of iterations. For a more detailed

explanation including examples concerning the Digital Annealer

for fast combinatorial optimization we refer to [55].

4. Computational experiments

We evaluate our approaches on three different problem sizes,

ranging from 20 to 100 nodes. For each problem size we train our

neural network on different datasets. We report the results of our

approaches and compare them to highly developed heuristics like

LKH3 [14] and Google’s OR-Tools [15], which frequently serve as

heuristic baselines in related work, as well as the commercial state-

of-the-art exact solver Gurobi [13]. The heuristic LKH3 plays a

crucial role in this, as it serves as both the source of training data for

our neural network and the benchmark against which the quality

of solutions generated by other methods is evaluated. We refer to

this as the solution gap, which denotes the disparity between the

solutions produced by various methods and the solution obtained

by LKH3. The found solutions are compared in terms of costs,

solution gap, and computation times.We show that our approaches

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2023.1155356
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Dornemann 10.3389/fams.2023.1155356

achieve results close to the LKH3 solutions on smaller to medium

sized problem instances, and outperform Gurobi on large instances

achieving better results with less computation time.

4.1. Implementation and hyperparameters

All models are implemented in Python 3.9 and run under

Linux. The neural network architecture is implemented using

PyTorch version 1.12.1 [56]) to use GPU computation with Cuda

version 11.3.

Our neural network model does not contain a large number of

hyperparameters. The graph convolutional neural network consists

of ℓGCN = 30 hidden layers and ℓC = 3 layers in the MLP. We use

a hidden dimension h = 300 in each of the layers. For the beam

width b we use different values from b = 1, 000 to b = 10, 000.

The threshold for edges to be included in the sparse graph is set to

10−5 for GCNBS and GCNBSSTH and ranges from 10−3 to 10−5

for GCNDA.

For Fujitsu’s Digital Annealer we use the following parameters:

In the energy function (24), P1 is set to one and the penalties P2, P3,

and P4 are automatically incrementally adapted to the optimal

value. This is done by multiplying them by 1.5, if the result did

not improve for 500 iterations. That way, the Digital Annealer

focuses on satisfying the side constraints before minimizing the

objective fobj. The time limit for the optimization process is set

to 1 s per two bits. The selection of the parameter values for

the automatic adaption is based on empirical experiments, which

demonstrate that the parameters provide a good balance between

the performance of the DA and the computational resources

required by the optimization process. This amounts on average to a

time limit of roughly 300 s for instances with 20 nodes, 800 s for the

50 nodes instances and 1,700 s for instances with 100 nodes, as can

be seen in Table 2. Given the substantial differences in underlying

technology, making a direct comparison to CPU times is difficult.

For the implementation of the beam search, we define similar

to [49] an auxiliary graph G′ = (V ′,E′), which is obtained from the

input graph G = (V ,E) for the beam search (either fully connected

or sparse) in the following way: For V = {1, . . . , n} with 1 being

the depot node, let V ′ = (1, . . . , n, n + 1, . . . , 2n − 1) be the set of

nodes, where we add for each node i in the original graph (except

the depot) a new node i′. Connections to these new nodes denote

connections via the depot to node i. This allows us to implement

the beam search such that at step k in the beam search exactly k of

the n nodes are visited, so that comparisons of partial solutions and

building the full solution incrementally are more straightforward.

The transition probabilities cij for edges (i, j) for i, j ∈ {1, . . . , n}

are given by the neural network. For edges (i, j′) with j′ ∈ {n +

1, . . . , 2n − 1} we follow [49] and set cij′ = ci1 · c1j · 0.1, where

multiplication is used so that cij′ ∈ (0, 1) can still be interpreted as

a probability. The factor 0.1 is multiplied to incentivize building

as few routes as possible and therefore implicitly minimize the

number of vehicles used.

Remember that infeasible connections concerning the demand

and time window constraints are masked out in each beam search

step, so that a connection from i to a node j′ ∈ {n + 1, . . . , 2n −

1} is only included if the travel times from i via the depot to

j = (j′ mod n − 1) are feasible with regard to the time window

constraints. On the other hand, if a connection from i to a node

j ∈ {1, . . . , n} is masked out for a partial solution because of the

demand constraint, the connection from i to j′ = j + n − 1 is

included, as the route via the depot resets the occupied capacity.

4.2. Experiment setup

4.2.1. Data generation
We sample problem instances based on the distribution given

in the R201 instance of the benchmark set of [57], which consists of

randomly generated geographical data, a long scheduling horizon

and short to medium sized time windows allowing only a few

customers per route. We follow the approach used in [9] for the

data generation.

For the instances, the locations of the nodes are sampled

uniformly random in the square [0, 100]2. We set capacities to

C20 = 500, C50 = 750 and C100 = 1, 000 with respect to the

problem sizes. We choose to sample the demands di for the nodes

according to the R201 distribution from a normal distribution q̂ ∼

N (15, 10), as for the R201 instance the demands have a mean of

17.24 and standard deviation of 9.4175, and then rounding down

the values to integers. The time windows are sampled such that they

are feasible with respect to the travel time needed from the depot to

the node. This is done by defining a suitable horizon hi = [h0i , h
1
i]

for each node i depending on the distance from the depot to node

i, sampling the start ai of the time window uniformly from hi and

then sampling the end bi uniformly from the interval [âi, h
1
i], where

âi = ai + 300ε with ε = max(|ε̂|, 1/100), ε̂ ∼ N (0, 1).

To generate solutions for the randomly sampled instances,

we use the High Performance Computing Cluster available at

Hamburg University of Technology, and heuristically solve each

instance using one run of LKH3 [14] on machines with two CPUs

of type Intel Xeon E5-2680v3 @ 2,50GHz with 12 Cores.

4.2.2. Training and evaluation
For each problem size an individual neural network is trained

on 1 million instances with the respective number of nodes, which

is split into training, test, and validation sets with a 80/10/10

ratio. We apply a supervised learning procedure, where, given as

input a graph with the additional node features time windows and

demands, the model is trained to output a probability matrix by

minimizing the cross-entropy loss via gradient descent with respect

to the adjacency matrix corresponding to the target solution. We

utilize the Adam optimizer [58] along with a gradual decrease in the

learning rate for smoother convergence, starting at a rate of 10−3.

The target solutions are generated using the LKH3 heuristic and are

therefore not necessarily optimal. We train using a batch size of 24,

which was chosen as the result of manual tests on our GPUs. We

train the nets for 1,500 epochs with 500 randomly chosen batches

and select the point of training with the lowest validation loss. The

training procedure is executed on machines with two CPUs of type

Intel Xeon E5-2680v3 @ 2,50GHz with 12 Cores and four NVidia

Tesla K80 GPUs with 12GB RAM each. We note however that it is

not necessary to use a multi-GPU setup to train or evaluate our

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2023.1155356
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Dornemann 10.3389/fams.2023.1155356

models, identical results can be attained by training longer on a

single GPU.

For the evaluation of our model GCNBS, we use the same

machines as for the training procedure. The preprocessing for the

model GCNDA is done on a machine with an Intel Core i7-8650U

CPU @ 1.90GHz and one Nvidia Geforce GTX 1050 with 2 GB

RAM, the optimization is executed on Fujitsu’s Digital Annealer

Hardware. The baseline models are run on a machine with two

CPUs of type Intel Xeon E5-2680v3 @ 2,50 GHz with 12 Cores.

4.2.3. Baseline models
We compare our models to the commercial exact solver Gurobi

version 10.0.0 [13], as well as the highly-optimized heuristic solvers

LKH3 [14] and the Google OR-Tools (GORT) version 9.5.2237

library [15], both of which frequently are used as heuristic baselines

in related work. AlthoughGurobimay not be the best exact solution

method, it serves as a representative example of commercial solvers.

Gurobi is applied to the two-index ILP presented in Section 3.4.3

and solves the model with a single run using all available threads.

Since Gurobi strives for finding the best solution, we have to set a

time limit after which Gurobi stops searching for better solutions.

We set this time limit to 1,800 s, a lower time limit does not

yield any high quality solutions for large instances. But this only

allows us to use Gurobi on the Solomon benchmark sets [57],

as the 1,000 instances test sets would need too long to compute.

LKH3 is executed using one run per instance. For GORT, one

can choose different configurations regarding the underlying local

search heuristic. Experiments have shown the guided local search

(GLS) to be best suited for our needs. A time limit of 30 s per

instance is set for GORT.

4.3. Results

We compare our results in terms of quality of the solutions and

computation time with results from commercial solvers (Gurobi)

and heuristics (LKH3, GORT). However, the calculation times are

generally difficult to compare, as they depend heavily on different

factors such as the implementation (Python vs. C++) and which

hardware (GPUs vs. CPUs) was used. Therefore, the comparison of

the results and run times can only be done conditionally.

For most algorithms it holds that a trade-off between run time

and performance is possible. In our model GCNBS this means

choosing the beamwidth, whereas for the GCNDA the choice of the

time limit is the decisive factor. Instead of performing a full analysis

and report of the pareto efficiency, we selected values for the beam

width based on related literature, reporting the different results in

order to provide an overview of the possible trade-off between run

time and performance.

4.3.1. Sparsity of graphs
Our goal is to make a specific problem instance smaller by using

a threshold on the edge probabilities that are generated by our

neural network. This threshold should be set in a way that it allows

us to run the GCNBS more efficiently, while also reducing the size

of the instance enough to run the GCNDA on the Digital Annealer.

Therefore, we first have to evaluate the trade-off between the value

of the probability threshold and the number of reduced edges and

the resulting instance size.

Table 1 shows the mean number of deleted edges over 10,000

instances for the different problem sizes and edge probability

thresholds. One can see that even with a high threshold of

0.001, the neural network confidently excludes most of the

edges. The percentaged number of deleted edges for the same

threshold increases with the problem sizes, since for larger graphs

the percentage of edges irrelevant for the solution increases. A

threshold of 0.00001 excludes at least 3/4 of the edges, for graphs

with 100 nodes the neural network is even able to exclude all but 10

percent of the edges, which reduces the number of edges included

in the graph from 10,201 to just under 1,000 edges on average.

For the GCNDA, these sparse graphs act as a learned problem

reduction. Table 2 analyzes the impact of the problem reduction on

the size of the instances for the Digital Annealer. For the number

of binary variables needed to represent integer variables, for our

datasets an upper bound for δ in equation (25) is given as δ =

10. Note however that we can reduce the number of auxiliary

binary variables needed by taking into account the upper and lower

bound of each integer variable individually before initializing the

auxiliary binary variables. As shown in Table 2, the learned problem

reduction allows us to reduce the size of our instances, consisting of

the QUBO formulation and the inequalities, significantly.

4.3.2. Experimental results
Tables 3, 4 show the results of our models for the three different

problem sizes with beamwidth b = 1, 000 and b = 10, 000, denoted

as 1K and 10K in the model name, for two different datasets and

compares our results to results obtained by the previously described

exact and heuristic baseline solvers. We report the results for two

datasets, the first consists of 1,000 randomly sampled instances

from the distribution described in Section 4.2.1. The second dataset

is the well-known Solomon benchmark set, which consists of 56

instances with 100 customers. For the smaller problem sizes, we

split each instance with 100 customers in two and five instances

respectively, with the depot being the same from the original

instance. We report the average gap to the groundtruth solution,

which was obtained by LKH3, as well as the average calculation time

per instance in seconds. As Gurobi was not able to find solutions for

all 46 instances of the problem set with n = 50 nodes, the mean cost

in Table 5 is not comparable to the other approaches. Even with a

time limit of 7,200 s per instance, Gurobi managed to find solutions

only for 37 of 46 instances. According to the data presented in

Table 4, for instances with n = 20 nodes, Gurobi, an exact solver,

exhibited a gap with respect to the best known solutions, although

generally not reaching the time limit. This finding can be attributed

to Gurobi’s inability to identify the globally optimal solutions for all

115 instances of the dataset within the imposed time constraints,

despite not reaching the limit for the majority of the cases.

In general, our learning-based approach is able to improve its

performance over the initial setting by additionally applying the

shortest tour heuristic without noticeable implications regarding

the computation time. It is evident that both approaches, GCNBS

and GCNBSSTH, yield better results for all instance sizes and beam

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2023.1155356
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Dornemann 10.3389/fams.2023.1155356

TABLE 1 Number and percentage of edges deleted for di�erent problem sizes and thresholds (mean over 10,000 instances).

Problem size

n = 20 n = 50 n = 100

Threshold p Del. edges % Del. edges % Del. edges %

10−3 306.73 69.55 2169.42 83.41 9248.41 90.66

10−4 279.42 63.36 2059.04 79.16 9019.67 88.42

10−5 254.58 57.73 1966.48 75.60 8784.17 86.11

TABLE 2 Estimation of instance sizes for Digital Annealer after applying learned problem reduction on 10,000 instances.

Problem size

n = 20 n = 50 n = 100

Number of bits x 441 2,601 10,201

Number of bits s 200 500 1,000

Number of bits y 200 500 1,000

Inequalities 841 5,101 20,201

Threshold p 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5

Deleted bits x 307 279 255 2,169 2,059 1,966 9,248 9,020 8,784

Deleted ineqs 613 559 509 4,339 4,118 3,933 18,496 18,039 17,568

Remaining bits 534 562 586 1,432 1,542 1,635 2,953 3,181 3,417

Remaining ineqs 228 282 332 762 983 1,168 1,705 2,162 2,633

TABLE 3 Mean cost, gap, and time per instance to solve 1,000 CVRPTW instances.

Problem size

Model
n = 20 n = 50 n = 100

Cost Gap (%) Time Cost Gap (%) Time Cost Gap (%) Time

GCNBS 1K 6.4000 7.55 3.15 11.1517 10.13 20.34 17.6768 17.20 74.38

GCNBSSTH 1K 6.1573 3.47 3.11 10.7135 5.80 20.32 17.1242 13.54 74.91

GCNBS 10K 6.3161 6.14 26.75 10.9917 8.55 197.21 17.2977 14.69 810.13

GCNBSSTH 10K 6.0395 1.49 26.74 10.4401 3.10 199.29 16.6409 10.33 803.56

GORT-GLS 5.9510 0.00 30.00 10.2106 0.84 30.00 15.6002 3.43 30.00

LKH 5.9509 0.00 6.20 10.1259 0.00 11.74 15.0826 0.00 19.69

TABLE 4 Mean cost, gap, and time per instance to solve the Solomon CVRPTW benchmark set.

Problem size

Model
n = 20 n = 50 n = 100

Cost Gap (%) Time Cost Gap (%) Time Cost Gap (%) Time

GCNBS 1K 3.2382 10.72 3.23 6.1015 14.87 23.54 10.9767 21.60 82.39

GCNBSSTH 1K 3.1054 6.18 3.27 6.0319 13.56 24.54 10.5477 16.85 82.22

GCNBS 10K 3.1870 8.97 32.30 5.8545 10.22 198.71 10.6189 17.64 898.66

GCNBSSTH 10K 3.0057 2.77 32.23 5.7392 8.05 198.48 10.1682 12.65 911.83

Gurobi 2.9305 0.20 336.32 - - - - - -

GORT-GLS 2.8433 −2.78 5.01 5.2899 −0.41 30.00 9.4555 4.75 30.00

LKH 2.9247 0.00 4.34 5.3116 0.00 13.35 9.0267 0.00 18.42

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2023.1155356
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Dornemann 10.3389/fams.2023.1155356

widths for the 1,000 instances dataset in comparison to Solomon’s

benchmark set [57], which can be attributed to the fact that the

neural networks were trained with datasets based on Solomon’s

benchmark set R [57]. This demonstrates that the performance of

the proposed approach is heavily reliant on the selection of training

data. In order to achieve generalization within the same problem

class, the model must be trained with data that is representative

of the underlying distribution, which can vary considerably across

different applications. The process of generating suitable training

data is a challenging but critical task, as the efficacy of a supervised

learning approach is directly influenced by the quality of the data

utilized for training.

For small instance sizes, with a beam width of 10,000

GCNBSSTH finds solutions close to the LKH3 results with a mean

gap of approximately 1.5% on the dataset used to also train the

neural nets and around 2.8% on the Solomon dataset. GCNBS

(+STH) outperforms the commercial solver Gurobi [13] in terms

of speed for all instance sizes. In fact Gurobi was only able to find

solutions for instances with 20 nodes reliably within a time limit

of 1,800 s. For instances with 50 nodes, Gurobi was only able to

find a valid solution approximately half of the time, whereas for

instances with 100 nodes, Gurobi could not find valid solutions

within the time limit.Within a setting of similar computation times,

the assumption is that similar results regarding solution quality

can be expected for instances with 20 nodes by our learning-based

approach if trained for the specific dataset distribution. The highly

optimized heuristic LKH3 [14] as well as Google’s OR-Tools [15]

outperformed GCNBSSTH in terms of speed and solution quality

on all instance sizes. For smaller instances, Google’s OR-Tools

perform even better than LKH3, whereas for instances with 100

nodes LKH3 shows the best results. Especially for large instances

with 100 nodes the shortcoming of our model becomes apparent,

as the beam search becomes computationally expensive for larger

instances and beam widths. The computation time mainly depends

on the chosen beam width and it seems to be close to a linear

correlation between beam width and computation time. Tests

have shown that most of the computation time in the current

implementation is used in the masking of invalid next nodes with

respect to the time windows constraints within the beam search and

a more efficient implementation of the masking scheme could lead

to significant improvements regarding the computation time.

Table 5 shows the results of our experiments on the Digital

Annealer compared to results obtained by GCNBS (+STH) as well

as the baseline models. As the amount of time to run experiments

on the Digital Annealer was limited, we conducted the experiments

on a smaller dataset only consisting of the Solomon benchmark

instances from the set R, which was also the baseline distribution

for our data generation. The dataset consists of 115 and 46 instances

for the problem sizes with 20 and 50 customers, respectively. The

asterisk on Gurobi’s result for n = 50 indicates that the results are

not comparable as for only half of the instances Gurobi was able to

find feasible solutions.

The performance of the GCNDA method is inferior to that

of GCNBSSTH and especially the baseline models, in terms of

both run time and quality of results. The use of integer variables

poses a significant challenge for the Digital Annealer (DA) when

solving instances of the CVRPTW. As previously mentioned, each

integer variable must be represented in binary form, resulting in

O(nδ) binary variables for our model, which contains 2n integer

variables. As discussed in Section 3.4.4, the requirement to identify

the correct assignment of all binary variables introduced for binary

expansions poses significant challenges for QUBO and BQP solvers,

as it necessitates a considerable number of bit switches. However,

the results from Table 5 clearly demonstrate the effectiveness of

the learned problem reduction method in improving solution

quality by reducing the size of the considered graph for smaller

instances. A performance improvement of around 3%, while also

accelerating the optimization process, is a promising result. It

is reasonable to assume that the decrease in computation time

becomes more obvious if a higher time limit is given. As seen

in Table 2, the higher the edge probability threshold used in the

reduction, the fewer integer variables are required. The risk of the

best solutions not being obtained due to the removal of important

edges during the reduction process is found to be negligible within

the range of solution gaps presented in Table 5. As the size of

the CVRPTW problem increases, the optimization of the number

of integer variables becomes increasingly challenging. Since the

learned problem reduction only applies to the decision variables

x, whereas the number of integer variables y and s is not reduced,

the effect of the reduction for larger instances is negligible. Given

the current version of the DA and the resources available for

our experimental study, the limitations of the approach have

been reached.

4.3.3. Example solution visualizations
Figures 1, 2 show solution plots for two different instances with

20 nodes as well as the groundtruth tour in the upper left corner

and the probabilistic heatmap output of our Graph Convolutional

Network in the upper right corner of Figure 1 (left and middle plot

in Figure 1, respectively). A darker red color in the heatmap implies

a higher probability and only edges with a probability of at least 0.25

are plotted. The gray edges show all edges of the fully connected

graph. In Figure 2, one can see the improvement of the solution

by applying the shortest tour heuristic. The solution of the beam

search in fact uses one vehicle less than the groundtruth tour, but

by using one more vehicle, GCNBSSTH is able to lower the total

distance traveled and find the best solution. Figure 2 showcases the

ability of GCNBSSTH to correctly identify most of the important

edges as important, while also excluding most of the irrelevant

edges. But in contrast to the solution found in Figure 1, here

GCNBSSTH uses one vehicle less than the best solution, illustrating

the need for more information regarding other subtours while

building the solution in order to find the best solution.

Figure 3 visualizes the optimization process by the Digital

Annealer for four different instances. The x-axis refers to the

solution time and the two y-axes indicate the energy of the objective

function and the constraints (penalties), respectively. The DA starts

with a condition where the energy of the objective function is zero

and the energy of the penalties is positive. Then the solution is

optimized by first decreasing the energy of the penalties to zero,

which translates to finding a valid solution, and implies increasing

the energy of the objective function. Then, the energy of the

Frontiers in AppliedMathematics and Statistics 12 frontiersin.org

https://doi.org/10.3389/fams.2023.1155356
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Dornemann 10.3389/fams.2023.1155356

TABLE 5 Mean cost, gap, and time per instance to solve the Solomon CVRPTW benchmark set R.

Problem size

Model
n = 20 n = 50

Cost Gap (%) Time Cost Gap (%) Time

GCNDA 10−3 3.8711 15.83 107.71 12.5701 108.48 901.54

GCNDA 10−4 3.9211 17.33 113.52 12.3224 104.37 907.40

GCNDA 10−5 3.9561 18.38 113.81 12.4331 106.21 920.86

DA 3.9669 18.70 116.52 12.3288 104.48 914.58

GCNBS 10K 3.4923 4.49 33.41 6.5540 8.70 207.77

GCNBSSTH 10K 3.365 0.69 33.57 6.3126 4.70 208.58

Gurobi 3.3504 0.25 320.25 5.1552* - 6587.30

GORT-GLS 3.2496 −2.76 30.00 5.9658 −1.06 30.00

LKH 3.3420 0.00 7.67 6.0294 0.00 12.04

FIGURE 1

Example solution plot GCNBS and GCNBSSTH for n = 20.

objective function is decreased while the energy of the penalties

remains at zero.

5. Discussion

In this paper, we proposed two learning-based approaches to

solve the capacitated vehicle routing problem with time windows.

The first method combines a Graph Convolutional Network with

a classical tree search heuristic, whereas in the second approach

the Graph Convolutional Network is used as a learning-based

reduction combined with methods from the field of quadratic

unconstrained binary optimization in order to solve the problem

with quantum-inspired computers.

In conclusion, the proposed approaches for solving the

capacitated vehicle routing problem with time windows

(CVRPTW) using a Graph Convolutional Network combined

with a classical heuristic, a beam search, as well as in combination

Frontiers in AppliedMathematics and Statistics 13 frontiersin.org

https://doi.org/10.3389/fams.2023.1155356
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Dornemann 10.3389/fams.2023.1155356

FIGURE 2

Example solution plot GCNBSSTH for n = 20.

FIGURE 3

Visualization of the optimization process by the Digital Annealer for four di�erent instances.

Frontiers in AppliedMathematics and Statistics 14 frontiersin.org

https://doi.org/10.3389/fams.2023.1155356
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Dornemann 10.3389/fams.2023.1155356

with quantum-inspired computing methods showed promising

results. Although our approach is not as advanced as other existing

heuristics and the computational results for the approach using

a beam search were not quite as good as those of state-of-the-

art highly developed heuristic approaches such as LKH3 [14]

and Google’s OR-Tools [15], it is still competitive on smaller

instances, showing promising results close to the known best

results on datasets containing instances with 20 and 50 nodes,

respectively, while also outperforming the exact solver Gurobi

[13] in terms of solution quality and computation time for larger

instances. It is apparent from the computational results that the

proposed model is less efficient compared to the highly optimized

heuristics that leverage the problem structure through the use

of expert knowledge. However, the objective of our approach

is to demonstrate the capability of deep learning to construct

models capable of solving complex combinatorial optimization

problems with minimal dependence on expert knowledge, while

simultaneously achieving superior performance compared to

existing commercial solvers.

The binary quadratic program (BQP) formulation of the

CVRPTW, which we derived from our developed novel quadratic

unconstrained binary optimization (QUBO) formulation of the

CVRPTW, was solved on Fujitsu’s Digital Annealer by applying

a deep neural network as a learned problem reduction . This

demonstrates the potential of using learned problem reductions

in improving solution quality and reducing computation time

on quantum(-inspired) computers. However, the large size of

CVRPTW instances and the requirement for a significant number

of integer variables to model the problem as a quadratic

unconstrained binary optimization problem make it challenging

to optimize for larger instances, even with the reduction of

the instance size. Further research is necessary to identify more

efficient problem representations to effectively solve CVRPTW

via QUBO and to handle integer variables in a more efficient

way. The computational experiments conducted have highlighted

a significant dependency of the proposed approach on the training

data used, as evidenced by the inferior performance observed for

a data set exhibiting a slightly different data distribution when

compared to instances sharing the same data distribution.

Our approaches represent novel and innovative learning-based

solutions for the CVRPTW and offer an alternative solution

that may be suitable for certain applications. Further research

is needed to improve the performance and to validate its

results on a larger and more diverse set of inputs. To further

develop approaches that use deep neural networks build solutions

constructively is a promising direction for future research, as the

constructive nature allows for efficient handling of hard constraints,

such as time windows, which can be difficult for both neural

combinatorial optimization and local search heuristics to effectively

address. These types of constraints are particularly challenging

in these methods due to the need to maintain feasibility while

adapting a solution. The use of deep learning in this context

represents a promising direction for future work in solving

the capacitated vehicle routing problem with hard constraints,

but further research is necessary to develop more sophisticated

methods for constructing solutions. Moving forward, our research

aims to overcome the limitations of the beam search algorithm by

incorporating contextual information from partially constructed

solutions to guide the selection of the next node, and integrating

a deep neural network in an autoregressive manner. Our objective

is to enhance the efficiency and accuracy of the search process for

complex problems by leveraging these advanced techniques.

Combining classical approaches with deep learning has the

potential to improve solution methods for a wide range of

combinatorial optimization problems, as it is not necessary to have

in-depth, specific knowledge about the structures of the problem

and its solution space in order to develop approaches that can

provide usable solutions that are faster and better than available

commercial solvers.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

JD confirms sole responsibility for model conception and

design, data generation, computational experiments, analysis and

interpretation of results, and manuscript preparation.

Funding

Open Access funded by the Deutsche Forschungsgemeinschaft

(DFG, German Research Foundation) Projektnummer 491268466

and the Hamburg University of Technology (TUHH) in the

funding programme Open Access Publishing.

Acknowledgments

We would like to express our gratitude to the team at

Fujitsu Technology Solutions, particularly Markus Kirsch, for

their valuable collaboration and assistance in utilizing Fujitsu’s

Digital Annealer.

Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in AppliedMathematics and Statistics 15 frontiersin.org

https://doi.org/10.3389/fams.2023.1155356
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Dornemann 10.3389/fams.2023.1155356

References

1. Toth P, Vigo D, editors. Vehicle Routing. Philadelphia, PA: Society for Industrial
and Applied Mathematics (2014).

2. Desaulniers G, Lessard F, Hadjar A. Tabu search, partial elementarity, and
generalized k-path inequalities for the vehicle routing problem with time windows.
Transport Sci. (2008) 42:387–404. doi: 10.1287/trsc.1070.0223

3. Prescott-Gagnon E, Desaulniers G, Rousseau LM. A branch-and-price-based large
neighborhood search algorithm for the vehicle routing problem with time windows.
Networks. (2009) 54:190–204. doi: 10.1002/net.20332

4. Shaw P. Using constraint programming and local search methods to solve vehicle
routing problems. In: Principles and Practice of Constraint Programming – CP98. Berlin,
Heidelberg (1998). p. 417–31.

5. Chen X, Tian Y. Learning to perform local rewriting for combinatorial
optimization. In: Proceedings of the 33rd International Conference on Neural
Information Processing Systems. Vancouver, BC: Curran Associates Inc. (2019). p.
6281–92.

6. Lu H, Zhang X, Yang S. A learning-based iterative method for solving vehicle
routing problems. In: 8th International Conference on Learning Representations, 2020
(2020).

7. Nazari M, Oroojlooy A, Snyder LV, Takác M. Reinforcement Learning for Solving
the Vehicle Routing Problem. In: Bengio S, Wallach H, Larochelle H, Grauman K,
Cesa-Bianchi N, editors. Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18. Montréal, QC: Curran Associates Inc. (2018).
p. 9861–71.

8. Kool W, van Hoof H, Welling M. Attention, learn to solve routing problems! In:
7th International Conference on Learning Representations, 2019 (New Orleans, LA).
(2019).

9. Falkner JK, Schmidt-Thieme L. Learning to solve vehicle routing problems
with time windows through joint attention. arXiv preprint arXiv:2006.09100 (2020).
doi: 10.48550/arXiv.2006.09100

10. Savelsbergh MWP. Local search in routing problems with time windows. Ann
Operat Res. (1985) 4:285–305.

11. Joshi CK, Laurent T, Bresson X. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227 (2019).
doi: 10.48550/arXiv.1906.01227

12. Sun Y, Ernst A, Li X, Weiner J. Generalization of machine learning for problem
reduction: a case study on travelling salesman problems. OR Spectrum. (2020) 43:607–
33. doi: 10.1007/s00291-020-00604-x

13. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. (2022).
Available online at: https://www.gurobi.com

14. Helsgaun K. An Extension of the Lin-Kernighan-Helsgaun TSP Solver for
Constrained Traveling Salesman and Vehicle Routing Problems. Technical report.
Roskilde Universitet, Roskilde (2017).

15. Perron L, Furnon V. Google OR-Tools (2022). Available online at: https://
developers.google.com/optimization/

16. Vinyals O, Fortunato M, Jaitly N. Pointer networks. In: Cortes C, Lawrence N,
Lee D, Sugiyama M, Garnett R, editors. Advances in Neural Information Processing
Systems. vol. 28. Montréal, QC: Curran Associates, Inc. (2015). p. 2692–700.

17. Bello I, Pham H, Le QV, Norouzi M, Bengio S. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016).
doi: 10.48550/arXiv.1611.09940

18. Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by
error propagation. In: Rumelhart DE, McClelland JL, editors. Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations.
Cambridge, MA: MIT Press (1986). p. 318–62.

19. Joshi CK, Laurent T, Bresson X. On learning paradigms for the
travelling salesman problem. arXiv preprint arXiv:1910.07210 (2019).
doi: 10.48550/arXiv.1910.07210

20. Kwon YD, Choo J, Kim B, Yoon I, Gwon Y, Min S. POMO: policy optimization
with multiple optima for reinforcement learning. In: Larochelle H, Ranzato M, Hadsell
R, Balcan MF, Lin H, editors. Advances in Neural Information Processing Systems.
vol. 33. Curran Associates, Inc. (2020). p. 21188–98.

21. Kaempfer Y, Wolf L. Learning the multiple traveling salesmen problem with
permutation invariant pooling networks. arXiv preprint arXiv:1803.09621 (2018).
doi: 10.48550/arXiv.1803.09621

22. Delarue A, Anderson R, Tjandraatmadja C. Reinforcement learning with
combinatorial actions: an application to vehicle routing. In: Larochelle H, Ranzato M,
Hadsell R, Balcan MF, Lin H, editors. Proceedings of the 34th International Conference
on Neural Information Processing Systems. Curran Associates, Inc. (2020). p. 609–20.

23. Peng B, Wang J, Zhang Z. A deep reinforcement learning algorithm using
dynamic attention model for vehicle routing problems. In: Li K, Li W, Wang H, Liu Y,

editors. Artificial Intelligence Algorithms and Applications. Singapore: Springer (2020).
p. 636–50.

24. Bengio Y, Lodi A, Prouvost A. Machine learning for combinatorial
optimization: A methodological tour d’horizon. Eur J Oper Res. (2021) 290:405–21.
doi: 10.1016/j.ejor.2020.07.063

25. Medress MF, Cooper FS, Forgie JW, Green C, O’Malley DHKMH, Neuburg EP,
et al. Speech understandingsystems: report of a steering committee. Artif Intell. (1977)
9:307–16.

26. Nowak A, Villar S, Bandeira AS, Bruna J. Revised note on learning algorithms
for quadratic assignment with graph neural networks. arXiv preprint arXiv:1706.07450
(2017). doi: 10.48550/arXiv.1706.07450

27. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The
graph neural network model. IEEE Trans Neural Netw. (2009) 20:61–80.
doi: 10.1109/TNN.2008.2005605

28. Bresson X, Laurent T. Residual gated graph ConvNets. arXiv preprint
arXiv:1711.07553 (2017). doi: 10.48550/arXiv.1711.07553

29. Falkner JK, Thyssens D, Schmidt-Thieme L. Large neighborhood search
based on neural construction heuristics. arXiv preprint arXiv:2205.00772 (2022).
doi: 10.48550/arXiv.2205.00772

30. Wang Y, Sun S, Li W. Hierarchical reinforcement learning for vehicle routing
problems with time windows. In: Proceedings of the Canadian Conference on Artificial
Intelligence (2021).

31. Gao L, Chen M, Chen Q, Luo G, Zhu N, Liu Z. Learn to design the heuristics for
vehicle routing problem. arXiv preprint arXiv:2002.08539 (2020).

32. Veličković P, Cucurull G, Casanova A, Romero A, Licš P, Bengio Y. Graph
attention networks. In: 6th International Conference on Learning Representations, ICLR
2018 (Vancouver, BC). (2018).

33. Silva MAL, de Souza SR, Freitas Souza MJ, Bazzan ALC. A reinforcement
learning-based multi-agent framework applied for solving routing and scheduling
problems. Expert Syst Appl. (2019) 131:148–71. doi: 10.1016/j.eswa.2019.04.056

34. Irnich S, Desaulniers G. Shortest path problems with resource constraints. In:
Desaulniers G, Desrosiers J, Solomon MM, editors. Column Generation. Boston, MA:
Springer (2005) p. 33–65.

35. Dror M. Note on the complexity of the shortest path models for column
generation in VRPTW. Operat Res. (1994) 42:977–8.

36. Kohl N, Desrosiers J, Madsen OBG, Solomon MM, Soumis F. 2-path cuts for the
vehicle routing problem with time windows. Transport Sci. (1999) 33:101–16.

37. Jepsen M, Petersen B, Spoorendonk S, Pisinger D. Subset-row inequalities
applied to the vehicle-routing problem with time windows. Operat Res. (2008) 56:497–
511. doi: 10.1287/opre.1070.0449

38. Pecin D, Pessoa A, Poggi M, Uchoa E. Improved branch-cut-and-price for
capacitated vehicle routing. In: Lee J, Vygen J, editors. Integer Programming and
Combinatorial Optimization. Bonn: Springer Cham (2014). p. 393–403.

39. Pecin D, Contardo C, Desaulniers G, Uchoa E. New enhancements for the exact
solution of the vehicle routing problem with time windows. INFORMS J Comput.
(2017) 29:489–502. doi: 10.1287/ijoc.2016.0744

40. Feillet D, Dejax P, Gendreau M, Gueguen C. An exact algorithm for the
elementary shortest path problem with resource constraints: application to some
vehicle routing problems. Networks. (2004) 44:216–29. doi: 10.1002/net.20033

41. Boland N, Dethridge J, Dumitrescu I. Accelerated label setting algorithms for
the elementary resource constrained shortest path problem. Operat Res Lett. (2006)
34:58–68. doi: 10.1016/j.orl.2004.11.011

42. Feillet D, GendreauM, Rousseau LM. New refinements for the solution of vehicle
routing problems with branch and price. Inform Syst Operat Res. (2007) 45:239–56.
doi: 10.3138/infor.45.4.239

43. Baldacci R, Mingozzi A, Roberti R. New route relaxation and pricing
strategies for the vehicle routing problem. Operat Res. (2011) 59:1269–83.
doi: 10.1287/opre.1110.0975

44. Baldacci R, Mingozzi A, Roberti R. Recent exact algorithms for solving the
vehicle routing problem under capacity and time window constraints. Eur J Operat
Res. (2012) 218:1–6. doi: 10.1016/j.ejor.2011.07.037

45. Papalitsas C, Andronikos T, Giannakis K, Theocharopoulou G, Fanarioti S. A
QUBO model for the traveling salesman problem with time windows. Algorithms.
(2019) 12:224. doi: 10.3390/a12110224

46. Salehi O, Glos A, Miszczak JA. Unconstrained binary models of the travelling
salesman problem variants for quantum optimization. Quant Inform Process. (2022)
21, 67. doi: 10.1007/s11128-021-03405-5

47. Suen WY, Parizy M, Lau HC. Enhancing a QUBO solver via data driven multi-
start and its application to vehicle routing problem. In: Proceedings of the Genetic

Frontiers in AppliedMathematics and Statistics 16 frontiersin.org

https://doi.org/10.3389/fams.2023.1155356
https://doi.org/10.1287/trsc.1070.0223
https://doi.org/10.1002/net.20332
https://doi.org/10.48550/arXiv.2006.09100
https://doi.org/10.48550/arXiv.1906.01227
https://doi.org/10.1007/s00291-020-00604-x
https://www.gurobi.com
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.48550/arXiv.1611.09940
https://doi.org/10.48550/arXiv.1910.07210
https://doi.org/10.48550/arXiv.1803.09621
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.48550/arXiv.1706.07450
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.48550/arXiv.1711.07553
https://doi.org/10.48550/arXiv.2205.00772
https://doi.org/10.1016/j.eswa.2019.04.056
https://doi.org/10.1287/opre.1070.0449
https://doi.org/10.1287/ijoc.2016.0744
https://doi.org/10.1002/net.20033
https://doi.org/10.1016/j.orl.2004.11.011
https://doi.org/10.3138/infor.45.4.239
https://doi.org/10.1287/opre.1110.0975
https://doi.org/10.1016/j.ejor.2011.07.037
https://doi.org/10.3390/a12110224
https://doi.org/10.1007/s11128-021-03405-5
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Dornemann 10.3389/fams.2023.1155356

and Evolutionary Computation Conference Companion. Boston, MA: ACM (2022).
p. 2251–7.

48. Akeb H, Bouchakhchoukha A, Hifi M. A beam search based algorithm for the
capacitated vehicle routing problem with time windows. In: Federated Conference on
Computer Science and Information Systems 2013 (Kraków). (2013). p. 329–36.

49. Kool W, van Hoof H, Gromicho J, Welling M. Deep policy dynamic
programming for vehicle routing problems. In: Pierre Schaus, editor. Integration of
Constraint Programming, Artificial Intelligence, and Operations Research. Los Angeles,
CA: Springer International Publishing (2022). p. 190–213.

50. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: Proceedings of the 32nd International Conference
on International Conference on Machine Learning (Lille). (2015). p. 448–56.

51. Glover FW, Kochenberger GA, Du Y. Quantum Bridge Analytics I: a tutorial
on formulating and using QUBO models. arXiv preprint arXiv:1811.11538 (2018).
doi: 10.48550/arXiv.1811.11538

52. Kallehauge B, Larsen J, Madsen OBG, Solomon MM. Vehicle routing
problem with time windows. In: Desaulniers G, Desrosiers J, Solomon

MM, editors. Column Generation. Boston, MA: Springer US (2005).
p. 67–98.

53. Fujitsu. Digital Annealer (2022). Available online at: http://www.fujitsu.com/
global/digitalannealer/

54. Vyskočil T, Pakin S, Djidjev HN. Embedding inequality constraints for quantum
annealing optimization. In: Feld S, Linnhoff-Popien C, editors. Quantum Technology
and Optimization Problems. Cham: Springer International Publishing (2019).
p. 11–22.

55. SaoM,Watanabe H,Musha Y, Utsunomiya A. Application of digital annealer for
faster combinatorial optimization. Fujitsu Sci Tech J. (2019) 55:45–51.

56. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, et al. Automatic
differentiation in PyTorch. In: NIPS-W (Long Beach, CA). (2017).

57. Solomon MM. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operat Res. (1987) 35:254–65. doi: 10.1287/opre.35.2.254

58. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980v9 (2014). doi: 10.48550/arXiv.1412.6980

Frontiers in AppliedMathematics and Statistics 17 frontiersin.org

https://doi.org/10.3389/fams.2023.1155356
https://doi.org/10.48550/arXiv.1811.11538
http://www.fujitsu.com/global/digitalannealer/
http://www.fujitsu.com/global/digitalannealer/
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.48550/arXiv.1412.6980
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	Solving the capacitated vehicle routing problem with time windows via graph convolutional network assisted tree search and quantum-inspired computing
	1. Introduction
	2. Related work
	3. Problem setting and model
	3.1. Problem setting
	3.2. Graph convolutional network
	3.2.1. Input layer
	3.2.2. Graph convolution layer
	3.2.3. MLP classifier

	3.3. Beam search
	3.4. Quadratic unconstrained binary optimization
	3.4.1. Introduction to QUBO
	3.4.2. General approach from ILP to QUBO
	3.4.3. ILP formulation of the CVRPTW
	3.4.4. QUBO formulation of the CVRPTW
	3.4.5. Fujitsu's Digital Annealer

	4. Computational experiments
	4.1. Implementation and hyperparameters
	4.2. Experiment setup
	4.2.1. Data generation
	4.2.2. Training and evaluation
	4.2.3. Baseline models

	4.3. Results
	4.3.1. Sparsity of graphs
	4.3.2. Experimental results
	4.3.3. Example solution visualizations

	5. Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

