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We investigate a contextual problem of how to distribute a limited supply of

vaccines over a period of time in a country where di�erent regions have its

own vaccination capacities. Considering that daily vaccination will a�ect future

disease progression, we aim to find a distribution strategy over time that can

minimize the total infection and implementation costs. Lagrangian and Eulerian

migrations connect our multi-patch COVID-19 model, and vaccination is added

as a control measure. An optimal control problemwith an isoperimetric constraint

is formulated and solved using the Adapted Forward–Backward Sweep Method.

In distributing 5 million vaccines in 50 days, simulations showed that the optimal

control strategy could lead to a di�erence of reducing two hundred thousand

infections in just one region.
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1. Introduction

The rapid development of COVID-19 vaccines, which began less than a year after the
emergence of the SARS-CoV-2 virus, has made vaccination arguably the most effective
method for preventing the spread of COVID-19 [1–3]. Despite the numerous problems with
the COVID-19 vaccine, global communities applauded its introduction and acceleratedmass
vaccination. The Philippines have administered 166,138,040 vaccinations as of 8 December
2022 since vaccinations began in March 2021. It includes the first and second doses (71
million and 73 million, respectively) and more than 21 million booster doses administered
to frontline workers, senior citizens, and the immunocompromised1. In the second quarter
of 2020–2021, the government’s gross domestic product (GDP) increased by 12.1% due
to the expansion of economic activities made possible by vaccination mandates and the
strengthening of minimum health protocols. This is in stark contrast to the −16.6% GDP
recorded at the height of the pandemic [4]. In addition, the unemployment rate decreased
from 8.8 percent in 2021 to 6.4 percent in 2022.

1 National COVID-19 Vaccination Dashboard | Department of Health Website. Available online at:

https://doh.gov.ph/covid19-vaccination-dashboard.
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By the end of 2022, however, approximately 36 percent of
the country’s population still remained not fully vaccinated. In
some areas of the region, vaccination participation is low. Vaccine
hesitancy is endemic in every nation. In the Philippines, the
decision to vaccinate can be influenced by differing factors,
including individuals (i.e., perceptions of vaccine effectiveness and
also inefficiency and inflexibility of the system), the community
(i.e., vaccine hesitancy for religious reasons and social networks),
and the health system (politics and policy) [5]. On a global level,
countries with large vaccine industries reserve their own supplies
for their own populations. Moreover, global manufacturing
capabilities remain far below what is required, which leads to
vaccine politics or global competition over a limited supply. The
longer the vaccinations are delayed, the greater the likelihood that
new virus strains will emerge and undermine the efficiency of
vaccines.

Since the early stages of the pandemic, mathematical modeling
has assisted the Philippines in its response, and a number of studies
[6–8], including regional ones [9, 10], have been published. In
addition, it has been used extensively in many countries to evaluate
pandemic control strategies such as lockdown, social distancing,
testing, face mask use, and public awareness [11–21].

With the introduction of COVID-19 vaccines, numerous
modeling studies on vaccine allocation are available worldwide,
based on age or risk group [22–25], space [26], and dose
timing [27, 28]. However, there are few mathematical modeling
studies on the optimal control of vaccine prioritization against
COVID-19 at the regional level. Molla et al. [29] introduced
an SEIR-type compartmental model with vaccination that
accounts for heterogeneity across age groups and mobility across
geographic regions. To optimize the allocation of vaccines in
Italy, Lemaitre et al. [30] evaluated a second spatially explicit
COVID-19 epidemiological model of the SEIR type, which
proposes prioritizing precise targeting over delivery speed to
increase the number of doses distributed in provinces where the
impact of vaccines is anticipated to be greater.

In light of the fact that the Philippines is an archipelagic nation
with vaccine supply and distribution issues, an effective spatial
vaccination prioritization strategy must be developed to optimize
the use of the limited vaccine supply. Thus, the objective of this
paper is to use optimal control theory to determine time-dependent
optimal vaccine allocation strategies that could minimize infections
with associated intervention costs under various epidemiological
scenarios, includingmobility, supply level, infected individuals, and
vaccination capacity. See our problem setup below.

In support of the “last mile” program of the Philippines, [31], we
hope that the findings of this paper will help improve COVID-19
vaccine uptake and reach.

2. Problem setup

There are 17 regions in the Philippines. The nation’s vaccine
supply arrived in large quantities, and it should be distributed
to the regions over a period of time. Since there is definitely a
very limited supply, a methodical approach to distributing it over
time to the various regions is required. The distribution of the
vaccines should minimize both the implementation expenditure

and the country’s overall risk of infection. Each region has a daily
cap on the number of people it can immunize, which restricts
the distribution. Additionally, it is conceivable that each day that
vaccines are administered will impact the disease’s progression in
the following days. One may consider using a linear program right
at the beginning of the distribution. This, however, will not be able
to take the effects of vaccination over time into account. One option
is to use a dynamic linear program to solve it every day while also
resolving how the disease develops in relation to the impact of
vaccinations from the day before. This is technically feasible but
very computationally demanding. Here, we demonstrate how to use
optimal control theory to address these constraints and resolve the
distribution problem, with an emphasis on the Philippines.

We do not intend to evaluate the vaccination policy
choices made by the Philippine government in this article.
With the constraints and goal discussed above, this study
aims to demonstrate the viability of using mathematical
optimization, more specifically optimal control theory, to
resolve the distribution problem.

3. Mathematical model

In [32], a modeling concept of the progression of COVID-19
disease was presented. This modeling concept serves as the basis
for the base model, which represents a single region. The structure
of the model makes it possible to estimate the hidden untested
infection figure, which is also sometimes referred to as the dark
figure of the pandemic. This estimate can be obtained by using the
model. Instead of having a separate compartment for the vaccinated
people in this study, we incorporate the effect of vaccination by the
flow from the susceptible to the removed compartment. This allows
us to account for the full scope of the phenomenon. During the
process of applying the base model to every region of the country,
we take into account the possibility that some infected individuals
may travel between regions, which has the effect of influencing the
transmission rate of the regions.

The population in region i is divided into four compartments:
Susceptible (Si), Infected (Ii), Tested positive (Ti), and Removed
(Ri). The natural birth and death rates, as well as the effect
of reinfection, are not accounted for in the model because the
simulations used in this study are conducted over a relatively short
period of time. We denote by N0i the total population in region i.
The flowchart of the model is given in Figure 1.

The model is governed by the following system of 4n ordinary
differential equations:
For i = 1, 2, ..., n,

dSi

dt
= −αiβ0iSi

(

Ii +
∑

j6=i

cjiqjIj
)

− 3i, (1)

dIi

dt
= αiβ0iSi

(

Ii +
∑

j6=i

cjiqjIj
)

−
∑

j6=i

mijIi +
∑

j6=i

mjiIj − (γi + ρi)Ii,

(2)

dTi

dt
= ρiIi − δiTi, (3)

dRi

dt
= γiIi + δiTi + 3i, (4)
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FIGURE 1

Dynamics within and between patches.

where j ∈ {1, 2, ..., n}, β0i = βi/N0i, and
n

∑

j=1

cij = 1. The time

domain is only up to time tf , where3i < Si(tf ), for all i = 1, 2, ..., n.
The description of the parameters is given in Table 1.

4. Parameter values

The Philippines’ Department of Health (DOH) has made data
on confirmed cases available to the public2, so ethical approval
is unnecessary. The parameter calibration was set up with the
help of such information. The data spans the period of 1 June
2021 to 31 October 2021. We chose this time frame for our
simulations since it represents the Philippines’ first notable peak,
the vaccination campaign has just recently started to gain traction,
and there is a dearth of vaccines. To determine the fitted values for
the parameters β , α, ρ, and I0, we minimized a non-linear least
squares function that is given by the sum of the squares of the
differences between the output of the model and the data. To solve
the optimization problem, the Levenberg-Marquardt algorithm
and approximate Bayesian computation are used [33–35]. This was
done for every region. The results are presented in Table 2, where
the last column displays the relative error of the fitting technique for
each region.

5. Optimal control problem

In this study, we consider the vaccination controls νi for each
region i, where 0 ≤ νi ≤ 1. The system with the regions’
vaccination controls is given by:

2 Department of Health Website (2022). Available online at: https://doh.

gov.ph/vaccines.

TABLE 1 Parameters of the model.

Parameter Description Unit

3i Vaccination rate in region i Persons/day

βi Transmission rate in region i 1/day

αi Transmission reduction control in
region i

Dimensionless

ρi Detection rate in region i 1/day

δi Removal rate from Ti to Ri 1/day

γi Removal rate from Ii to Ri 1/day

qi Proportion of infected individuals in
region i

Dimensionless

that are traveling to other regions

cij Proportion of those traveling infected Dimensionless

individuals from region i to region j

mij Migration rate from region i to region
j

1/day

For i = 1, 2, ..., n,

dSi

dt
= −αiβ0iSi

(

Ii +
∑

j6=i

cjiqjIj
)

− νi(t)3i, (5)

dIi

dt
= αiβ0iSi

(

Ii +
∑

j6=i

cjiqjIj
)

−
∑

j6=i

mijIi +
∑

j6=i

mjiIj − (γi + ρi)Ii,

(6)

dTi

dt
= ρiIi − δiTi, (7)

dRi

dt
= γiIi + δiTi + νi(t)3i, (8)

where j ∈ {1, 2, ..., n}, β0i = βi/N0i, and
n

∑

j=1

cij = 1. Our time

domain is only up to time tf such that 3i < Si(tf ), for all i =

1, 2, ..., n.
Our objective is to determine the vaccine distribution to the

regions over time so that the total number of infections for a given
period and the associated cost are minimized. We take note of the
fact that our options are constrained by the vaccines that are on
hand and the daily vaccination capacity of each region.

Letting B be the total number of available vaccines, the objective
functional to be minimized is given by

J(ν1, ν2, ..., νn) =

∫ tf

t0

n
∑

i=1

(

Ii(t)+
Ai

2
ν2i (t)

)

dt (9)

such that
∫ tf

t0

n
∑

i=1

νi(t)3i dt = B. (10)

Equation (10) is an isoperimetric constraint, and we will do the
trick discussed in [37]. We let Z(t) be an additional state variable
such that

Z′(t) =
n

∑

i=1

νi(t)3i, (11)
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TABLE 2 Parameter values.

Region N0 3 α β ρ S0 I0 T0 R0 Relative Error

BARMM 4938539 2041 0.73745 0.14484 0.01191 4899821 3201 803 8879 0.00127

CAR 1791121 3374 0.40973 0.41859 0.01475 1638328 1132 1130 37915 0.00093

CARAGA 2795340 3524 0.62258 0.21379 0.02383 2721089 3678 1828 17643 0.00284

NCR 13484462 37430 0.44696 0.43619 0.01187 11381077 12888 7750 522624 0.00047

I 5292297 9381 0.53773 0.37148 0.07376 5186246 1538 1538 26128 0.00059

II 3679748 6231 0.26216 0.58817 0.01612 3481905 3290 3093 48638 0.00108

III 12387811 21689 0.61213 0.27342 0.04340 11911136 6451 6451 117556 0.00105

IV-A 16139770 26269 0.77467 0.18224 0.01192 15154262 29444 7361 239016 0.00123

IV-B 3212287 3498 0.50935 0.24775 0.02030 3161034 2860 1051 12098 0.00104

V 6067290 7616 0.65418 0.18829 0.01629 5994377 4840 1723 17018 0.00191

VI 7935531 11656 0.55571 0.23127 0.02464 7691631 17239 4310 56665 0.00048

VII 8046285 8744 0.76742 0.32960 0.13779 7769337 2244 2244 68676 0.00040

VIII 4531512 6544 0.45094 0.30247 0.04173 4432464 5236 1309 23453 0.00065

IX 3862588 4958 0.71558 0.18237 0.01973 3776561 3122 2117 20726 0.00173

X 5007798 6624 0.47553 0.38723 0.07454 4898426 2888 2888 26621 0.00161

XI 5223802 8383 0.51928 0.25595 0.02418 5083999 10598 2758 32301 0.00136

XII 4351773 5317 0.78857 0.21662 0.00129 4275821 8356 2089 16899 0.00835

The population N0 for each region is based on the 2020 Census of Population and Housing by the Philippine Statistics Authority of the Philippines [36]. The initial values of the other

compartments are estimated using N0 , the fitted I0 , and data from DOH. The vaccination capacity (3) is the per day average of the full dosed vaccines delivered in the Philippines in 20211 . We

assumed q = 0.01, and for γ and δ, we used the values 1/12 and 1/7, respectively, from [32].

where Z(t0) = 0 and Z(tf ) = B. Note that then we will have satisfied
(10).

The Hamiltonian H is then given by

H =

n
∑

i=1

(

Ii(t)+
Ai

2
ν2i (t)+ λSi GSi + λIi GIi + λTi GTi + λRi GRi

)

+ λZ GZ ,

where GSi, GIi, GTi, GRi, and GZ are the right hand sides
of Equations (5), (6), (7), (8), and (11), respectively, for i =

1, 2, ..., n. Applying Pontryagin’s maximum principle, there exist
adjoint variables λSi, λIi, λTi, λRi, λZ , i = 1, 2, ..., n, which satisfy the
following system of ordinary differential equations:
for i = 1, . . . , n,

∂λSi

∂t
= (λSi − λIi)αiβ0i(Ii +

∑

j6=i

cjiqjIj),

∂λIi

∂t
= −1+ (λSi − λIi)αiβ0iSi + (λIi − λRi)γi + (λIi − λTi)ρiτi,

+
∑

j6=i

[(λIi − λIj)mij + (λSj − λIj)cijqiαjβ0jSj],

∂λTi

∂t
= (λTi − λRi) δi,

∂λRi

∂t
= 0,

∂λZ

∂t
= 0,

with transversality conditions λSi (tf ) = λIi (tf ) = λTi (tf ) =

λRi (tf ) = 0, for i = 1, 2, ..., n.

For i = 1, . . . , n, optimal controls νi(t) are derived by the
following optimality conditions:

∂H

∂νi
= νi(t)Ai − (λSi − λRi − λZ)3i = 0. (12)

We thus have the following theorem.

Theorem 5.1. Problem (9)-(10) has a solution and the optimal

control variables are given by, for i = 1, . . . , n

νi(t) = max

(

0,min

(

(λSi − λRi − λZ)3i

Ai
, 1

))

.

6. Simulations

Using the adapted forward-backward sweep method, which is
used to solve isoperimetric problems [37], we numerically solved
the optimization problem. This is a combination of the forward-
backward sweep method and the shooting method, which is a
variation of Newton’s method for finding zeros. In the simulations,
we consider distributing 5 million vaccines over a period of 50
days, subject to the limitations described in Section 2. Thus, we
anticipated the arrival of the next batch of vaccines in 50 days.

6.1. Intuition vs. optimal control

Table 2 lists the daily vaccination capacity for each region. Our
intuition would lead us to recommend administering each region’s
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A D

B E

C F

FIGURE 2

Intuitive vaccination strategy of distributing the vaccines by the full capacity of each region for 28 days vs. distribution strategy via optimal control

theory. Here, we only have 5 million vaccines to be distributed in 50 days. In (A, D), we have the control values, while in (B, E) we have the no. of

vaccines used, for both strategies. In (C, F), we extend the simulation time up to 100 to better see the e�ect of the vaccination strategies.

full daily allotment of vaccines until they are all consumed. This
suggests that all 5 million vaccine doses will be consumed in just
28 days. Figures 2A, B show this strategy. Figure 2A displays the
control values for all regions, which are 100% for 28 days, and
Figure 2B displays the number of vaccines each region uses based
on their daily vaccination capacity.

The Philippines has implemented lockdowns and border
control between regions during the simulation’s time frame (1
June 2021 to 31 October 2021). We assume these precautions
are sufficient to prevent infected people from traveling between
different regions. The impact of infected people moving between
regions is not included in this simulation. During this time, every
region urgently needs vaccination; therefore, implementation costs
are not a concern. Therefore, the implementation cost for each
region in this simulation is set at the same value. However, these
values can be modified easily if necessary.

Figure 2C illustrates how this intuitive strategy affected the
disease progression in each region. This is compared to the
distribution strategy derived from optimal control theory shown
in Figures 2D, E, with the effect on disease progression given in
Figure 2F. One can observe that it did not advocate using all of
each region’s resources for 28 days. The NCR, III, and IV-A regions
received higher priority under the strategy. Since infection rates
were much higher in these areas, especially in the three regions XII,
NCR, and IV-A, which could be seen clearly in Figures 2C, F, this
strategy can be explained by the need to control the progression of
the disease there.

Even though the progression of the disease looks the same for
both strategies, the optimal control strategy is better at stopping
infections than the other one. This is evident when comparing the
y-axes of Figures 2C, F, which compare the two strategies. As an
illustration, for NCR, the infected reached approximately 8 × 105

using the intuitive strategy but only approximately 6 × 105 using
the optimal control strategy.

Information about the overall infection can be found in
Figure 3. According to the intuitive strategy shown in the left figure,
all 5 million vaccines were used up by Day 28, compared to that
to the non-linear, more gradual approach of the optimal control
strategy. The total number of infected people over time in each of
the 17 regions is shown in the right figure. The simulation is carried
out through Day 100 to clearly demonstrate how the sums vary
(with no additional vaccination after Day 50).

6.2. Limited vs. unlimited vaccines

In this simulation, we assume that lockdowns and border
controls are not working that well, and so there is mobility
of infected individuals between regions. There are no publicly
available statistics on interregional movement, particularly for
infected people. Based on our knowledge of the regions of the
Philippines and their relationships with one another, we estimate
the values of the mobility parameters qi, cij, andmij for the purpose
of demonstration. The used values are listed in Table 3.
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FIGURE 3

Comparison of the intuitive vaccination strategy of distributing the vaccines by the full capacity of each region for 28 days vs. distribution strategy via

optimal control theory.

This situation is comparable to the later stages of the pandemic
when lockdowns are not used, and only lax border controls are in
place. We contrast the scenario where vaccine supply is limited,
just like in the preceding simulation (Section 6.1), and the scenario
where vaccine supply is seemingly unlimited, or where there is
always enough vaccine to meet each region’s vaccination capacity
over the course of the simulation.

Figures 4A, B depict the simulation for the scenario where
vaccine supply is limited. In contrast, Figures 4C, D depict the
simulation for the scenario where vaccine supply is presumptively
limitless. In the unlimited case, optimal control theory also
recommends providing all the regions with their full vaccination
capacity, as is intuitively expected. Figure 4E depicts the variation
in the overall number of vaccines used, while Figure 4F depicts the
anticipated variation in the overall infections (sum of the infected
in the 17 regions), for both cases.

7. Discussion and conclusion

Our simulations showed how important it is to use optimal
control theory to figure out how to give out a limited amount of
vaccine over a certain amount of time in a country with different
regions and a daily vaccination limit for each region. The advantage
of this approach is that it seeks to determine the most efficient
distribution plan while accounting for the influence that daily
vaccination rates have on the progression of the disease in the
days that follow in each region. In Section 6.1, we clearly saw that
the optimal control formulation’s solution minimizes the overall

infection in the country better than the intuitive approach of
simply distributing the supply to all the regions based on their
vaccination capacity. We also demonstrated the effectiveness of our
method even when individual mobility between infected regions is
considered.

We could also point out some drawbacks though. For instance,
we did not take political and social factors into account. Due to
lower reported cases or higher infection rates in other regions that
needed to be prioritized, an optimal control strategy might, for
instance, recommend against administering vaccines to a specific
region. Although we can be mathematically confident that the
strategy will reduce the overall infection of the country more
effectively, it could be easily interpreted as simple discrimination.
These things can also be taken into account when developing our
formulation. As an illustration, we could stipulate that the lower
limit for the controls νi must be 30%.

We note here that the method presented in this study can
be easily extended or adapted to consider more divisions of the
country. For instance, instead of the 17 regions, we could also
consider more than 7,000 islands of the country. However, this
would entail a much higher computational cost. Alternatively, we
could zoom in on one city and consider the distribution problem
for its barangays, which are the smallest administrative divisions in
the country.

As stated in Section 2, we do not intend to assess the
government’s distribution initiative here. Instead, we propose a
different strategy for administering the vaccines that we have
mathematically demonstrated to be more effective with regard to
our goal of reducing the overall infection rate in the country.
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TABLE 3 Mobility values used.

BARMM CAR CARAGA NCR I II III IV-A IV-B V VI VII VIII IX X XI XII

BARMM 0 0 0 1 0 0 0 0 0 0 0 1 0 2 2 2 2

CAR 0 0 0 3 2 1 2 1 0 0 0 1 0 0 0 0 0

CARAGA 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0

NCR 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0

I 0 2 0 2 0 2 1 1 1 1 0 0 0 0 0 0 0

II 0 1 0 2 1 0 1 1 1 1 1 1 0 0 0 0 0

III 0 1 0 2 1 1 0 1 1 1 1 1 0 0 0 0 0

IV-A 0 0 0 2 0 0 1 0 1 1 1 1 1 1 1 0 0

IV-B 0 0 0 2 0 0 1 1 0 1 1 1 1 1 1 0 0

V 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0

VI 0 0 1 2 0 0 0 1 1 1 0 2 1 1 0 0 0

VII 0 0 1 2 0 0 0 1 1 1 2 0 1 1 0 0 0

VIII 0 0 1 1 0 0 0 1 1 1 1 2 0 1 1 0 0

IX 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1

X 1 0 1 1 0 0 0 0 0 1 1 1 1 1 0 1 1

XI 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1

XII 1 0 1 1 0 0 0 0 1 0 1 1 1 1 1 1 0

The values for cij andmij are obtained from this table by multiplying the cells by 10−1 and 10−3, respectively. Note that
17

∑

j=1

cij = 1, for all i = 1, ..., 17.

A C

B D

E F

FIGURE 4

Optimal controls for the cases with limited and unlimited vaccines. In (A, B, E), we have the limited case, while in (C, D, F), we have the unlimited case.
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