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The co-infection of visceral leishmaniasis (VL) and tuberculosis (TB) patients pose

a major public health challenge. In this study, we develop a mathematical model

to study the transmission dynamics of VL and TB co-infection by first analyzing

the VL and TB sub-models separately. The dynamics of these sub-models and

the full co-infection model are determined based on the reproduction number.

When the associated reproduction number (R1) for the TB-only model and (R2)

for the VL-only are less than unity, the model exhibits backward bifurcation.

If max{R1,R2} = R1, then the TB-VL co-infection model exhibits backward

bifurcation for values of R1. Furthermore, if max{R1,R2} = R2, and by

choosing the transmission probability, βL as the bifurcation parameter, then the

phenomenon of backward bifurcation occurs for values ofR2. Consequently, the

full model, whose associated reproduction number is R0, also exhibits backward

bifurcation when R0 = 1. The equilibrium points and their stability for the

models are determined and analyzed based on the magnitude of the respective

reproduction numbers. Finally, some numerical simulations are presented to show

the reliability of our theoretical results.
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1. Introduction

Leishmaniasis is a neglected tropical disease (NTD) that is transmitted by infected

sandflies and is caused by obligate intracellular protozoans of the genus Leishmania [1].

There are more than 20 Leishmania species with three main forms of the disease: cutaneous

leishmaniasis, mucocutaneous leishmaniasis, and visceral leishmaniasis, also known as kala-

azar. Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis and causes

skin lesions, mainly ulcers, on exposed parts of the body, leaving life-long scars and serious

disability or stigma. Mucocutaneous leishmaniasis (MCL) is the most disabling form of

the disease, and it affects mostly the mucous membranes of the nose and mouth. Visceral

leishmaniasis (VL) is the most fatal disease, causing enlargement of the spleen and liver [2].

It may cause epidemic outbreaks with a high mortality rate. A varying proportion of visceral

cases may evolve into a cutaneous form known as post-kala-azar dermal leishmaniasis

(PKDL), which requires lengthy and costly treatment [3, 4]. VL is responsible for nearly

48,000 deaths worldwide with 2,00,000–4,00,000 new cases annually [5]. If the disease is
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not treated, the fatality rate in developing countries can be as high

as 100% within 2 years. Most cases are seen in six countries—

Bangladesh, Brazil, Ethiopia, India, South Sudan, and Sudan [5].

There are no vaccines available, and all the current drug treatments

have serious limitations such as prolonged administration, high

cost, drug resistance, and toxicity [6]. Treatment efficacy is further

compromised in the case of co-infection with tuberculosis (TB).

Co-infection of visceral leishmaniasis and TB is very common,

increasing public health problems in tropical and subtropical

areas [7–9]. TB is caused by the bacterium Mycobacterium

tuberculosis and is spread through the air. It is a leading cause

of death worldwide, especially among people with compromised

immune systems. It is also an immuno-suppressive condition that

helps latent leishmaniasis progress to clinical leishmaniasis [10].

Similarly, visceral leishmaniasis can reactivate latent tuberculosis.

However, there has been growing interest in repurposing existing

drugs used to treat tuberculosis and leishmaniasis. When compared

to developing new drugs from scratch, this approach has several

advantages, including the availability of well-characterized drugs

with established safety profiles, shorter development timelines, and

lower costs [6, 11]. It is also worth noting that, while some TB drugs

may have anti-Leishmania parasite activity, they are not a universal

cure for both TB and leishmaniasis. Treatment for each disease

should be tailored to the individual patient’s needs, and co-infected

people may require a combination of drugs to effectively treat both

diseases. When considering co-infection of leishmaniasis and TB,

research has shown that co-infected individuals tend to have more

severe disease and poorer treatment outcomes than those infected

with only one of the diseases. This underscores the need for a co-

infection model to better understand the interactions between the

two diseases and develop effective treatment strategies. Hence, we

develop a new mathematical model of VL and TB co-infection.

Mathematical models are now a critical component in

developing control and mitigation strategies for any potential

infectious disease epidemic. Mathematical models are frequently

used to capture the dynamics of disease at different phases in order

to understand the spread of diseases within a population and build

both short- and long-termmanagement strategies. We can evaluate

a variety of different control tactics in computer simulations before

applying them in real life using well-parameterized mathematical

models [12, 13]. Many mathematical models have been developed

to successfully explain real-life situations and played a key role in

public health efforts. Driessche and Watmough [14] provided a

precise definition of the basic reproduction number for a general

compartmental disease model based on a system of ordinary

differential equations. Castillo-Chavez and Song [15] provided a

comprehensive review of the dynamics and control of tuberculosis.

Standard disease transmission and control models in which the

majority of the population steadily grows over time are presented

in [16, 17]. Establishing the stability properties of a dynamic

system is a difficult problem in general. Hence, the direct Lyapunov

method is a used approach to establish the local and global

stabilities of these models. Korobeinikov [18, 19] presented a family

of Lyapunov functions for three-compartment epidemiological

models that appear to be useful for more complex models.

Furthermore, mathematical models have been used to understand

the dynamic transmission of diseases such as malaria [17, 20],

hepatitis [21], tuberculosis [22], dengue [23], and COVID-19 [24],

and to understand the underlying dynamics of the target-mediated

drug disposition [25–27]. Co-infections by multiple pathogens

are common and theory predicts co-infections to have major

consequences for both within- and between-host disease dynamics

[17, 28]. The treatment of the co-infection of these diseases must

be initiated in a systemic manner because their drugs do not

always work well together. While some co-infection mathematical

models have been developed and analyzed to understand the

transmission dynamics of various diseases [3, 29, 30], such efforts

for a mathematical model to understand the visceral leishmaniasis

(VL) and tuberculosis (TB) co-infection have not taken place yet

(to the best of our knowledge). Therefore, in this study, we develop

and analyze a mathematical model designed to understand the

dynamics of VL and TB co-infection.

The manuscript is organized as follows: Section 2 presents a

development of the co-infection model. Section 3 presents the TB

sub-model while Section 4 presents the VL sub-model. The full co-

infection model with its analysis is provided in Section 5. Section 6

discusses the numerical results to validate the theoretical findings.

Finally, Section 7 concludes key results found in the present study.

2. Model formulation

The formulation of this co-infection closely follows the

epidemiological dynamics of the two diseases. The model analysis

and methods are related to study carried out by Mwamtobe et

al. [17] and Mtisi et al. [31]. Although similar to their study, the

general approach herein is unique in its own right.

2.1. Basic framework

The model assumes that the human population is divided into,

susceptible individuals (S), who are those exposed to TB-only (ET),

those who are infected with TB (IT), those who recover from TB

infection with temporal immunity (RT), those infected with visceral

leishmaniasis (IL), those who develop PKDL after the treatment

of visceral (PL), visceral leishmaniasis infected individuals having

TB symptoms (ITL), and then those who are recovered having

permanent immunity to visceral leishmaniasis (RL). The total

population size N(t) is given by

N(t) = S(t)+ET(t)+ IT(t)+RT(t)+ IL(t)+PL(t)+ ITL(t)+RL(t).

(1)

Similarly, the sandfly population is divided into two categories,

susceptible sandflies SV (t) and visceral leishmaniasis parasite-

infected sandflies IV (t) and hence,

NV (t) = SV (t)+ IV (t). (2)

The force of infection associated with TB infection in humans

is

λT =
βTcTIT

N
, (3)

where βT is the TB transmission probability and cT is per capital

contact rate. Similarly, the force of infection associated with visceral

leishmaniasis infection in humans is

λL =
βLcLmIV

N
, (4)
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where cL is the per capita biting rate of sandflies on humans,

m is a modification parameter accounting for the relative risk of

infectiousness of VL infected vector, and βL is the transmission

probability of VL per bite per human. Susceptible sandflies are

recruited at a constant rate3V and acquire leishmaniasis infection

at an average rate of

λV =
βVcL(IL + ITL + PL)

N
, (5)

following contact with leishmaniasis-infected humans. βV is the

transmission probability for sandfly infection, and sandflies have

a per capita natural mortality rate µV .

We assume that susceptible individuals are recruited into

the population at per capita rate 3 and there is a per capita

natural mortality rate µ in all the population classes. Susceptible

individuals with TB enter the latency stage at rate λT and then

progress to active TB at rate κ . Individuals latently infected with

TB also progress to active TB as a result of re-infection at rate

ψλT with ψ ∈ (0, 1) since primary infection confers some degree

of immunity. Individuals with TB suffer disease-induced death at

rate dT and recover at rate p. A fraction of individuals who recover

from TB could be infected with TB at rate q(1 − f ) or latently

infected at rate qf . Individuals infected with VL-only are generated

following infection at a rate λL. Infected individuals die due to VL

at an average rate dL or get treatment at an average rate α1. A

fraction σ of those who get treated recover and acquire permanent

immunity, while the other fraction (1 − σ ) develops PKDL. Those

individuals with PKDL get treated at an average rate α2 or recover

naturally at an average rate θ and acquire permanent immunity in

both cases. Individuals infected with TB can be infected with VL at

rate λL, while individuals infected with VL can be infected with TB

at rate λT .

2.2. The model

Putting the above formulations and assumptions together gives

the following system of differential equations:







































































































Ṡ = 3− λTS− λLS− µS,

ĖT = λTS− κET − ψλTET + qfλTRT + λTRL − µET ,

İT = κET + ψλTET + q(1− f )λTRT − pIT

−λLIT − (µ+ dT)IT ,

ṘT = pIT − qfλTRT − q(1− f )λTRT − λLRT − µRT ,

İL = λLS+ λLRT − σα1IL − (1− σ )α1IL − λTIL − (µ+ dL)IL,

ṖL = (1− σ )α1IL − (α2 + θ)PL − µPL,

ṘL = σα1IL − λTRL + (α2 + θ)PL − µRL,

İTL = λLIT + λTIL − (µ+ dT + dL)ITL,

ṠV = 3V − λVSV − µVSV ,

˙IV = λVSV − µV IV .

(6)

The model diagram is shown in Figure 1 and the model has

initial conditions given by







S(0) > 0, ET(0) ≥ 0, IT(0) ≥ 0, RT(0) ≥ 0, IL(0) ≥ 0,

PL(0) ≥ 0, RL(0) ≥ 0, ITL(0) ≥ 0, SV (0) > 0, IV (0) ≥ 0.

(7)

The parameters and their values of the model are summarized

in Table 1.

2.3. Invariant region and positivity of
solutions

The basic dynamical features of the co-infection model (6) are

summarized in the following Lemma.

Lemma 1. Let (S,ET , IT ,RT , IL, PL,RL, ITL, SV , IV ) be the solution of

the co-infection model (6) with initial conditions (7). The closed set

� = �H ×�V ,

where

�H =

{

(S+ ET + IT + RT + IL + PL + RL + ITL) ∈ R
8
+ :N ≤

3

µ

}

,

�V =

{

(SV + IV ) ∈ R
2
+ :NV ≤

3V

µV

}

,

is positively invariant and attracting for the co-infection model (6).

Proof. Adding the first eight equations in system (6), we have

dN

dt
= 3− µN − dTIT − dLIL

≤ 3− µN.

The comparison theorem [33] can be used to show that

0 ≤ N ≤ N(0)e−µt +
3

µ

(

1− e−µt
)

.

Thus, as t → ∞, 0 ≤ N ≤ 3
µ
. This implies that �H is an

attracting set with respect to the model (6). Similarly, adding the

last two equations in system (6), we have

dNV

dt
= 3V − µVN. (8)

Similarly, it can be shown that as t → ∞, 0 ≤ NV ≤ 3V
µV

implying that�V is an attracting set with respect to model (6).

Thus, it follows that all possible solutions of the model (6) will

enter the region

� = �H ×�V .

Lemma 2. Let the initial data be as given in 7. Then, the solution set

{S,ET , IT ,RT , IL, PL,RL, ITL, SV , IV } of system (6) is positive for all

t > 0.
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FIGURE 1

Compartment diagram of visceral leishmaniasis and tuberculosis co-infection. The dashed lines show that the infected sandflies (IV ) infect

susceptible individuals (S). Individuals infected with VL (IL), those who develop PKDL after the treatment of VL (PL) and VL infected individuals having

TB symptoms (ITL) infect susceptible sandflies (SV ).

Proof. From the first equation of system (6), we have

Ṡ = 3− λTS− λLS− µS

≥ −λTS− λLS− µS.

Simple integration techniques yields

S(t) ≥ S(0)e−(λT+λL+µ)t > 0 since λT +λL+µ > 0.

Similarly, it can be shown that the remaining variables are also

positive for all t > 0.

These lemmas verify that every solution of the co-infection

model (6) with initial conditions in � remains there for t >

0. Furthermore, in �, the usual existence, uniqueness, and

continuation results hold for the system so that the model system

(6) is well posed mathematically and epidemiological. Thus, it is

sufficient to consider the dynamics of the co-infection model (6)

in�.

Next, we consider the dynamics of the two sub-models,

namely, TB-only and VL-only models. This will help to lay

down the foundation for the qualitative analysis of the full

co-infection model.

3. TB sub-model

The TB sub-model is given by























Ṡ = 3− λTS− µS,

ĖT = λTS− κET − ψλTET + fqλTRT − µET ,

İT = κET + ψλTET + q(1− f )λTRT − pIT − (µ+ dT)IT ,

ṘT = pIT − qfλTRT − q(1− f )λTRT − µRT ,

(9)

with initial conditions (IC)

S(0) > 0,ET(0) ≥ 0, IT(0) ≥ 0,RT(0) > 0. (10)

Here, the total human population is NT = S + ET + IT + RT .

The parameters of the TB sub-model are as described in Table 1.

The basic dynamical features of the TB sub-model model (9) are

summarized in the following Lemma.

Lemma 3. Let the solution of system (9) be (S,ET , IT ,RT)with initial

conditions (10). The closed set

GT =

{

S,ET , IT ,RT ∈ R≥0 :NT ≤
3

µ

}

. (11)

is positively invariant and attracting under the flow governed by

model system (9).

Proof. Adding all the equations in the system (9), we obtain

dNT

dt
= 3− µNT − dTIT ,

≤ 3− µNT .

The comparison theorem can be used to show that

0 ≤ NT ≤ NT(0)e
−µt +

3

µ

(

1− e−µt
)

.

Thus, as t → ∞, 0 ≤ NT ≤ 3
µ
. This implies that GT is an attracting

set with respect to model (9).
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TABLE 1 Descriptions and values of parameters of the co-infection model

(6).

Description Parameter Value Unit References

Recruitment rate 3 µN yr−1 [32]

Human natural

mortality rate

µ 0.002 yr−1 [32]

Contact rate

associated with

TB

cT 3/365 yr−1 Assumed

Death rate due to

TB

dT 0.1 yr−1 [32]

Probability of

being infected

βT 0.075 yr−1 [32]

Natural rate of

progression to

active TB

κ 0.00913 yr−1 [32]

Natural recovery

rate

p 0.0005 yr−1 Assumed

Relapsing rate q 0.0001 yr−1 [32]

Modification

parameter

ψ 0.71 yr−1 [32]

Death rate due to

VL

dL 0.00011 yr−1 [3]

Recovering rate

from VL after

treatment

σ 0.5 yr−1 [3]

Natural recovery

rate from PKDL

α2 0.00556 yr−1 [3]

Recovery rate

from PKDL after

treatment

θ 0.003 yr−1 [3]

Treatment rate of

VL

α1 0.5 yr−1 [3]

Transmission

probability per

bite per human

βL 0.00055 yr−1 [3]

Transmission

probability for

sandfly

βV 0.0714 yr−1 [3]

Biting rate of

sandflies

cL 0.002 yr−1 [3]

Modification

parameter

m 0.25 yr−1 Assumed

Sandflies natural

mortality rate

µV 0.189 yr−1 [3]

Sandflies

recruitment rate

3V µVNV yr−1 Assumed

3.1. TB sub-model disease-free equilibrium

The disease-free equilibrium (DFE) for the TB sub-model (9) is

given by

E0 =

(

S0,ET0 , IT0 ,RT0

)

=

(

3

µ
, 0, 0, 0

)

. (12)

According to the next-generation matrix approach in van den

Driessche and Watmough [14], to compute the basic reproduction

of the TB sub-model, we set X = (ET , IT ,RT)
T and rewrite the

model (9) in the matrix form

dX

dt
= F(X)− V(X), (13)

where

F =







λTS

0

0






and

V =







κET + ψλTET − fqλTRT + µET
−κET − ψλTET − q(1− f )λTRT + pIT + (µ+ dT)IT

−pIT + q(1− f )λTRT + µRT






.

At the equilibrium point E0, the Jacobian matrices of F and V

are

F =







0 βTcT 0

0 0 0

0 0 0






and V =







κ + µ 0 0

−k p+ µ+ dT 0

0 −p µ






.

It follows that the TB sub-model reproduction number is given by

R1 =
κβTcT

(µ+ κ)(µ+ dT + p)
. (14)

A value ofR1 less than one indicates that TB will be eliminated

while a value greater than one indicates that a TB infection will

continue to spread within the susceptible hosts.

Theorem 1. The disease-free equilibrium point of the TB-only

sub-model (9) is locally asymptotically stable if R1 < 1 and

unstable otherwise.

Proof. The Jacobian matrix of model (9) at the disease-free

equilibrium E0 is

J0 =











−µ 0 −βTcT 0

0 −(κ + µ) βTcT 0

0 κ −(p+ µ+ dT) 0

0 0 p −µ











. (15)

The characteristic equation of matrix J0 is

(λ+ µ)2
(

(κ + λ+ µ)
(

dT + λ+ µ+ p
)

− κcTβT
)

= 0, (16)

where the eigenvalues can be obtained using the approach in

[34]. Two eigenvalues of matrix J0 are −µ (twice) and are both

negative. The remaining two eigenvalues can be found by finding

the eigenvalues of the sub-matrix

A =

(

−(κ + µ) βTcT
κ −(p+ µ+ dT)

)

. (17)

By definition, the eigenvalues of matrix A are real and negative

if tr(A) < 0 and det(A) > 0 (Routh-Hurwitz criterion). Thus, the

trace and determinant of matrix A are

tr(A) = −dT − κ − 2µ− p, (18)

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2023.1153666
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Egbelowo et al. 10.3389/fams.2023.1153666

det(A) = (κ + µ)
(

dT + µ+ p
)

− κcTβT ,

= (κ + µ)(p+ µ+ dT)(1−R1), (19)

respectively. Since all model parameters are assumed to be non-

negative, it follows that tr(A) < 0 regardless of the value of R1.

We also have that det(A) > 0 if and only ifR1 < 1.

Therefore, we conclude that if R1 < 1, then tr(A) < 0 and

det(A) > 0, implying that all the eigenvalues of matrix J0 have

a negative real part. The disease-free equilibrium R1 is locally

asymptotically stable. If R1 ≥ 1, then det(A) ≤ 0, which proves

the instability of E0.

3.2. Existence of the endemic equilibrium

The endemic equilibrium is the equilibrium (EE) of model (9)

in which the infected component of the system is non-zero. The

endemic equilibrium E1 = (S∗,ET∗, IT∗,RT∗) in terms of the force

of infection λ∗T is given by

S∗ =
3

λ∗T + µ
,

ET∗ =
λ∗T3

(

dT(µ+ λ∗Tq)+ fλ∗Tpq+ µ(µ+ p+ λ∗Tq)
)

(λ∗T + µ)
(

dT(µ+ λ∗Tq)(κ + λ
∗
Tψ + µ)+ µ(p(fλ∗Tq+ κ + λ

∗
Tψ + µ)+ (µ+ λ∗Tq)(κ + λ

∗
Tψ + µ))

) ,

IT∗ =
λ∗T3(κ + λ

∗
Tψ)(µ+ λ∗Tq)

(λ∗T + µ)
(

dT(µ+ λ∗Tq)(κ + λ
∗
Tψ + µ)+ µ(p(fλ∗Tq+ κ + λ

∗
Tψ + µ)+ (µ+ λ∗Tq)(κ + λ

∗
Tψ + µ))

) ,

RT∗ =
λ∗T3p(κ + λ

∗
Tψ)

(λ∗T + µ)
(

dT(µ+ λ∗Tq)(κ + λ
∗
Tψ + µ)+ µ(p(fλ∗Tq+ κ + λ

∗
Tψ + µ)+ (µ+ λ∗Tq)(κ + λ

∗
Tψ + µ))

) ,

where

λ∗T =
βTcTIT∗

NT∗
. (20)

Substituting E1 into Equation (20) and simplifying yields the

cubic equation

a0λ
∗3
T + a1λ

∗2
T + a2λ

∗
T + a3 = 0, (21)

where

a0 = qψ ,

a1 = ψ(−βTcTq+ µ+ p+ µq)+ q(ψ + 1)dT + q(fp+ κ + µ),

a2 = −cTβT(µψ + κq)+ dT(µψ + µ+ q(κ + µ))

+ p(µ(fq+ ψ + 1)+ κ)+ µ(µψ + (q+ 1)(κ + µ)),

a3 = µ(µ+ κ)(p+ µ+ dT)(1−R1).

Thus, the endemic equilibrium E1 of the TB sub-model is

obtained by solving Equation (21) for positive λ∗T and substituting

back into the equations in E1. The number of possible positive real

roots of the cubic polynomial Equation (21) depends on the signs

of a0, a1, a2, and a3. We investigate this by using the Descartes

rule of signs. The rule asserts that the number of positive roots is

at most the number of sign changes in the sequence of polynomial

coefficients. The possibilities are illustrated in Table 2.

The outcomes are established in the following theorem.

Theorem 2. The TB sub-model (9) has the following features:

TABLE 2 Number of possible positive roots of the cubic polynomial (21).

Cases a0 a1 a2 a3 R1 Changes
in sign

Total
positive
roots

1 + − − − R1 > 1 1 1

2 + + − − R1 > 1 1 1

3 + + + − R1 > 1 1 1

4 + − + − R1 > 1 3 3 or 1

5 + − − + R1 < 1 2 2 or 0

6 + + − + R1 < 1 2 2 or 0

7 + − + + R1 < 1 2 2 or 0

8 + + + + R1 < 1 0 0

1. A unique endemic equilibrium whenR1 > 1 and cases 1–3 hold.

2. One or more endemic equilibrium whenR1 > 1 and case 4 holds,

as well as whenR1 < 1 and cases 5-7 hold.

3. No endemic equilibrium when R1 < 1 and case 8 holds. This is

the case when all coefficients are positive.

3.3. Backward bifurcation

For model (9), the existence of multiple TB persistence

equilibria E1 for R1 suggests the possibility of the backward

bifurcation phenomenon. Epidemiologically, it suggests that R1

may not be sufficient to decide whether or not TB would persist

in the population. Instead, it depends on the initial population size

of the individuals whenR1 < 1. We investigate and set a threshold

for the presence of backward bifurcation in system (9).

From Theorem 1 and 2, we see that if we consider R1 as

a bifurcation parameter, then there is an exchange of stability

properties between equilibrium E0 and E1 at R1 = 1. We

investigate the nature of bifurcation involving E0 at R1 = 1 based

on the use of the center manifold theory [15]. First, consider the

case whenR1 = 1 and solve for βT to obtain

βT = β∗T =
(κ + µ)

(

dT + µ+ p
)

cTκ
.

The βT = β∗T is chosen as the bifurcation parameter.

Furthermore, the Jacobian of system (9) evaluated at E0 with βT =

β∗T is given by

J(E0,β
∗
T) =

















−µ 0 −
(κ + µ)

(

p+ µ+ dT
)

κ
0

0 −κ − µ
(κ + µ)

(

p+ µ+ dT
)

κ
0

0 κ −p− µ− dT 0

0 0 p −µ

















.
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The J(E0,β
∗
T) has only one eigenvalue with zero real part.

This then implies that the model (9) with βT = β∗T has at least

one non-hyperbolic equilibrium point. We then use the center

manifold approach to further analyze the dynamics of model (9).

Corresponding to the zero eigenvalue, the Jacobian J(E0,β
∗
T) has a

right eigenvector given by w = (w1,w2,w3,w4)
T , where

w1 = −
(κ + µ)

µ
w2, w3 =

κ

dT + µ+ p
w2,

w4 =
κp

µ
(

dT + µ+ p
)w2, w2 > 0,

and a left eigenvector given by v = (v1, v2, v3, v4)
T , where

v1 = v4 = 0, v3 =
κ + µ

κ
v2, v2 > 0.

We then follow the analysis as carried out by [16, 17]. Compute

the coefficients â and b̂ defined in theorem 4.1 by Castillo-Chavez

and Song [15].

Computation of â and b̂

The â and b̂ are given by

â =

4
∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj

∣

∣

∣

∣

∣

∣

E0

,

b̂ =

4
∑

k,i=1

vkwi
∂2fk

∂xi∂βT

∣

∣

∣

∣

∣

∣

E0

.

We use the center manifold approach on the model system (9).

Let S = x1, E = x2, I = x3, and R = x4. ThenN = x1+x2+x3+x4
so that

x
′

1 = f1 = 3−
βTcTx3x1

x1 + x2 + x3 + x4
− µx1,

x
′

2 = f2 =
βTcTx3x1

x1 + x2 + x3 + x4
− κx2 −

ψβTcTx3x2

x1 + x2 + x3 + x4

+
qfβcx3x4

x1 + x2 + x3 + x4
− µx2,

x
′

3 = f3 = κx2 +
ψβTcTx3x2

x1 + x2 + x3 + x4
+

q(1− f )βTcTx3x4

x1 + x2 + x3 + x4

− px3 − (µ+ dT)x3,

x
′

4 = f4 = px3 −
qfβTcTx3x4

x1 + x2 + x3 + x4
−

q(1− f )βTcTx3x4

x1 + x2 + x3 + x4
− µx4.

The associated non-zero partial derivatives of fi = (f1, f2, f3, f4)
T

at E0 are given by

∂2f2

∂x2∂x3
=

∂2f2

∂x3∂x2
= −

cTβTµ(1+ ψ)

3
,

∂2f2

∂x23
= −

2cTβTµ

3
,

∂2f2

∂x3∂x4
=

∂2f2

∂x4∂x3
=

cT(fq− 1)βTµ

3
,

∂2f3

∂x2∂x3
=

∂2f3

∂x3∂x2
=

cTβTψµ

3
,

∂2f3

∂x3∂x4
=

∂2f3

∂x4∂x3
=

cT(1− f )βTqµ

3
.

Using the above expressions, the coefficients â is given by

â = v2
∑

i,j=1

wiwj
∂2f2

∂xi∂xj
+ v3

∑

i,j=1

wiwj
∂2f3

∂xi∂xj

=
2µdT

3(µ+ dT + p)

[

µψβTcT

dT(κ + µ)

−R1

(

1+
µ(κ + µ)+ p(κ − qκ + µ− (1− f )qµ)

µdT

)]

v2w
2
2.

For the sign of b̂, we chose βT as the bifurcation parameter and

it can be shown that the associated non-zero partial derivatives of fi
at E0 are given by

∂2f1

∂x3∂βT
= −cT ,

∂2f2

∂x3∂βT
= cT ,

so that

b̂ = v2w3
∂2f2

∂x3∂βT
=

cTκ

dT + µ+ p
v2w2.

It is seen that b̂ is always positive, while â can either be positive

or negative. Depending on the signs of â and b̂, we establish the

following lemmas

Lemma 4. If â < 0 and b̂ > 0, then the TB sub-model model (9)

undergoes forward bifurcation which occurs atR1 = 1.

Lemma 5. If â > 0 and b̂ > 0, then the TB sub-model model (9)

undergoes backward bifurcation which occurs atR1 = 1.

Hence, the positivity of â offers the threshold circumstance for

the phenomenon of backward bifurcation.

4. Visceral leishmaniasis sub-model

The visceral leishmaniasis (VL) sub-model is given by















































Ṡ = 3− λLS− µS,

İL = λLS− σα1IL − (1− σ )α1IL − (µ+ dL)IL,

ṖL = (1− σ )α1IL − (α2 + θ)PL − µPL,

ṘL = σα1IL + (α2 + θ)PL − µRL,

ṠV = 3V − λVSV − µVSV ,

˙IV = λVSV − µV IV .

(22)

The force of VL infection in humans is λL =
βLcLmIV

NL
.

Susceptible individuals are infected with visceral leishmaniasis

following contact with infected sandflies at a per capita rate λV =
βVcL(IL + PL)

NL
. Here, we have that the total human population is

NL = S+ IL + PL + RL. The total human population dynamics for

the VL sub-model are given by

ṄL = 3− µNL − dLIL. (23)
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Given that the initial conditions are non-negative, i.e., NL(0) ≥

0, the total human population is positive and bounded for all finite

time t > 0. The dynamics of the sandflies population are given by

ṄV = 3V − µVNV . (24)

We conclude that all feasible solutions for the human

population enter the region

GL =

{

S, IL, PL,RL ∈ R≥0 : 0 ≤ NL ≤
3

µ

}

, (25)

while feasible solutions for the sandflies population entering the

region,

GV =

{

SV , IV ∈ R≥0 : 0 ≤ NV ≤
3V

µV

}

. (26)

4.1. The disease-free equilibrium

The disease-free equilibrium (DFE) for the VL-only model is

given by

Q0 =

(

S, IL, PL,RL, SV , IV

)

=

(

3

µ
, 0, 0, 0,

3V

µV
, 0

)

. (27)

According to the next-generation matrix approach, to compute

the basic reproduction of the VL sub-model we set X =

(IL, PL,RT , S, IV , SV )
T and rewrite the model (22) in the matrix

form

dX

dt
= F(X)− V(X), (28)

where

F =







λLS

0

λVSV






and V =







σα1IL + (1− σ )α1IL + (µ+ dL)IL
(α2 + θ + µ)PL − (1− σ )α1IL

µV IV






.

At the equilibrium pointQ0, the Jacobian matrices of F and V

are

F =









0 0 βLcLm

0 0 0
µcLβV3V

3µV

µcLβV3V
3µV

0









and

V =







α1 + µ+ dL 0 0

−(1− σ )α1 α2 + θ + µ 0

0 0 µV






.

As such, the VL sub-model reproduction number is given by

R2 =

√

µmc2LβLβV3V (α1(1− σ )+ α2 + θ + µ)

3µ2
V (α2 + θ + µ)(α1 + dL + µ)

. (29)

Theorem 3. The disease-free equilibrium point of the VL-only sub-

model (22) is locally asymptotically stable if R2 < 1 and unstable

whenR2 > 1.

Proof. The Jacobian of model (22) at the disease-free equilibrium

Q0 is

J1 =

























−µ 0 0 0 0 −βLcLm

0 −(µ+ dL + (1− σ )α1 + σα1) 0 0 0 βLcLm

0 (1− σ )α1 −(α2 + θ + µ) 0 0 0

0 σα1 α2 + θ −µ 0 0

0 −
βVcL3Vµ

µV3
−
βVcL3Vµ

µV3
0 −µV 0

0
βVcL3Vµ

µV3

βVcL3Vµ

µV3
0 0 −µV

























. (30)

The matrix J1 has three negative eigenvalues −µ (twice)

and µV . The remaining eigenvalues are found by finding the

eigenvalues of

B =









−(µ+ dL + (1− σ )α1 + σα1) 0 βLcLm

(1− σ )α1 −(α2 + θ + µ) 0
βVcL3Vµ

µV3
−
βVcL3Vµ

µV3
−µV









.

(31)

The characteristic polynomial of B is

λ3 + a2λ
2 + a1λ+ a0 = 0, (32)

where

a2 = α1 + α2 + dL + θ + 2µ+ µV ,

a1 = −
µmc2LβLβV3V

3µV
+ (α2 + θ + µ)

(

α1 + dL + µ
)

+ µV

(

α1 + α2 + dL + θ + 2µ
)

,

a0 = (µ+ dL + α1)(θ + α2 + µ)
[

1−R2
2

]

.

The Routh-Hurwitz criteria reveals that the roots of polynomial

(32) have negative real parts if

a0 > 0, a2 > 0, a2a1 > a0.

We observe that a2 > 0 always and a0 > 0 ifR2 < 1.With a simple

expansion, we can show that a2a1 > a0 (i.e., a2a1 − a0 > 0) if

R2 < 1. Therefore, the disease-free equilibriumQ0 is locally stable

whenR2 < 1.
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4.2. Existence of the endemic equilibrium

The endemic equilibrium of model (22) is given by E2 =

(Ŝ, ÎL, P̂L, R̂L, ŜV , ˆIV ) as functions of the forces of infection λ̂L and

λ̂V

Ŝ =
3

µ+ λL
,

ÎL =
3λL

(µ+ λL)
(

α1 + dL + µ
) ,

P̂L =
α13(1− σ )λL

(α2 + θ + µ) (µ+ λL)
(

α1 + dL + µ
) ,

R̂L =
α13λL (α2 + θ + µσ)

µ (α2 + θ + µ) (µ+ λL)
(

α1 + dL + µ
) ,

ŜV =
3v

λv + µv
,

ˆIV =
λv3v

µv (λv + µv)
,

where

λ̂L =
βLcLm ˆIV

N̂L

and λ̂V =
βVcL(ÎL + P̂L)

N̂L

. (33)

Substituting E2 into Equation (33) and simplifying yields the

quadratic equation

aλ̂2L + bλ̂L + c = 0, (34)

where

a = 3(α1 + µ)µv

(

µcLβv
(

α1(1− σ )+ α2 + θ + µ
)

+ (α1 + µ)µv (α2 + θ + µ)) , (35)

b = 3µµ2
v

(

α1 + dL + µ
)2
(α2 + θ + µ)

[

2(µ+ α1)

α1 + dL + µ
+R2

2

(

3µv

mβLcL3v
− 1

)]

, (36)

c = 3µ2µ2
v

(

α1 + dL + µ
)2
(α2 + θ + µ)

(

1−R2
2

)

. (37)

Therefore, the endemic equilibrium E2 of the VL sub-model

(22) is obtained by solving Equation (34) for positive λ∗ and

substituting back into the equations in E2. To find the solutions

of Equation (34), we make the following observations: a is always

positive, while b and c may be positive or negative depending on

the signs ofR2, i.e., we have

a > 0, b =

{

> 0

< 0
and c =

{

> 0 ifR2 < 1

< 0 ifR2 > 1.

(38)

From Equation (38), five cases in determining the solution/roots of

Equation (34) arise:

(i) Case 1: If R2 < 1, then c > 0 and so Equation (34) has two

positive roots when b < 0.

(ii) Case 2: If R2 < 1, then c > 0 and so Equation (34) has no

positive roots (two negative roots) when b < 0.

(iii) Case 3: If R2 > 1, then c < 0 and so Equation (34) has one

positive root when b > 0.

(iv) Case 4: IfR2 > 1, then c < 0 and so Equation (34) also has one

positive root when b < 0.

(v) Case 5: WhenR2 = 1, Equation (34) reduces to λ̂L(aλ̂+b) = 0,

at which λ̂L = 0 (corresponding to the disease-free equilibrium

Q0) and λ̂L = −b
a is a positive root when b < 0 and negative

root (biologically meaningless) when b > 0.

Furthermore, the critical value of R2 denoted by Rc in the case

whenR2 < 1 is found by setting the discriminant △= b2 − 4ac to

be zero. This yields

Rc =

√

√

√

√1−
b2

4a3µ2µ2
v

(

α1 + dL + µ
)2
(α2 + θ + µ)

. (39)

Thus, the following connections hold

• △< 0 ⇐⇒ R2 < Rc.

• △= 0 ⇐⇒ R2 = Rc.

• △> 0 ⇐⇒ R2 > Rc.

It can be shown that backward bifurcation occurs for values

of R2 such that Rc < R2 < 1. The existence of the endemic

equilibrium of model (22) is summarized as follows:

Theorem 4. The VL sub-model (22) has those as follows:

1. a unique endemic equilibrium ifR2 > 1;

2. two endemic equilibria exists, one of which is locally stable, if

b < 0 andR2 < 1;

3. otherwise, the DFE is the only unique attractor ifR2 < 1.

From Theorems 3 and 4, model (22) has the usual bifurcation

at R2 = 1. If we consider R2 as the bifurcation parameter,

then by definition, there is a switch in stability properties between

equilibrium pointQ0 and E2 atR2 = 1. Under certain conditions,

model (22) exhibits a backward bifurcation, in which the endemic

equilibrium exists for R2 < 1. Setting R2 = 1 and solving for βL
yields

βL = β∗L =
3µ2

v (α2 + θ + µ)
(

α1 + dL + µ
)

µmc2Lβv3v

(

α1(1− σ )+ α2 + θ + µ
) ,

and βL = β∗L is chosen as the bifurcation parameter.

Determining the conditions for the nature of bifurcation using

center manifold theory follows as outlined in the sections above.

The Jacobian of the system (22) evaluated at E1 with βL = β∗L is

given by

J(E1,β
∗
1 ) =























−µ 0 0 0 0 −
3(µ+dL+α1)(θ+µ+α2)µ2

V

µcL(θ+µ(1−σ )α1+α2)βV3V

0 −µ− dL − (1− σ )α1 − σα1 0 0 0
3(µ+dL+α1)(θ+µ+α2)µ2

V

µcL(θ+µ(1−σ )α1+α2)βV3V

0 (1− σ )α1 −θ − µ− α2 0 0 0

0 σα1 θ + α2 −µ 0 0

0 −
µcLβV3V
3µV

−
µcLβV3V
3µV

0 −µV 0

0 µcLβV3V
3µV

µcLβV3V
3µV

0 0 −µV























.
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The Jacobian J(E1,β
∗
L ) has a right eigenvector given by w =

(w1,w2,w3,w4,w5,w6)
T , where

w1 = −

(

α1 + dL + µ
)

µ
w2, w3 =

α1(1− σ )

α2 + θ + µ
w2,

w4 =
α1 (α2 + θ + µσ)

µ (α2 + θ + µ)
w2, w2 > 0,

w5 = −
µcLβV3V

(

α1(1− σ )+ α2 + θ + µ
)

3µ2
V (α2 + θ + µ)

w2,

w6 =
µcLβV3V

(

α1(1− σ )+ α2 + θ + µ
)

3µ2
V (α2 + θ + µ)

w2,

and a left eigenvector given by v = (v1, v2, v3, v4, v5, v6)
T , where,

v1 = v4 = v5 = 0, v3 =

(

α1 + dL + µ
)

α1(1− σ )+ α2 + θ + µ
v2,

v6 =
3µV (α2 + θ + µ)

(

α1 + dL + µ
)

µcLβV3V

(

α1(1− σ )+ α2 + θ + µ
)v2, v2 > 0.

Computation of â and b̂

The â and b̂ are given by

â =

6
∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj

∣

∣

∣

∣

∣

∣

E1

,

b̂ =

6
∑

k,i=1

vkwi
∂2fk

∂xi∂βL

∣

∣

∣

∣

∣

∣

E1

.

We use the center manifold approach on themodel system (22).

Let S = x1, IL = x2, PL = x3, RL = x4, SV = x5, and IV = x6. Then

N = x1 + x2 + x3 + x4 and NV = x5 + x6 so that

x
′

1 = f1 = 3−
βLcLmx6x1

x1 + x2 + x3 + x4
− µx1,

x
′

2 = f2 =
βLcLmx6x1

x1 + x2 + x3 + x4
− σα1x2

− (1− σ )α1x2 − (µ+ dL)x2,

x
′

3 = f3 = (1− σ )α1x2 − (α2 + θ)x3 − µx3,

x
′

4 = f4 = σα1x2 + (α2 + θ)x3 − µx4,

x
′

5 = f5 = 3L −
βVcL(x2 + x3)x5

x1 + x2 + x3 + x4
− µVx5,

x
′

6 = f6 =
βVcL(x2 + x3)x5

x1 + x2 + x3 + x4
− µVx6.

The associated non-zero partial derivatives of fi =

(f1, f2, f3, f4, f5, f6)
T at E1 are given by

∂2f2

∂x2∂x6
=

∂2f2

∂x3∂x6
=

∂2f2

∂x4∂x6
=

∂2f2

∂x6∂x2
=

∂2f2

∂x6∂x3

=
∂2f2

∂x6∂x4
= −

µmcLβL

3
,

∂2f6

∂x1∂x1
=

∂2f6

∂x1∂x3
=

∂2f6

∂x2∂x1
=

∂2f6

∂x2∂x4
=

∂2f6

∂x3∂x1

=
∂2f6

∂x3∂x4
=

∂2f6

∂x4∂x2
=

∂2f6

∂x4∂x3
= −

µ2cLβV3V

32µV
,

∂2f6

∂x2∂x2
=

∂2f6

∂x2∂x3
=

∂2f6

∂x3∂x2
=

∂2f6

∂x3∂x3
= −

2µ2cLβV3V

32µV
,

∂2f6

∂x2∂x5
=

∂2f6

∂x3∂x5
=

∂2f6

∂x5∂x2
=

∂2f6

∂x5∂x3
=
µcLβL

3
.

Using the above expressions, the coefficients â is given by

â = v2
∑

i,j=1

wiwj
∂2f2

∂xi∂xj
+ v6

∑

i,j=1

wiwj
∂2f6

∂xi∂xj

=
2v2w

2
2dL(µ+ dL + α1)

3
[

1−
(µ+ α1)

dL
R2 −

µcLβV (θ + µ+ (1− σ )α1 + α2)

µV (θ + µ+ α2)

]

.

For the sign of b̂, we chose βL as the bifurcation parameter. The

associated non-zero partial derivatives of fi at E1 are given by

∂2f1

∂x6∂βL
= −mcL,

∂2f2

∂x6∂βL
= mcL,

so that

b̂ = v2w6
∂2f2

∂x6∂βL

=
µmc2LβV3V

(

α1(1− σ )+ α2 + θ + µ
)

3µ2
V (α2 + θ + µ)

v2w2.

It is seen that b̂ is always positive, while â can either be positive

or negative. Depending on the signs of â and b̂, we establish the

following lemmas:

Lemma 6. If â < 0 and b̂ > 0, then the VL sub-model model (22)

undergoes forward bifurcation which occurs atR2 = 1.

Lemma 7. If â > 0 and b̂ > 0, then the VL sub-model model (22)

undergoes backward bifurcation which occurs atR2 = 1.

Hence, the positivity of â offers the threshold circumstance for the

phenomenon of backward bifurcation.

5. The full visceral leishmaniasis and
tuberculosis co-infection model

In this section, we investigate the dynamical properties of

the model (6). For convenience, we introduce the following new

parameters:

ζ1 = κ + µ,

ζ2 = p+ µ+ dL,

ζ3 = α1 + µ+ dL,

ζ4 = α2 + θ + µ,

ζ5 = µ+ dT + dL.

(40)

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2023.1153666
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Egbelowo et al. 10.3389/fams.2023.1153666

5.1. The disease-free equilibrium

The disease-free equilibrium (EE) of the full model (6) is given

as

EF1 =

(

S,ET , IT ,RT , IL, PL,RL, ITL, SV , IV

)

=

(

3

µ
, 0, 0, 0, 0, 0, 0, 0,

3V

µV
, 0

)

. (41)

We now use the next-generation matrix approach to compute

the basic reproduction of the model (6). For this purpose, we set

X = (ET , IT ,RT , IL, PL,RT , ITL, S, IV , SV )
T and rewrite the model

(6) in the matrix form

dX

dt
= F(X)− V(X), (42)

where

F =







































































λTS

0

0

λLS+ λLRT

0

0

0

0

λVSV

0







































































, and

V =







































































ζ1ET + ψλTET − qfλTRT − λTRL

−κET − ψλTET − q(1− f )λTRT + ζ2IT + λLIT

−pIT − ǫET + qfλTRT + q(1− f )λTRT + λLRT + µRT

ζ3IL + λT IL

−(1− σ )α1IL + ζ4PL

−σα1IL + λTRL − (α2 + θ)PL + µRL

−λLIT − λT IL + ζ5ITL

−3+ λTS+ λLS+ µS

µV IV

−3V + λVSV + µVSV







































































(43)

We carry out the remainder of the calculations as before. The

dominant eigenvalues of FV−1 are



















R1 =
βTcTκ

(µ+ κ)(µ+ dT + p)
,

R2 =

√

µmc2LβLβV3V (α1(1− σ )+ α2 + θ + µ)

3µ2
V (α2 + θ + µ)(α1 + dL + µ)

.

(44)

and these correspond to the reproduction numbers for the

TB transmission model and the leishmaniasis transmission model,

respectively. Thus, the basic reproduction number, R0, for the full

model (6) is given by

R0 = max{R1,R2}. (45)

Theorem 5. The disease-free equilibrium point EF1 of the full model

(6) is locally asymptotically stable if R0 < 1 and unstable when

R0 > 1.

5.2. Bifurcation parameters

The TB and VL-only sub-models are shown to exhibit the

phenomenon of backward bifurcation and consequently, the full

co-infection model will exhibit the same feature. Below, we derive

the bifurcation parameters for the full co-infection model (6). Let

S = x1, ET = x2, IT = x3, RT = x4, IL = x5, PL = x6, RL = x7,

ITL = x8, SV = x9, and IV = x10. Hence,

Nc = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8, (46)

Nc
V = x9 + x10. (47)

Letting X = (x1, x2, . . . , x10)
T , the full co-infection model (6)

can be written in the form
dX

dt
= F(X), where F = (f1, f2, . . . , f10),

as

ẋ1 = f1 = 3− λcTx1 − λ
c
Lx1 − µx1,

ẋ2 = f2 = λcTx1 − κx2 − ψλ
c
Tx2 + qfλcTx4 + λ

c
Tx7 − µx2,

ẋ3 = f3 = κx2 + ψλ
c
Tx2 + q(1− f )λcTx4 − px3 − λ

c
Lx3

− (µ+ dT)x3,

ẋ4 = f4 = px3 − qfλcTx4 − q(1− f )λcTx4 − λLx4 − µx4,

ẋ5 = f5 = λcLx1 + λ
c
Lx4 − σα1x5 − (1− σ )α1x5 − λ

c
Tx5

− (µ+ dL)x5,

ẋ6 = f6 = (1− σ )α1x5 − (α2 + θ)x6 − µx6,

ẋ7 = f7 = σα1x5 − λ
c
Tx7 + (α2 + θ)x6 − µx7,

ẋ8 = f8 = λcLx3 + λ
c
Tx5 − (µ+ dT + dL)x8,

ẋ9 = f9 = 3V − λcVx9 − µVx9,

ẋ10 = f10 = λcVx9 − µVx10,

and

λcT =
βTcTx3

Nc
, λcL =

βLcLmx10

Nc
, and

λcV =
βvcL(x5 + x6)

Nc
.

The Jacobian matrix of the system above at the DFE point EF1
is given by
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FIGURE 2

Simulation of tuberculosis sub-model.

JF1 =











































−µ 0 −βTcT 0 0 0 0 0 0 −βLcLm

0 −ζ1 βTcT 0 0 0 0 0 0 0

0 κ −ζ2 0 0 0 0 0 0 0

0 0 p −µ 0 0 0 0 0 0

0 0 0 0 −ζ3 0 0 0 0 βLcLm

0 0 0 0 (1− σ )α1 −ζ4 0 0 0 0

0 0 0 0 σα1 α2 + θ −µ 0 0 0

0 0 0 0 0 0 0 −ζ5 0 0

0 0 0 0 −
µcLβV3V

3µV
−
µcLβV3V

3µV
0 0 −µV 0

0 0 0 0
µcLβV3V

3µV

µcLβV3V

3µV
0 0 0 −µV











































. (48)

By computing the eigenvalues of the Jacobian JF1, it can

be shown that R0 = max{R1,R2}, where R1 and R2 are

as previously defined. R0 = max{R1,R2}, hence, there is no

competitive exclusion and the two diseases amplify each other.

Thus, when R1 > 1 and R2 > 1, there is always co-existence

no matter which of the reproduction numbers is greater. Although

R0 does not combine the two reproduction numbers, by only

studying the two diseases in isolation, we would miss the dual TB-

visceral leishmaniasis co-infection, which has different dynamics to

that of TB-only and visceral leishmaniasis only sub-models. Some

additional insights are derived from studying the interaction of the

two diseases, hence the full model. If max{R1,R2} = R1, then,
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FIGURE 3

Simulation of visceral leishmaniasis sub-model.

from Theorem 2, the TB-VL co-infection model exhibits backward

bifurcation for values ofR1 such that Lemma 5 holds.

On the contrary, if max{R1,R2} = R2, and choosing βL
as the bifurcation parameter, then, the phenomenon of backward

bifurcation occurs for values of R2 such that Lemma 7 holds.

Consequently, the full model will also exhibit the phenomenon of

backward bifurcation whenR0 = 1.

5.3. Endemic equilibrium

The endemic equilibrium E4 of the full model system (6) is

given by

S2 =
3

λ∗T + λ∗L + µ
,

IT2 =
(κ + ψ)(qλ∗T + λ∗L + µ)ET2

(qλ∗T + λ∗L + µ)(p+ λ
∗
L + µ+ dT )− q(1− f )pλ∗T

,

RT2 =

p(κ + ψ)(qλ∗T + λ∗L + µ)ET2
(

qλ∗T + λ∗L + µ

)[

(qλ∗T + λ∗L + µ)(p+ λ
∗
L + µ+ dT )− q(1− f )pλ∗T

] ,

IL2 =
λ∗LS2 + λ

∗
LRT2

α1 + λ
∗
T + µ+ dT

,

PL2 =
α1(1− σ )(λ

∗
LS2 + λ

∗
L)

(α2 + θ + µ)(α1 + λ
∗
T + µ+ dT )

,

RL2 =
σα1IL2 + (α2 + θ)PL2

λ∗T + µ
,

ITL2 =
λ∗LIT2 + λ

∗
T IL2

µ+ dT + dL
,

SV2 =
3V

µV + λ∗V
,

IV2 =
λ∗V3V

(

µV + λ∗V
)

µV
.

Solving for ET2 in

λ∗TS2 − (κ + ψλ∗T + µ)ET2 + qfλ∗TRT2 + λ
∗
TRL2 = 0.

The forces of infection at E4 are given by,

λ∗T =
βTcTIT2

Nc
, λ∗L =

βLcLmIV2

Nc
, and

λ∗V =
βVcL(IL2 + ITL2 + PL2)

Nc
.

6. Simulations and results

In this section, we provide simulation results for the TB-only

model in Figure 2, the VL-only model in Figure 3, and the full VL-

TB co-infection model in Figure 4. We performed the simulations

using the in-built function ODE45 in MATLAB (MathWorks,

Natick, MA, USA) [35], with the aim of understanding the

long-term dynamics of the models and checking if it is

consistent with the theoretical results. For this purpose, we

used the parameter values given in Table 1. We observe from

Figures 2–4 that the DFE points are locally asymptotically

stable for each model. For the TB-only model, R1 < 1

and hence, the DFE point E0 =

(

S0,ET0 , IT0 ,RT0

)

=
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FIGURE 4

Simulation of the full visceral leishmaniasis and tuberculosis co-infection model.

(

3
µ
, 0, 0, 0

)

is locally asymptotically stable. This implies that

the epidemic will be eradicated. The solutions of the model

9 are depicted in Figure 2. Similarly, the VL-only model DFE

point Q0 =

(

S, IL, PL,RL, SV , IV

)

=

(

3
µ
, 0, 0, 0, 3V

µV
, 0

)

is

locally asymptotically stable. This implies that the epidemic

will be eradicated R2 < 1 as depicted in 1. Therefore,

Figures 2–4 are consistent with theoretical results obtained

for each case, and these results imply that the disease will

be eliminated.
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FIGURE 5

Contour plots of R1 as a function of transmission rate (βT ) and

disease-induced death rate (dT ).

6.1. Bifurcation analysis

6.1.1. TB-only model
The combined effect of βT and dT on the values of R1 are

explored next to determine the threshold conditions of these

parameters at which the TB-only model exhibits backwards and

forward bifurcations. The R1 contours, see Figure 5, show an

increase inR1 as βT and dT increase.

6.1.2. VL-only model
The combined effect of βL, dL, σ , α1, and α2 on the values

of R2 are explored next to determine the threshold conditions of

these parameters at which the VL-only model exhibits backward

and forward bifurcations.

The R2 contours, see Figure 6, show an increase in R2 as βL
increases and dL decreases. In Figure 7, we observe thatR2 decrease

as σ1, α1, and α2 increase. All the R2 contours are less than unity,

which signifies that these values of σ1, α1, and α2 (and other fixed

parameters) will lead to the elimination of VL from the community

(in line with Theorem 3). However, the analysis verifies that the

parameters σ1, α1, and α2 are the cause of occurring backward

bifurcation in the VL model whenever R2 < 1 as guaranteed by

Lemma 6-7.

7. Conclusion

In developing nations, visceral leishmaniasis (VL) and

tuberculosis (TB) co-infection is becoming a growing public health

concern. Leishmaniasis infection alters the protective immunologic

FIGURE 6

Contour plots of R2 as a function of transmission rate (βL) and

disease-induced death rate (dL).

response to Bacillus Calmette-Guerin (BCG) vaccine against

tuberculosis [36]. Tuberculosis is an immuno-suppressive disease

that causes latent leishmaniasis to proceed to clinical leishmaniasis,

and VL can provoke latent TB infection to TB disease [36]. In

this study, we developed and analyzed a model that describes

transmission dynamics of visceral leishmaniasis and tuberculosis

co-infection. Firstly, we analyzed the VL and TB sub-models

separately. The reproduction number for each sub-model was

calculated by the next-generation matrix approach. The local

stability properties of the sub-models were studied. We observed

that when the associated reproduction numbers (R1) for the

TB-only model and (R2) for the VL-only are less than unity,

respectively, the model exhibits bifurcation. We observed that

R0 = max{R1,R2}, hence, there is no competitive exclusion

and the two diseases amplify each other. Thus, when R1 > 1

and R2 > 1, there is always co-existence no matter which of

the reproduction numbers is greater. If max{R1,R2} = R1,

then the TB-VL co-infection model exhibits backward bifurcation

at which R1 = 1. Furthermore, if max{R1,R2} = R2,

and choosing the transmission probability βL as the bifurcation

parameter, then the phenomenon of backward bifurcation occurs

at R2 = 1. Consequently, the full model also exhibits the

phenomenon of backward bifurcation when R0 = 1. The

implication of this is that a stable endemic equilibrium coexists

with a stable disease-free equilibrium whenever the fundamental

reproduction number is less than unity. This study makes the

argument that lowering the fundamental reproduction rate alone is

insufficient to eradicate tuberculosis, leishmaniasis, and/or visceral

leishmaniasis and tuberculosis co-infection models. The thresholds

and equilibrium quantities for the models are determined, and
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FIGURE 7

Contour plots of R2 as functions of recovery rate after treatment (σ ), treatment rate (α1), and recovery rate from PKDL (α2). (A) Contour plot of

R2(σ ,α1). (B) Contour plot of R2(σ ,α2).

their stability is analyzed. Finally, some numerical simulations

are carried out to illustrate some of our theoretical results. The

proposed model is not exhaustive and can be extended in various

ways. As a future work, we intend to expand this study to construct

a VL-TB co-infectionmodel with a reservoir host population which

considers antiviral therapy for VL infection. We will also expand it

to consider treatment for both latent and active TB.
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