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New metrics for multiple testing
with correlated outcomes

Maya B. Mathur1* and Tyler J. VanderWeele2
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United States, 2Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA,
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When investigators test multiple outcomes or fit di�erent model specifications

to the same dataset, as in multiverse analyses, the resulting test statistics may

be correlated. We propose new multiple-testing metrics that compare the

observed number of hypothesis test rejections (θ̂ ) at an unpenalized α-level to the

distribution of rejections that would be expected if all tested null hypotheses held

(the “global null”). Specifically, we propose reporting a “null interval” for the number

of α-level rejections expected to occur in 95% of samples under the global null,

the di�erence between θ̂ and the upper limit of the null interval (the “excess hits”),

and a one-sided joint test based on θ̂ of the global null. For estimation, we describe

resampling algorithms that asymptotically recover the sampling distribution under

the global null. These methods accommodate arbitrarily correlated test statistics

and do not require high-dimensional analyses, though they also accommodate

such analyses. In a simulation study, we assess properties of the proposed metrics

under varying correlation structures as well as their power for outcome-wide

inference relative to existing methods for controlling familywise error rate. We

recommend reporting our proposed metrics along with appropriate measures

of e�ect size for all tests. We provide an R package, NRejections. Ultimately,

existing procedures for multiple hypothesis testing typically penalize inference in

each test, which is useful to temper interpretation of individual findings; yet on

their own, these procedures do not fully characterize global evidence strength

across the multiple tests. Our new metrics help remedy this limitation.
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multiplicity, Type I error, bootstrap, resampling, familywise error rate, multiverse

1. Introduction

In studies testing multiple hypotheses, the problem of inflated Type I error rates is

usually handled, if at all, through procedures that preserve familywise error rate (FWER)

or false discovery rate (FDR) by penalizing individual p-values or critical values. These

procedures can be valuable for individually correcting inference for each hypothesis test.

However, as standalone reporting methods, they may provide incomplete insight into the

overall strength of evidence across tests. For example, if individual hypothesis tests of the

associations between a single exposure of interest and 40 outcome measures result in a

total of 10 rejections at an uncorrected α = 0.05 and result in 1 rejection at a Bonferroni-

corrected α ≈ 0.001, how strong is the overall evidence supporting associations between

the exposure and the outcomes, considered jointly? Given only the information typically

reported in corrected or uncorrected multiple tests, such questions can be hard to answer.

Intuitive speculation about overall evidence strength becomes especially challenging

when the hypothesis tests are correlated, which is typically the case when related research

questions are considered or in “outcome-wide” analyses that assess associations between a

single exposure and a number of outcomes [1]. Correlated hypothesis tests can also arise
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when investigators re-analyze a single dataset using numerous

different model specifications as a sensitivity analysis, an approach

that has rapidly gained traction in the social sciences [2]. Indeed,

as we will illustrate, the results of a given set of individual tests

(whether multiplicity-corrected or not) may be strongly suggestive

of at least some genuine effects if the tests are independent, but may

be entirely consistent with chance (in a manner we will formalize) if

the tests are correlated. In practice, the correlation structure of the

tests is usually unknown, further impeding intuitive assessment.

We therefore aim to supplement existing multiple-testing

procedures (e.g., [3–7]) with simple metrics that directly

characterize overall evidence strength while accommodating

arbitrarily correlated test statistics. These metrics focus on the total

number of hypothesis test rejections at an arbitrary α level (such

as the usual, uncorrected α = 0.05). First, we propose reporting a

null interval representing a plausible range for the total number of

rejections in 95% of samples that would occur if all null hypotheses

were true (a scenario we call the “global null”), along with the

difference between the number of observed rejections and the

upper interval limit (the excess hits). For example, if we reject 10

of 40 hypotheses at α = 0.05, we might be tempted to conclude

intuitively that this is “more” than the expected 0.05 × 40 = 2

rejections. However, if the null interval is [0, 11], accounting for

correlation between the tests, this would suggest little evidence

overall for genuine associations across the 40 tests. In contrast, if

we instead reject 18 tests under the same correlation structure,

the null interval indicates that we have observed 7 excess hits

beyond the number that would be expected in 95% of samples

generated under the global null, which is suggestive of strong

overall evidence that at least some of the tested associations are

present. Additionally, we propose using the number of rejections

to conduct a one-sided global test of the global null, whose p-value

represents the probability, in samples generated under the global

null, of observing at least as many α-level rejections as were

actually observed.

Although standard methods for FWER control are not

explicitly designed to characterize overall evidence strength, they

could in principle be repurposed into a global test. That is, letting

αW denote the level of familywise inference, rejection of at least

one test with inference corrected to preserve a familywise αW =

0.05 implies rejection of the global null at αW = 0.05. Several

existing methods strongly control FWER in hypothesis tests with

unknown correlation structure and could therefore be suitable for

a global test. The most widespread approaches are the classical one-

step Bonferroni correction [3] and its uniformly more powerful

successor, the step-down Holm method [4], both of which can be

computed in closed form. By avoiding specifying or estimating

the correlation structure, these naïve methods accommodate

even worst-case correlation structures but can yield conservative

inference. Other closed-form methods achieve better power by

assuming independence [e.g., various procedures based on [8]’s

inequality] or known logical dependencies between tests (e.g., [9])

but can produce anticonservative inference if these assumptions are

violated [10]. We focus here on methods, detailed in Section 2, that

avoid such assumptions by empirically estimating the correlation

structure via resampling [5–7]. Related methods control FDR

rather than FWER (e.g., [6, 11]), but because FDR control does

not appear to have a direct relationship with the null interval and

excess hits metrics discussed in the present paper, we do not further

TABLE 1 Selected existing methods for strong FWER control with

correlated hypothesis tests.

Method Type Means of handling correlation

Bonferroni 1-step Conservatively making no assumptions

Holm Step-down Conservatively making no assumptions

minP 1-step Resampling under global null to

estimate correlation structure

Wstep Step-down Same as above

Romano Step-down Resampling without restrictions to

estimate correlation structure

consider these methods. Alternative approaches are designed for a

large number of hypothesis tests, as in high-dimensional genetic

studies (e.g., [12–14]); however, because correlated hypothesis tests

can be particularly problematic in traditional low-dimensional

settings [15], we aim to provide methods that apply regardless of

the number of tests.

In this paper, we first derive assumptions for the asymptotic

validity of a resampling-based null interval, the corresponding

excess hits, and a global test of the number of rejections,

and we describe specific resampling algorithms fulfilling these

assumptions. Heuristically, the resampling algorithm must ensure

that the distribution of test statistics in the resamples converges

to the distribution they would would have under the global null.

Critically, this must hold even when the observed data were

instead generated under an alternative hypothesis. For example,

we consider the case of fitting an ordinary least squares (OLS)

multiple regression model to each of several outcomes, using the

same designmatrix each time. In this setting, we show that one valid

resampling algorithm is to fix the covariates for all observations

while setting the resampled “outcomes” equal to the fitted values

plus a vector of residuals resampled with replacement. As we

formalize, this resampling algorithm enforces the global null (even

if the observed data were generated under an alternative), while

also preserving the correlations between the outcomes and the

adjusted covariates. We describe why several alternative, intuitive

resampling approaches in fact do not have these properties, and

hence may not result in correct global inference. Second, we

conduct a simulation study in which we: (1) compare the null

interval to the observed number of rejections for varying effect

sizes; and (2) assess the relative power of global tests and the

number of rejected null hypotheses at a familywise-controlled

αW = 0.05 using the number of rejections or derived from existing

FWER-control methods, as discussed above. To our knowledge,

prior simulation studies of existing FWER methods have not

reported on their performance as global tests [6]. We illustrate

application of our proposed metrics through an applied example.

2. Existing resampling-based
multiplicity corrections

Table 1 summarizes existing methods that strongly control

FWER for arbitrarily correlated tests. Westfall and Young

[5] propose resampling algorithms that resemble the standard

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2023.1151314
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Mathur and VanderWeele 10.3389/fams.2023.1151314

bootstrap, but that modify the data in order to enforce the

global null (an approach similar to what we will adopt). For

example, suppose we conduct one-sample t-tests on the potentially

correlated variables (Y1, · · · ,YW) with the global null stating

that E[Yw] = 0 ∀ w ∈ {1, · · · ,W}. To resample under the

global null, the observed data could first be centered by their

respective sample means, then resampled with replacement [5].

Thus, in the resampled datasets, the global null holds regardless

of the true parameters (E[Y1], · · · ,E[YW]) underlying the original

sample. Then, Westfall and Young [5]’s one-step “minP” method

and uniformly more powerful step-down variant (here termed

“Wstep”) adjust the observed p-values using quantiles of the

distribution of p-values calculated in the resamples.

Other FWER methods use parametric resampling approaches

that do not enforce the global null in the resampled data, but rather

that generate datasets resembling the original data [6, 7]. Essentially

invoking the duality of hypothesis tests and confidence intervals,

the resampled test statistics are then centered by their estimated

values in the observed data in order to recover the null distribution;

other related methods showed less favorable performance in prior

simulations, so we do not further consider them here [6, 11].

This latter class of resampling approaches obviates a key

assumption used to simplify computation in the minP and Wstep

approaches. This “subset pivotality” assumption has been discussed

at length elsewhere (e.g., [5, 7, 16, 17]); it states that for any

subset K of hypotheses being tested, if all null hypotheses in

K hold, then the joint distribution of test statistics in K is

the same regardless of the truth or falsehood of all hypotheses

not in K [16] (See Definition 1 below for a more formal

definition.). The motivation for subset pivotality is that strong

FWER-control methods that empirically estimate the correlation

structure must control FWER not only when the global null holds,

but also for any configuration of true and false null hypotheses.

Although it might appear that resamples would therefore need

to be generated under every such configuration, Westfall and

Young [5]’s methods circumvent this problem, requiring only

one set of resamples under the global null, by invoking subset

pivotality.

Subset pivotality can fail, for example, when testing pairwise

correlations of three variables, X, Y , and Z [Romano andWolf [7]’s

Example 4.1]. In this setting, the joint distribution of the statistics

ρ̂XY and ρ̂XZ when a particular subset K of the null hypotheses

hold, namely ρXY = ρXZ = 0, depends on ρYZ and hence on the

truth or falsehood of a hypothesis not in K [7]. Thus, under [5]’s

resampling approach, ρ̂
(j)
XY and ρ̂

(j)
XZ would be correctly centered at 0,

but they would be independent because the global null is enforced.

In contrast, under [6]’s resampling approach, ρ̂
(j)
XY and ρ̂

(j)
XZ would

likewise be centered at 0 because they would have been centered

by the sample estimates ρ̂XY and ρ̂XZ , but they would also be

correlated to an extent determined by ρYZ . In turn, the distribution

of the maximum test statistic depends on the joint distribution of(
ρ̂XY , ρ̂XZ

)
. Importantly, subset pivotality will not be required for

our proposed null interval and global test: unlike FWER-control

methods, our proposed methods concern only the global null, and

thus even when subset pivotality does not hold, it is sufficient to

estimate via resampling the single sampling distribution of the

test statistics under the global null. We will, however, describe

a repeated-sampling interpretation of the excess hits that does

require subset pivotality to hold. To build upon these existing

methods by directly characterizing global evidence strength, we

now provide a running example for the setting of linear regression,

and then develop theory underlying our proposed metrics.

3. Example: valid residual resampling
for linear regression

To fix concepts, we first consider the design of valid resampling

algorithms for the familiar setting of ordinary least squares (OLS)

multiple regression. In subsequent sections, we will give formal

conditions for a resampling algorithm to be valid for general

settings not restricted to OLS models. As we describe in the Section

9, the practical design of resampling algorithms that fulfill those

conditions remains an open problem for many models, such as

generalized linear models (GLMs) with non-identity link functions,

but the present theory may help stimulate further research on this.

Nevertheless, the class of OLS models does subsume a number of

common statistical tests, including t-tests and analysis of variance,

so we take this as a useful starting point.

Assume that each of W outcome variables, (Y1, · · · ,YW),

is regressed on the same design matrix, X ∈ R
N×p,

comprising an intercept term denoted X1 (such that the residuals

have mean 0), a single exposure of interest (taken without

loss of generality to be X2), and the adjusted covariates

(X3, · · · ,XC). Assume all covariates besides the intercept are

mean-centered. Thus, the dataset Z contains a random vector

(1,Xn2, · · · ,XnC,Yn1, · · · ,YnW) for each subject n. Let ǫw =

(ǫ1w, · · · , ǫNw) denote the N-vector of true errors for the wth

regression such that ǫnw ∼ N(0, σ 2
w). Let ǫ̂w be its estimated

counterpart (the residuals). Let σ 2
w = E

[
ǫ2nw|X

]
as usual, and

assume σ 2
w < ∞. Let γ̂iw be the ith coefficient estimate in the

wth regression, and denote the coefficient for the exposure of

interest in the wth regression model as β̂w = γ̂2w. The W models

are then:

Yn1 = γ11 + β1Xn2 +

C∑

j=3

γj1Xnj + ǫn1

...

YnW = γ1W + βWXn2 +

C∑

j=3

γjWXnj + ǫnW (1)

Let βW = (β1, · · · ,βW) be a W-vector containing, for

each regression model, the single coefficient of interest,

and let β̂W and β̂W(j) denote its sample estimate in the

original dataset and in resampled dataset j, respectively.

Suppose without loss of generality that the null hypotheses

of interest are H0w :βw = 0. Letting hats denote the

usual OLS estimates obtained from the original sample,

the usual test statistics in the original sample are

T =
(

β̂1

σ̂1(X′X)−1/2 , · · · ,
β̂W

σ̂W (X′X)−1/2

)
; their unobservable

counterparts centered to reflect the global null are

T0 =
(

β̂1−β1

σ̂1(X′X)−1/2 , · · · ,
β̂W−βW

σ̂W (X′X)−1/2

)
.
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Algorithm 1. A valid resampling algorithm for OLS.

Generalizing from [18], a parametric resampling algorithm

that is valid to recover the distribution of test statistics under

the global null is to first fix the covariates (X1, · · · ,XC) for

all observations while setting the resampled “outcomes” equal

to the fitted values plus a vector of residuals resampled with

replacement. That is, letting n′ denote an observation sampled

with replacement, the resampled variables for observation n

are:

X
(j)
n1 : = Xn1

...

X
(j)
nC : = XnC

Y
(j)
n1 : = Ŷn1 +

(
Ŷn′1 − Yn′1

)

...

Y
(j)
nW : = ŶnW +

(
Ŷn′W − Yn′W

)

Then each test statistic in the resamples is computed using

H̃0w :βw = β̂w in order to recover the null sampling

distribution [19]. That is:

T(j) =

(
β̂
(j)
1 − β̂1

σ̂
(j)
1 (X′X)−1/2

, · · · ,
β̂
(j)
W − β̂W

σ̂
(j)
W (X′X)−1/2

)
(2)

We show in Supplementary material that this resampling

algorithm is valid, as formalized in Section 5 below, because the

distribution of each β̂w − βw = (X′X)−1X′ǫw (in the original

sample) depends only on the true error distribution and not on

βw, so the resampling algorithm need only recover the true error

distribution to provide valid inference under the global null.

Various other resampling approaches that may appear valid in

fact violate the assumption. For example, we could fix the design

matrix X but resample with replacement the outcome vectors,

(Yn′1, · · · ,Yn′W), rather than the residuals. Although this approach

indeed enforces the global null and preserves the correlation

between the outcomes, it fails to preserve the correlations between

the outcomes and the adjusted covariates and thus does not recover

the distribution of T0.

A second incorrect alternative would be to bootstrap

parametrically from Equation (1) while enforcing the global null

by constraining each β
(j)
w : = 0. However, this sequential algorithm

fails to entirely preserve the correlations among the outcomes if

there are unmeasured variables, beyond the adjusted covariates,

that contribute to these correlations. In turn, the distribution

of T0 is not recovered. A final incorrect alternative would be a

generic bootstrap hypothesis test performed by resampling with

replacement entire rows of data and then centering the test statistics

as in Equation (2). However, this algorithm incorrectly treats the

design matrix as random rather than fixed, which would be

appropriate for correlation models but not the intended regression

models [18]. Additionally, this algorithm can produce data

violating the assumptions of standard OLS inference, even when

the original data fulfill the assumptions. Suppose, for example, that

the design matrix contains only an intercept and a binary exposure

of interest, X2 ∈ {0, 1}, and that, for some outcome Yw∗ , we have

βw∗ 6= 0 (i.e., the alternative hypothesis holds). Then, of course,

ǫ̂nw∗ may be normal, allowing valid OLS inference, despite that

Yw∗ itself may be bimodal with peaks at E[Yw∗ | X2 = 0] and

E[Yw∗ | X2 = 1]. This generic resampling algorithm retains the

bimodality of Yw∗ while breaking the association between Yw∗ and

X1; thus, the resampled residuals ǫ̂
(j)
nw∗ will be bimodal rather than

normal [5], and standard inference may fail.

4. Generalized setting and notation

To establish theoretical results that hold generally for models

other than OLS, we now formalize a more general multiple-testing

framework. Suppose that K random variables are measured on N

subjects, with the resulting matrix denoted Z ∈ R
N×K . Let Znk

denote, for the nth subject, the kth random variable. Consider a

resampling algorithm that generates, for iterate j, a dataset Z(j) ∈

R
N×K containing the random vector

(
Z
(j)
n1, · · · ,Z

(j)
nK

)
for each

subject n. There are a total of B resampled datasets. We use the

superscript “(j)” to denote random variables, distributions, and

statistics in resampled dataset j. Further suppose that we conduct

W-tests of point null hypotheses, each at level α. Denote the wth

null hypothesis as H0w. Let cw,α be the critical value for the test

statistic, Tw, of the w
th test. The W-vector of test statistics is T =

(T1, · · · ,Tw). We define the “global null” as the case in which allW

null hypotheses hold and use the superscript “0” generally to denote

distributions, data, or statistics generated under the global null.

We treat the observed data, Z, as fixed and conditioned

throughout but suppress explicit conditioning for brevity. Define

the statistic corresponding to the observed number of α-level

rejections as θ̂ =
∑W

w=1 1
{
Tw > cw,α

}
. Its counterpart in a sample

generated under the global null is θ̂0 and in a resample j is θ̂ (j).

Using F to denote a cumulative distribution function (CDF) and r a

non-negative integer at which it is evaluated, we respectively define

the true CDF of the number of rejections under the global null, its

counterpart in the resamples, and its empirical estimator in the B

resamples as:

F
θ̂0
(r) = P

(
θ̂0 ≤ r

)

F
θ̂ (j)

(r) = P
(
θ̂ (j) ≤ r

)

F̂
θ̂ (j)

(r) =
1

B

B∑

j∗=1

1
{
θ̂ (j

∗) ≤ r
}

We denote almost sure convergence, convergence in

probability, convergence in distribution, and ordinary limits

respectively as “
A.S.

−−−−→
N→∞

”, “
P

−−−−→
N→∞

”, “
D

−−−−→
N→∞

”, and “−−−−→
N→∞

”.

5. Main results

We now develop theory allowing us to approximate the

sampling distribution of F
θ̂0

through resampling. Specifically, we

show that under a certain class of resampling algorithms defined

below, the empirical sampling distribution of the number of

rejections in the resamples converges to the true distribution

of the number of rejections in samples generated under the

global null. We chose to characterize the sampling distribution

empirically rather than theoretically because it does not appear

to have a tractable closed form without imposing assumptions
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on the correlation structure of the tests and potentially requiring

asymptotics on the number of hypothesis tests (Despite the

intractable sampling distribution, it is straightforward to derive

at least the exact variance of θ̂0 if the pairwise correlations

between the p-values are known; see Supplementary material).

Because simulation error associated with using a finite number of

resamples to approximate the CDF of the resampled data can be

made arbitrarily small by taking B → ∞, we follow convention

(e.g., [18]) in ignoring this source of error and considering only

asymptotics on N.

5.1. An assumption on the resampling
algorithm

To establish the main convergence result, we will use the

following key assumption stating that, regardless of whether the

observed sample was generated under the global null or under

an alternative, the resampling algorithm must generate a sampling

distribution for T(j) that converges to the sampling distribution of

T0 (that is, in samples generated under the global null). We will

later discuss resampling algorithms that satisfy this assumption.

Assumption 1. The resampling algorithm used to generate Z(j)

must ensure that T(j) D
−−−−→
N→∞

T0, or equivalently FT(j) −−−−→
N→∞

FT0 .

Typically, resampling algorithms fulfilling this assumption will

need to preserve the correlation structure of all variables in the

dataset, except where the global null dictates otherwise. If not,

the distribution of the test statistics will usually not be preserved.

Additionally, just as the original data are assumed to respect the

parametric assumptions of all W hypothesis tests, the resampled

data must be generated in a manner that also respects this

parametric structure. Otherwise, hypothesis tests conducted on the

resampled data may not preserve their nominal α-levels, which

again affects the distribution of the test statistics. We show in

Supplementary material that Algorithm 1 for OLS models fulfills

Assumption 1, as motivated heuristically in Section 3 above.

Remark 1. For Assumption 1 to hold, it is sufficient for T to

be a continuous function of Z and for Z(j) D
−−−−→
N→∞

Z0. Note

that this condition is not necessary; for example, [5] propose

several algorithms that induce the global null by centering the data

themselves by sample estimates, rather than by centering the test

statistics as in Algorithm 1 above. In such cases, Assumption 1 may

hold without Z(j) D
−−−−→
N→∞

Z0.

5.2. Valid inference on the number of
rejections

We now present the main theorem establishing that resampling

algorithms fulfilling Assumption 1, such as Algorithm 1 for OLS,

also yield valid inference on the number of rejections (see

Supplementary material for proof).

Theorem 1. Under Assumption 1, θ̂ (j)
D

−−−−→
N→∞

θ̂0.

This theorem implies that valid inference, including the null

interval and global test, can be conducted using the distribution of

the number of rejections in resamples generated using an algorithm

fulfilling Assumption 1.

6. Practical use and interpretation

In practice, to estimate the proposed metrics, one would first

use a resampling algorithm fulfilling Assumption 1 to generate a

large number of resamples under the global null (e.g., B = 1, 000).

Then, the lower and upper bounds of a 95% null interval can be

defined as the 2.5th and 97.5th percentiles of
(
θ̂ (1), · · · , θ̂ (j)

)
, and

the p-value for the global test is the empirical tail probability:

PN

(
θ̂ (j) ≥ θ̂

)
=

1

B

B∑

j∗=1

1
{
θ̂ (j

∗) ≥ θ̂

}

We provide an R package, NRejections, to automate

the resampling and estimation process for OLS models (see

Supplementary material).

The p-value for the global test can be interpreted as the

probability of observing at least θ̂ rejections in samples generated

under the global null. The null interval can be interpreted as the

plausible range of θ̂ in samples generated under the global null.

The excess hits, computed as the difference between θ̂ and the

upper limit of the null interval, can be interpreted as the number

of rejections exceeding what would be expected in 95% of samples

under the global null. Note that although the number of excess hits

is not necessarily equivalent to the number of false null hypotheses

(a point reiterated in Section 9), such an interpretation is in fact

valid (under repeated sampling at least 95% of time) for test

statistics satisfying subset pivotality, as shown in the next result (see

Supplementary material for proof).

Definition 1 (Subset pivotality). Define the set of all tested null

hypotheses as W . The distribution of (T1, · · · ,TW) fulfills subset

pivotality if, for anyK ⊆ W , the joint distribution of {Tw : w ∈ K}

is independent of the truth or falsehood of {H0,w : w ∈ W \K} [5].

Theorem 2. Let θhi denote the upper limit of a 95% null interval.

Define the set of all tested true null hypotheses as: K′ ⊆ W =

{w : H0,w holds for exactly w ∈ K′}. Then, under subset pivotality,

θhi can be interpreted as the maximum number of false positives

among the observed rejections at least 95% of the time under

repeated sampling, and regardless of the configuration of true and

false null hypotheses. That is:

P

(∑

w∈K′

1{Tw > cw,α} > θhi

∣∣∣∣∣ H0,w holds for exactly w ∈ K
′

)

. 0.05

where . denotes that the inequality holds asymptotically.

Equivalently, 95% of the time under repeated sampling, the number

of false null hypotheses is as least the number of excess hits, θ̂ − θhi.
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Remark 2. Letting αW denote an arbitrary level of global inference,

a general (1− αW)% null interval has an analogous interpretation,

again under subset pivotality. That is, its upper limit can be

interpreted as the maximum number of false positives at least

(1− αW)% of the time under repeated sampling. Equivalently,

(1− αW)% of the time under repeated sampling, the number of

false null hypotheses is at least the number of excess hits based on

a (1− αW)% null interval. These interpretations hold regardless

of α, the level of the individual hypothesis tests: for example, a

99% null interval constructed based on individual tests at α =

0.05 nevertheless leads to global inference on the number of false

positives at the αW = 0.01 level.

Subset pivotality holds for OLS and a number of other

common choices of test statistics [5], in which case the excess

hits based on a 95% null interval can thus be interpreted as the

minimum number of false null hypotheses such that this statement

would hold 95% of the time with repeated sampling. We further

illustrate interpretation of the proposed metrics in the following

applied example.

7. Simulation study

We conducted a simulation study with two objectives. First, we

compared the estimated null interval to θ̂ for varying effect sizes

in an outcome-wide study and to characterize how its precision

depends on the strength of correlation between the hypothesis tests

and on the α level used for each test. Second, we assessed the power

of global tests conducted using the number of rejections with α =

0.05 or α = 0.01 for each individual test or derived from the five

existing FWER-control methods listed in Table 1. As an additional

measure of power, we compared the total number of rejected null

hypotheses at a familywise-controlled αW = 0.05 identified by each

method (using the excess hits when considering our method per

Theorem 2). All code required to reproduce the simulation study is

publicly available (https://osf.io/qj9wa/).

7.1. Methods

We generated multivariate standard normal data, comprising

1 covariate (X) and either 40 or 200 outcomes for a fixed N =

1, 000 subjects. The correlation between each pair of outcomes

was ρYY . The correlation between X and a proportion, q, of

outcomes was ρXY , with remaining pairs having correlation 0.

We manipulated scenario parameters based on the values in

Table 2. For scenarios with 40 outcomes, we manipulated these

parameters in a full-factorial design. For scenarios with 200

outcomes, we omitted some combinations of parameters such

that the true correlation matrix was not positive semidefinite,

or such that the empirical correlation matrices were often not

positive semidefinite.

Each of 500 simulations per scenario proceeded as follows.

We generated an observed dataset according to the scenario. We

regressed each outcomeYw onX and conducted a t-test at level α on

the coefficient for X. We computed θ̂ . For each resampling iterate

j (with B = 1, 000), we resampled per Algorithm 1. We conducted

a t-test at level α on the coefficient for X and computed θ̂ (j). We

TABLE 2 Possible values of simulation parameters.

ρXY ρYY q α

0.03 0 0 0.01

0.05 0.10 0.20 0.05

0.10 0.30 0.50

0.15 0.60 1

used the quantiles of
(
θ̂ (1), · · · , θ̂ (B)

)
to construct the null interval,

compute the excess hits, and conduct our proposed joint test. We

used the t-statistics or p-values from the resamples to conduct

joint tests based on the existing methods. For FWER methods,

we computed the number of multiplicity-corrected rejections to

indicate the number of rejected null hypotheses at familywise αW =

0.05. For ourmethods, per Theorem 2, we instead set the number of

rejected null hypotheses equal to the maximum of 0 and the excess

hits based on a 95% null interval.

We resampled per Algorithm 1 for all resampling-based

methods. However, Section 4.2.2 of [5] suggests a different residual-

resampling algorithm for OLS in which the resampled residuals

alone are used as the resampled outcomes, such that Y
(j)
nw : =

Ŷn′w − Yn′w, where n′ is a resampled observation. Thus, the

global null is already enforced in the resampled data, and the test

statistics do not require centering. Because the truth or falsehood

of each null hypothesis changes the sampling distribution of the

OLS coefficient estimates only by a location shift and the subset

pivotality assumption described in Section 2 holds for OLS [5,

Section 4.2.2], the difference between this algorithm and the one

we used is immaterial, as confirmed by additional simulations that

are not shown.

7.2. Results

We focus primarily on results for scenarios with 40 outcomes

because, as noted in the Introduction, correlated hypothesis tests

can be particularly problematic in traditional low-dimensional

settings. We secondarily discuss results for scenarios with 200

outcomes, in which the relative advantages of our proposed

methods generally became more pronounced.

For scenarios with 40 outcomes, Figure 1 displays θ̂ in samples

generated under the global null (row 4, panel 1) or under

varying alternatives, as well as mean limits of 95% null intervals

(For simplicity, Figure 1 does not show all scenarios, but rather

excludes some smaller effect sizes. For comprehensive results, see

Supplementary material). As expected for a resampling algorithm

fulfilling Assumption 1, the null intervals appeared identical

regardless of whether the data were generated under the global null.

As the pairwise correlation strength between outcomes increased,

the null intervals became substantially less precise. For example,

with tests conducted at α = 0.05, the mean upper limit of the

null interval was nearly three times as high for ρYY = 0.60 vs.

ρYY = 0 (i.e., 14.9 vs. 5.0 rejections; see the leftmost and rightmost

null intervals within each panel). Thus, with a true effect size of

ρXY = 0.05 for all pairs (Figure 1, row 1, panel 3), themean number
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FIGURE 1

For scenarios with 40 outcomes, 95% null intervals vs. mean rejections in observed datasets (×). Panels: Null and alternative data-generating

mechanisms of original samples. Points and error bars: Mean θ̂ (j) and mean limits of null intervals with tests at α = 0.01 (yellow) or at α = 0.05 (red).
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FIGURE 2

For scenarios with 200 outcomes, 95% null intervals vs. mean rejections in observed datasets (×). Panels: Null and alternative data-generating

mechanisms of original samples. Points and error bars: Mean θ̂ (j) and mean limits of null intervals with tests at α = 0.01 (yellow) or at α = 0.05 (red).
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FIGURE 3

For scenarios with 40 outcomes, power or Type I error of global tests based on existing FWER-control procedures and on the number of rejections.

“Global (alpha = 0.01)” and “Global (alpha = 0.05)”: proposed methods. The final panel represents Type I error under the global null.

of observed rejections at α = 0.05 (i.e., 13.8) would be within

the 95% null interval if the outcomes had correlation strength of

ρYY = 0.60 (excess hits = 13.8 − 14.9 = −0.8), but would be

well outside the null interval, and thus provide stronger evidence

for global association, if the outcomes were independent (excess

hits = 13.8 − 5.0 = 8.8). For scenarios with 200 outcomes, the

corresponding results appear in Figure 2.

For scenarios with 40 outcomes, Figures 3 and 4, respectively,

show the power (or Type I error) of each global test and the

number of rejected null hypotheses (Again, we show a subset of

scenarios, excluding those in which all methods had nearly 100%

power and excluding some intermediate correlation strengths.

These scenarios differ from those in Figure 1. Comprehensive

results appear in the Supplementary material). As expected,

when data were generated under the global null, all methods

had approximately nominal or conservative Type I error rates

(Figure 3). Our proposed global test achieved its best performance

with weakly correlated or independent statistics (Figure 3) and

when a moderate to high proportion of alternative hypotheses

were true (q > 0.20). In such scenarios, our proposed

methods sometimes rejected as many as 6.0 more null hypotheses

on average than the next-best method (Figure 4). Heuristically,

these settings are those in which evidence is diffuse across the

multiple tests. Because FWER methods focus on individually
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FIGURE 4

For scenarios with 40 outcomes, number of rejected null hypotheses at familywise-controlled αW = 0.05 based on existing FWER-control

procedures and on the excess hits. “Global (alpha = 0.01)” and “Global (alpha = 0.05)”: proposed methods. Red dashed line: Actual number of false

null hypotheses (q×W).

adjusting each p-value, each individual hypothesis may have

a very low probability of being rejected when evidence is

diffuse across tests, such that the resulting global tests have low

power. However, the total number of rejections may still be

considerably larger than the expected number, giving our proposed

global test an advantage for power. With 200 outcomes, the

relative advantages of our proposed methods became considerably

more pronounced (Figures 5, 6). This is because FWER impose

increasingly severe penalties on each test as the number of

tests increases, whereas our propose consider evidence strength

holistically across tests.

In contrast, the power of our methods declined when few

alternative hypotheses were true (e.g., q = 0.20; Figure 3),

likely because in these scenarios, θ̂ would often have been

near its expectation under the global null. Simultaneously, the

small number of p-values corresponding to the true alternative

hypotheses may often have been quite small, improving the

power of tests derived from FWER methods. Interestingly, in

all scenarios we considered, Romano and Wolf [6]’s method

uniformly outperformed methods other than the one we propose;

it also outperformed ours with highly correlated test statistics,

but not always with weakly correlated or independent statistics.
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FIGURE 5

For scenarios with 200 outcomes, power of global tests based on existing FWER-control procedures and on the number of rejections. “Global (alpha

= 0.01)” and “Global (alpha = 0.05)”: proposed methods. The final panel represents Type I error under the global null.
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FIGURE 6

For scenarios with 200 outcomes, number of rejected null hypotheses at familywise-controlled αW = 0.05 based on existing FWER-control

procedures and on the excess hits. “Global (alpha = 0.01)” and “Global (alpha = 0.05)”: proposed methods. Red dashed line: Actual number of false

null hypotheses (q×W).
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Heuristically, when few alternative hypotheses are true or the

test statistics are highly correlated across outcomes, evidence is

concentrated to a limited number of tests, rather than diffuse

across them. In such settings, our proposed global test may have

reduced power compared to FWER methods because there is

an inherent loss of information when dichotomizing p-values

at α to compute the number of rejections. We return to this

point in Section 9 With 200 outcomes, our methods often—

though not always—outperformed FWER even in these scenarios

(Supplementary material).

Besides [6]’s method, the other existing methods, even the

conservative naïve methods, performed comparably to one another

(within approximately 10 percentage points of power of one

another for nearly all scenarios). Based on simple additional

simulations (Supplementary Figure 4), we speculate that this

somewhat counterintuitive finding arises because the methods

appear to differ primarily in their degree of adjustment for those p-

values that are≫0.05, with the resampling-basedmethods typically

yielding substantially smaller, but still “non-significant”, adjusted

values for these large p-values. In contrast, p-values near the 0.05

threshold—those that could potentially affect results of the global

test—appear to receive only small and comparable adjustments

across all methods. Thus, we speculate that it is rather unlikely that

a sample would have all adjusted p-values above 0.05 under a naïve

approach, but would have at least one p-value adjusted to below

0.05 under a resampling approach.

8. Applied example

Existing epidemiologic analyses have investigated the extent

to which an individual’s experience of parental warmth during

childhood is associated with the individual’s later “flourishing” in

mid-life [20]. Flourishing has been broadly conceived as a state of

positive mental health comprising high emotional, psychological,

and social wellbeing [21], and reductive analyses that individually

assess its theorized components, such as perceived purpose in life

and positive affect, may not fully capture potential impacts of the

overall experience of flourishing [1, 21].

8.1. Methods

Similarly to [20], we conducted longitudinal analyses of a

subset of N = 2, 697 subjects from the “Mid-life in the United

States” (MIDUS) cohort study [22] of 7, 108 adults. In an initial

wave of data collection (1995–1996), subjects recalled the parental

warmth that they experienced during childhood as an average of

separate scales of maternal and paternal warmth. In a second wave

(2004–2006), the same subjects reported 13 continuous subscales of

flourishing in emotional, psychological, and social domains [21].

We first reproduced [20]’s main analysis by assessing the

association between a one-unit increase in standardized parental

warmth (i.e., an increase of one standard deviation on the raw scale)

with a standardized, continuous composite measure of flourishing

(“overall flourishing”), which aggregated the 13 subscales. We

conducted similar analyses for the remaining 16 continuous

TABLE 3 OLS estimate (β̂) characterizing association of a 1-SD increase in

parental warmth with each of 17 standardized flourishing outcomes,

adjusting for all covariates in Supplementary Table 1.

Outcome β̂ [95% CI] p-value

Overall and domain composites

Overall flourishing 0.22 [0.18, 0.26] < 2× 10−16

Emotional wellbeing 0.21 [0.17, 0.25] < 2× 10−16

Social wellbeing 0.13 [0.08, 0.17] 2× 10−9

Psychological wellbeing 0.20 [0.16, 0.24] < 2× 10−16

Emotional wellbeing subscales

Positive affect 0.19 [0.15, 0.23] < 2× 10−16

Life satisfaction 0.19 [0.15, 0.23] < 2× 10−16

Social wellbeing subscales

Meaningfulness of society 0.04 [0, 0.08] 0.048

Social integration 0.15 [0.11, 0.19] 5× 10−13

Social acceptance 0.09 [0.05, 0.13] 3× 10−5

Social contribution 0.09 [0.05, 0.13] 1× 10−5

Social actualization 0.06 [0.02, 0.11] 0.002

Psychological wellbeing subscales

Autonomy 0.08 [0.04, 0.12] 3× 10−4

Environmental mastery 0.14 [0.09, 0.18] 6× 10−11

Personal growth 0.11 [0.07, 0.15] 4× 10−7

Positive relations 0.25 [0.21, 0.29] < 2× 10−16

Purpose in life 0.05 [0.01, 0.09] 0.018

Self-acceptance 0.22 [0.18, 0.26] < 2× 10−16

Inference is not multiplicity-corrected.

outcome variables in [20]’s analyses, namely the 3 standardized

composite scores for each domain (emotional, psychological, and

social) treated separately and the 13 individual subscales. All of

our analyses controlled for age, sex, race, nativity status, parents’

nativity status, number of siblings, and other childhood family

factors. We expected the resulting 17 test statistics to be correlated

because of conceptual similarities between the subscale variables

and because of the composite measures’ arithmetic relationships

with their subscales. Last, to characterize overall evidence strength

across the 17 outcomes, we resampled per Algorithm 1 with B =

5, 000 to estimate the null interval and excess hits (with each test

conducted ateither α = 0.05 or α = 0.01) and to conduct the global

test using the number of rejections in individual tests conducted at

α = 0.05. All data and code required to reproduce these analyses is

publicly available and documented (https://osf.io/qj9wa/).

8.2. Results

Supplementary Table 1 displays demographic characteristics in

our sample. The 17 outcome measures had a median correlation

magnitude of |r| = 0.39 (minimum = 0.12; maximum = 0.89; 25th

percentile = 0.28; 75th percentile = 0.55). The composite analysis
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FIGURE 7

For scenarios with 40 outcomes, number of rejections (θ̂ (j)) for each of 5, 000 resamples. Solid lines: E[θ̂0] = α × 17. Dashed lines: upper limit of 95%

null interval.

estimated that, controlling for demographics and childhood family

factors, individuals reporting an additional standard deviation (SD)

of parental warmth in childhood experienced greater mid-life

flourishing by, on average, b = 0.22 (95% CI: [0.18, 0.26]) SDs.

Of the 17 outcomes considered individually, all were

“significantly” associated with parental warmth at α = 0.05 (i.e.,

θ̂ = 17), and 15 were “significantly” associated at α = 0.01. The

mean standardized effect size was b = 0.14. The directions of all

effects suggested that increased parental warmth was associated

with improved flourishing outcomes (Table 3). In contrast, if

parental warmth were in fact unassociated with any of the

outcomes, we would expect 17× 0.05 = 0.85 rejections with a null

interval of [0, 5] at α = 0.05 (Figure 7). At α = 0.01, we would

expect 0.17 rejections with null interval [0, 2] at α = 0.01. Thus,

at α = 0.05 and α = 0.01 respectively, we observed 17 − 5 = 12

and 15 − 2 = 13 excess hits above what would be expected in

95% of samples under the global null. Thus, 95% of the time under

repeated sampling, at least 13 of the 17 null hypotheses would

be false, indicating non-zero associations of parental warmth.

Indeed, a global test based on the number of rejections at α = 0.05

suggested very strong evidence against the global null (p = 0

because every resampled dataset had < 17 rejections; Figure 1).

(By comparison, simple inference based on the exact binomial

distribution, assuming anticonservatively that the outcomes are

independent, yields a too-narrow null interval at α = 0.05 of [0, 3]

and a global p-value of 0.0517 = 7×10−23.) Overall, our composite

analyses strongly support small effects of parental warmth on

composite flourishing, as reported by [20] (Table 3, first row); our

novel analyses of θ̂ additionally provide compelling global evidence

for associations of parental warmth with flourishing across the 17

outcomes, accounting for their correlation structure.

9. Discussion

This paper has characterized global evidence strength across

arbitrarily correlated hypothesis tests without being restricted to

the setting of high-dimensional analyses. Specifically, we proposed

metrics that compare the observed number of test rejections, θ̂ ,

to its expected sampling distribution under the global null. θ̂ is

a simple summary measure that seems of natural interest; the

proposed metrics help to rigorously ground intuition regarding its

behavior when tests are correlated. First, we proposed reporting

a null interval for the number of α-level rejections expected in

95% of samples generated under the global null along with the

number of excess hits observed above the upper interval limit.

Second, we proposed reporting a one-sided test of the global null

whose p-value represents the probability of observing at least θ̂

rejections in samples generated under the global null. For OLS

models, these metrics can be easily estimated via resampling using

our R package, NRejections.

Existing methods that control FWER for arbitrarily correlated

tests can also be used to conduct such a global test, so we

conducted a simulation study assessing their relative power. To
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our knowledge, this is the first direct comparison of these methods

as global tests, rather than as FWER-control procedures. All

methods showed nominal or conservative Type I error rates, as

expected theoretically. Ourmethod performed well when tests were

independent or weakly correlated and when a moderate to high

proportion of alternative hypotheses were true; therefore, it may

be most suitable for studies in which the uncorrected p-values are

relatively similar to one another, rather than for studies in which

a small number of uncorrected p-values are much smaller than

the others. The global test based on [6]’s method performed very

well overall and, in the OLS scenarios we considered, appeared

to uniformly outperform existing methods other than sometimes

our own, concerning which [6]’s method was often more powerful,

though ours sometimes performed better with weakly correlated

or independent tests. In these contexts, considering the excess hits

sometimes allowed rejection of many more null hypotheses with

familywise control than the next-best method (e.g., an average of

9.17 vs. 3.17 in one such scenario).

Our simulations indicated [6]’s method sometimes has superior

power to ours as a global test in low-dimensional settings (e.g.,

with W = 40 tests), though our method more frequently has

superior power in higher-dimensional settings (e.g., withW = 200

tests). We speculate that when [6]’s method does have superior

power, despite its additional need to strongly control FWER, this

reflects the loss of information inherent in dichotomizing p-values

at α to compute the number of rejections. A more powerful global

test might be based, for example, on departures of the observed

joint ECDF of the p-values, treated as continuous, from their

CDF under the global null, as estimated via resampling methods

such as those outlined in this paper and in [5]. However, even

in contexts in which a global test derived from [6]’s method

does provide better power (though this is not always the case),

the null interval and excess hits may still be of interest. More

broadly, we view θ̂ and the proposed metrics as useful summaries

of global evidence strength that do lose some information in the

process of summarization. As such, they supplement, rather than

replace, reporting individual, continuous p-values with and without

standard multiplicity corrections.

Our consideration of existing methods has focused on

repurposing those that adjust individual p-values or critical values.

Other existing methods, like our proposed metrics, do directly

characterize overall evidence strength and merit some discussion.

For example, global inference on regression coefficients for

different outcomes can be conducted using multivariate regression

[23] or [24]’s “seemingly unrelated regressions” generalization.

However, these approaches only modestly improve efficiency

compared to that achieved in W separate OLS models, and when

the design matrix is shared across models, coefficient estimates

are identical to those in OLS models [25]. Another approach

to global inference is to meta-analyze the effect sizes from each

analysis [10]. Compared to direct analysis of the raw data,

meta-analysis is likely to be inefficient. Alternatively, one could

conduct global inference on a reduced number of outcomes by

constructing composite measures (as in the applied example)

or applying statistical dimension reduction, such as principal

components analysis, though some information is lost. Another

class of methods conducts global inference through the direct

combination of p-values, though these methods almost always

assume independence or a known parametric dependence structure

([26–29]; but see [30] for a non-parametric exception) or apply only

for specific types of genetic data [31].

When interpreting our proposed metrics, it is important

to note that they characterize the sampling distribution under,

specifically, the global null. Thus, rejecting the global test at α =

0.05 indicates that there is no more than a 5% probability of

observing at least θ̂ rejections in samples generated under the

global null. The excess hits can be interpreted as the minimum

number of false null hypotheses 95% of the time under repeated

sampling only under subset pivotality and otherwise must not be

misinterpreted as such. Statements to this effect can be also made

using procedures that strongly control FWER. By construction,

these procedures ensure that for a familywise αW = 0.05, in 95% of

samples generated under any configuration of null and alternative

hypotheses, each rejected test will represent a true positive;

therefore, the number of rejections based on inference adjusted to

strongly control FWER can also be interpreted as the minimum

number of false null hypotheses 95% of the time under repeated

sampling. There are also interesting methods designed specifically

for providing confidence statements regarding the number of false

null hypotheses [32]. Because these methods require resampling

under various intersections of the null hypotheses, they appear

well-suited to hypothesis tests that span multiple exposures, for

which intersection testing can simply involve testing a single

regression model on all the exposures against various nested null

models. However, these methods appear less suitable to hypothesis

tests spanning multiple outcomes, for which intersection testing is

more challenging.

Our proposed methods are valid for arbitrary hypothesis

tests as long as data are resampled such that the resampled

test statistics converge in distribution to the distribution they

would have under the global null. To this end, an additional

contribution of this paper is the theoretical justification of residual

resampling for OLS models in the context of multiple testing,

informed by [18]’s work for a single regression model and [5]’s

related algorithms. Indeed, a central challenge for resampling-

based methods for multiple testing in general is the design of

valid resampling procedures. The present theory supports using

residual resampling under the global null for OLS in the context

of our methods, of FWER control [5–7], of FDP control [17],

and of corrections for “data snooping” [33]. We focused on OLS-

based hypothesis tests because of their generality and ability to

subsumemany common tests. However, for certain other tests, such

as those based on GLMs with non-identity link functions, validly

resampling under the global null appears to be an open problem,

although algorithms have been developed outside the multiple

testing context for confidence intervals (e.g., [34]) and, under

additional assumptions, for permutation hypothesis tests [35].

Other estimators, such as those using propensity score matching,

pose challenges for resampling because the estimators lack certain

smoothness properties; these challenges arise even without the

need to enforce the global null. Algorithms fulfilling Assumption

1 for such estimators could potentially use subsampling to

relax some of the smoothness assumptions of with-replacement

resampling [36].
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Correlated test statistics can naturally arise not only when

testing multiple associations between exposures and outcomes, but

also when multiple hypothesis tests are used to investigate the

same question, as in “data snooping” [33] or “p-hacking” [37].

For example, investigators often fit several regression models to

investigate the same association of interest, adjusting for different

sets of covariates or using different subsets of the data. When

investigators report selectively among these findings, for example

by reporting only significant results, this can lead to substantial

bias in the published literature [38, 39]. Elsewhere, we gave formal

conditions for when p-hacking will lead to bias [40]. Situating

these “researcher degrees of freedom” within a formal multiple

testing context [33], rather than merely reporting a single result

chosen post hoc, could help reduce unnecessary false positives in

the literature and may additionally foster a more balanced overall

view of the evidence. Excessive focus on null-hypothesis testing has

itself contributed to selective reporting in the published literature,

and we would therefore suggest reporting our proposed metrics

along with appropriate measures of effect size [41]. Correlated

hypothesis tests can also arise when investigators re-analyze a

single dataset using numerous different model specifications as

a sensitivity analysis, a “multiverse” approach that has rapidly

gained traction in the social sciences [2]. Our proposed metrics

provide one approach to summarizing evidence in such settings; for

example, the p-value from the global test could help characterize

evidence supporting a false null hypothesis in at least one of the

multiple model specifications.

In summary, the number of rejections across correlated

hypothesis tests can be a useful summary measure of overall

evidence strength when reported with metrics such as a null

interval, the number of excess hits, and a test of the global

null. Reporting these metrics alongside p-values with and without

standard multiplicity corrections may provide a richer view of

global evidence strength than corrected inference alone.
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