
TYPE Original Research

PUBLISHED 03 April 2023

DOI 10.3389/fams.2023.1151270

OPEN ACCESS

EDITED BY

Md. Kamrujjaman,

University of Dhaka, Bangladesh

REVIEWED BY

Olumuyiwa James Peter,

University of Medical Sciences, Ondo, Nigeria

Pankaj Tiwari,

University of Kalyani, India

*CORRESPONDENCE

Baba Seidu

bseidu@cktutas.edu.gh

SPECIALTY SECTION

This article was submitted to

Mathematical Biology,

a section of the journal

Frontiers in Applied Mathematics and Statistics

RECEIVED 25 January 2023

ACCEPTED 07 March 2023

PUBLISHED 03 April 2023

CITATION

Kailan Suhuyini A and Seidu B (2023) A

mathematical model on the transmission

dynamics of typhoid fever with treatment and

booster vaccination.

Front. Appl. Math. Stat. 9:1151270.

doi: 10.3389/fams.2023.1151270

COPYRIGHT

© 2023 Kailan Suhuyini and Seidu. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

A mathematical model on the
transmission dynamics of typhoid
fever with treatment and booster
vaccination

Abdulai Kailan Suhuyini and Baba Seidu*

Department of Mathematics, School of Mathematical Sciences, C. K. Tedam University of Technology

and Applied Sciences, Navrongo, Ghana

Typhoid fever is a potentially fatal illness that is caused by the bacteria Salmonella

typhi. In this study, a deterministic mathematical model was formulated to

look into transmission dynamics of typhoid fever with treatment and booster

vaccination. The reproduction numberR0 is calculated using the next-generation

matrix approach. Then, a stability analysis on the equilibrium points was performed

using Routh–Hurwitz criteria. It was revealed that the disease-free equilibrium

point is locally asymptotically stable whenever R0 is less than 1 together with

other conditions. We also showed that R0 ≤ 1 does not guarantee global stability

of the typhoid-free equilibrium point and corroborated the result by showing the

possible existence of backward bifurcation at R0 = 1. The model parameters in

R0 were also subjected to sensitivity analysis, which revealed that the transmission

rate, infection through an exposed person, and bacteria are the most influential

parameters of the reproduction number R0. Numerical simulations were run to

determine the impact of various parameters on the dynamics of typhoid.
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booster vaccination, bifurcation, mathematical modeling, typhoid fever, vaccination,
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1. Introduction

Typhoid fever, also known as enteric fever, is an enfeebling infectious disease that infects

humans. It is normally high in children below the age of 6 years of age and is relatively

average in adults. Bacteria, known as Salmonella typhi (S. typhi), are the primary cause of

typhoid fever. The disease is usually contracted by infecting humans through the intake of

fecal discharges from an infected person, contaminated water or food, and by sharing basic

utensils, such as cups, spoons, bowls, and others, with an infected person. Some express

it bluntly by saying that a person who has contracted typhoid fever has eaten the feces

of a carrier or another infected person. These gram-negative bacteria find their way into

the body through the aforementioned ways into the small intestine and then shed into

the bloodstream by macrophages in the reticuloendothelial system [1]. The symptoms of

typhoid fever include prolonged low to high fever, severe headache, loss of appetite, body

pain and weight loss, dry cough, diarrhea or constipation, itching or rashes, and also, to

some extent nausea, and abdominal pain. At the chronic stage of typhoid, perforation of

the intestine and neurological complications are observed in the patient [2]. Endemic cases

of typhoid fever are recorded in both developed and developing countries, thereby making

it a public health concern. This disease still remains a concern, even despite the recent

improvements in water sanitation [3]. Usually, it takes 7–14 days for the disease to manifest

in an infected person. The patient is given antibiotic treatment, after which the person
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may feel better a few days later. Still, in the worse case, an infected

person without a proper treatment could develop complications

resulting in death. Vaccines against typhoid fever are only partially

effective. The said vaccines are usually manufactured only for those

persons who are prone or are exposed to hotspot areas of the

disease [4]. Hence, the jabs of typhoid fever vaccines are seen as

one of the core factors in curbing the transmission of the disease.

The available vaccines in the system now are of two types that are

oral and injectable. Among the injectable types, we have: typhoid

conjugate vaccine, Tya, and Vi capsular polysaccharide vaccine.

They are about 30% to 80% effective within the first 2 years of

the specific vaccine in question. When a person takes on the drug-

resistant strain of typhoid fever and is not properly managed with

effective antibiotics, then there is a high chance of it resulting in

complications [5]. It is estimated that typhoid fever cases have risen

from 11million to 21.5million and fivemillion cases of paratyphoid

fever worldwide, with 200,000 deaths occurring each year [6]. It is

also estimated that African countries have not been left out with

an increasing number of cases between 10 and 100 per 100,000

individuals, with children being the most infected due to poor

hygiene and sanitation. As a result of the high rate of infection and

the rising spirit of the disease strain, typhoid has become a burden

that has turned into a major world health problem. However,

vaccination seems to be the essential method for controlling the

transmission of the disease [7]. Several mathematical models have

been proposed to study the dynamics of infectious diseases. Among

the diseases that have gained much attention from mathematical

modelers are HIV/AIDS [8–10, and references therein], malaria

[11, and references therein], and tuberculosis [12, and references

therein]. With the advent of coronavirus disease (COVID-19),

several models have been proposed to study the dynamics and

control of the disease [13, 14, and references therein]. González-

Guzmán [15] appears to be from among the first researchers to

have developed a mathematical model to study the spread of

typhoid fever. Following González-Guzmán [15], several models

have been proposed to help increase the understanding of the

spread and control of typhoid fever. Specifically, Wameko et al.

[16] proposed a deterministic ODE compartmental model for

the dynamics of typhoid fever with a susceptible-carrier-infected-

recovered (ESCIR) pattern for the human population and a

pathogen compartment B(t). The recent study of Ayoola et al. [17]

analyzed a similar compartmental model for the spread of typhoid

fever by incorporating optimal education and vaccination control

strategies. A six-class compartmental model by Ogunlade et al. [18]

describes the application of deterministic and stochastic models to

the dynamics of typhoid fever. They first analyzed the deterministic

model and then transformed it into a stochastic model where

the mean and variance were determined. The stochastic model

simulations were done using the Euler–Maruyama numerical

scheme. Even though the research indicates that controls, such

as vaccination, screening, and treatments, are effective enough

to reduce the spread of the disease, hospitalization and personal

hygiene could not be considered to help control the disease. Other

interesting models of typhoid fever can be seen in Peter et al. [19],

Peter et al. [20, 21], and Musa et al. [7].

To the best of our knowledge, no typhoid fever model

that incorporates treatment and booster vaccination as control

measures has been proposed. Therefore, this research seeks to

develop a mathematical fever model that incorporates vaccination,

treatment, booster vaccine, and pathogen populations.

The rest of the article is arranged as follows: In Section

2, the model of interest is formulated. In Section 3, basic

qualitative properties, including positivity and boundedness of

model solutions, stability of equilibrium points of the model, are

discussed. In Section 4, the model is numerically simulated to

illustrate the analytical results obtained and to study the impact of

model parameters on model output behavior. Finally, in Section 5,

the main conclusions drawn from the study are presented.

2. Formulation of the mathematical
model

Based on the model proposed by Ayoola et al. [17],

we incorporate double-dose vaccination with treatment and a

compartment to monitor the concentration of the bacteria in the

environment. The said model consists of six human compartments

and one pathogen compartment. These are: the singly vaccinated

populationV , the susceptible population, S, the exposed E, infected,

I, recovered R, and those who have received the booster vaccine

VB. The pathogen concentration is given by B. Therefore, the total

human population is given by N = V + S + E + I + R + VB + B.

The susceptible represents the people who are uninfected but stand

the chance of getting infected with the disease. This compartment

increases through the following:

• Recruitment at rate n3h, where3h is the recruitment rate into

the population and n is the proportion of the recruits who

are susceptible,

• Loss of immunity of the single-vaccinated individuals. The

rate of loss of immunity by the single-vaccinated individuals

is taken to be ν1, The recovered population may lose their

temporal immunity and join the susceptible at rate θ .

The susceptible population also reduces due to the following:

• Infection as a result of effective contact with the exposed

and infected persons at the rate of (1 − η)βSλ, where λ =

β (γ1E+ γ2I + γ3B). A proportion η of those susceptible

become exposed, while the remainder become infectious right

away due to compromised immune system,

• Vaccination at rate φ.

• Natural death at rate µ.

The single-dose vaccinated population increases through

recruitment at a rate (1− η)3h, vaccination of the susceptible

and recovered at rates of ν1, and ν2, respectively. The vaccinated

population also reduces as a result of: the loss of immunity at rate φ,

going in for booster vaccine at a rate ρ, and through natural death

at a rate µ. The exposed compartment increases through some

fraction η of susceptible population following effective contact

with infected, exposed persons and the pathogen at a rate η Sλ, and

decreases as a result of the natural recovery rate of w, the natural

mortality rate of µ, and the development of clinical symptoms at

a rate of ψ . The infected compartment grows through infection

following the effective contact with exposed, infected persons and

the shed pathogen in the environment at rate (1− η) λ S, and
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FIGURE 1

Compartmental diagram of the model.

progression of exposed individuals into the infected class at rate

ψ . The infected population diminishes in the following manner: a

successful treatment at rate τ , a disease-induced mortality at rate

of δ, and natural mortality rate of µ. The recovered compartment

population increases through a successful treatment of infected

persons at the rate of τ and natural self-recovery of the exposed at

the rate of w. The recovered compartment also reduces as a result

of temporal immunity loss at the rate θ , rate of vaccination ν2,

and natural mortality rate µ. The booster vaccinated compartment

grows through the intake of booster vaccine by the vaccinated

compartment at the rate ρ and reduces as a result of the natural

mortality rate µ and the Pathogen concentration increases through

the shedding of pathogens by exposed and infectious persons at

rates ξ1 and ξ2, respectively. The decay rate of pathogens is taken

to be µb.

The schematic diagram that represents the model described

thus far is presented in Figure 1.

The following set of differential equations therefore

describes the dynamics of typhoid spread with double-dose

vaccination scheme:

dV
dt

= (1− n)3h + ν1 S+ ν2 R− (φ + ρ + µ)V;
dS
dt

= n3h + φ V + θ R− (ν1 + µ+ λ) S;
dE
dt

= ηλ S− (µ+ ψ + w)E;
dI
dt

= (1− η) λ S+ ψ E− (δ + τ + µ)I;
dR
dt

= τ I + wE− (θ + ν2 + µ)R;
dVB
dt

= ρ V − µVB;

dB
dt

= ξ1E+ ξ2I − µbB.























































(1)

Where necessary, we use the following conventions in

subsequent discussions.

k1 = (φ + ρ + µ) , k2 = (ν1 + µ) , k3 = (µ+ ψ + w) ,

k4 = (δ + τ + µ) , k5 = (θ + ν2 + µ) .

In Table 1, the model parameters and their baseline values

are presented.

3. Qualitative properties

3.1. Positivity of solutions

Theorem 1. Let � =
{

(VB,V , S,E, I,R) ∈ R
6
+

}

. If positive

conditions and initial conditions are provided for Equation (1),

then all its solutions remain positive for t > 1.

Thus, V(t) > 0, S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0,

VB(t) ≥ 0, B(t) ≥ 0 of the system is positive for all t > 1.

Proof. Considering the first of Equation (1), we have

dV

dt
= (1− n)3h + ν1 S+ ν2 R− (φ + ρ + µ)V

dV

dt
≥ − (φ + ρ + µ)V

∫

1

V
dV ≥ −

∫

(φ + ρ + µ) dt

Integrating both sides gives

ln |V| ≥ − (φ + ρ + µ) t + c
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TABLE 1 Description and values of parameters for model (Equation 1).

Parameter Description Baseline
value

Source

3h Human recruitment rate 100 [22]

ν1 Rate of vaccination 0.260 Assumed

ν2 Rate of vaccination 0.220 Assumed

φ Loss of vaccination 0.130 Estimated

n Fraction of recruited

susceptible

0.670 Estimated

ρ Booster vaccination 0.75 Estimated

µ Natural mortality rate 0.0041 Estimated

η proportion of susceptible 0.650 Assumed

τ Treatment rate 0.851 [22]

w Recovery rate from

exposed

0.676 [23]

δ Typhoid-induced

mortality rate

0.0022 [22]

ψ Rate of progression into

Infection

0.142 Estimated

θ Loss of Immunity upon

recovery

0.7204 [24]

β Transmission rate 0.714 Estimated

ξ1 Rate of bacteria

excretion (Exposed)

0.0818 [25]

ξ2 Rate of bacteria

excretion (Infected)

0.0712 [25]

γ1 Infectiousness from

exposed

0.02 [19]

γ2 Infectiousness from

infected

0.01 [19]

γ3 Infectiousness from

bacteria

0.01 [19]

µb Rate of bacteria decay 0.0645 [25]

V ≥ C1e
−(φ+ρ+µ)t

Where C1 is the integration constant, i.e., V(0) = C1. Therefore,

V(0) ≥ 0 ∀ t > 0.

Similarly, we can show this for
{

S(0) ≥ 0,E(0) ≥ 0, I(0) ≥ 0,R(0) ≥ 0,VB(0) ≥ 0,B(0) ≥ 0
}

model variables. As a result, the model’s solution is positive.

3.2. Boundedness of solutions

Adding all equations consisting of human compartments from

model system (1) gives;

dN
dt

= 3h − Nµ− δ I

dN

dt
≤ 3h − Nµ (2)

Solving Equation (2) yields

N(t) ≥,N(0)e−ut +
3h

µ

(

1− e−ut
)

Now,

lim
t→∞

N(t) ≤
3h

µ
(3)

Thus, N (t) is bounded.

With use of the inequality (Equation 3), we obtained from the

seventh equation of system (Equation 1) that,

dB(t)

dt
≤
3h (ξ1 + ξ2)

µ
− µbB (t) (4)

Solving inequality (Equation 4), we have

B(t) ≤ B(0)e−µbt +
3h (ξ1 + ξ2)

µµb

(

1− e−µbt
)

(5)

Taking the limits will give

lim
t→∞

B(t) ≤
3h (ξ1 + ξ2)

µµb
(6)

Hence, B(t) is bounded as well. Thus, the aforementioned results

indicate that the solutions of system (Equation 1) are positive and

bounded in the region.

� =

{(

V , S, E, I, R, VB

)

∈ R
6
+|V + S+ E+ I + R+ VB

≤
3h

µ
;B(t) ≤

3h (ξ1 + ξ2)

µµb

}

3.3. Equilibrium points of model

3.3.1. Typhoid-free equilibrium point and basic
reproduction number

The typhoid-free equilibrium ET0 =
(

V0, S0, 0, 0, 0, V0
B, 0

)

is obtained by equating the dynamic system of Equation (1) to zero

together with the conditions E = 0, I = 0,R = 0, and B = 0. Then,

we have;

S0 =
3h((1−n)φ+nk1)

k1k2−φν1
,

V0 =
3h((1−n)k2+nν1)

k1k2−φν1
,

V0
b
=

ρ3h((1−n)k2+nν1)
µ(k1k2−φν1)

.















(7)

The basic reproduction number, which is often denoted by R0, is

an epidemiological quantity which is used to describe the average

number of secondary infections that are recorded as a result of

introducing an infected individual into an otherwise completely

susceptible population. Several techniques have been developed to

determine this threshold for deterministic ODE models. In this

article, we employ the method of Driessche et al. [26] to obtainR0

for the typhoid fever model. Following the technique in Driessche
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et al. [26], the infected sub-system of model system (Equation 1) is

given by the following set of equations.

dE
dt

= η Sλ− k3E;
dI
dt

= (1− η) Sλ+ ψ E− k4I;
dB
dt

= ξ1E+ ξ2I − µbB.











(8)

According to Driessche and Watmough [26], the, matrix F

represents the component consisting of the infection terms

(transmission) and V contains all other terms (transitions). The

transmission and transition matrices are then given by

F = β S0







ηγ1 ηγ2 ηγ3

(1− η) γ1 (1− η) γ2 (1− η) γ3
0 0 0






,

and V =







k3 0 0

−ψ k4 0

−ξ1 −ξ2 µb






.

Therefore,

FV
−1 =

β S0

µb k3 k4






ηζ1 η k3 (γ2µb + γ3ξ2) ηγ3 k3 k4
(1− η) ζ1 (1− η) k3 (γ2µb + γ3ξ2) (1− η) γ3 k3 k4

0 0 0






,

Where ζ1 = µb

(

γ1 k4 + γ2ψ
)

+ γ3
(

ψξ2 + ξ1 k4
)

.

It is easy to determine that the basic reproduction

number taken as the spectral radius of FV−1 [26] is given by

R0 =
β S0

[

γ1µbη k4 + γ2
[

µbηψ + (1− η) k3µb

]

+ γ3
[

(1− η) k3ξ2 + η
(

ψξ2 + ξ1k4
)]]

µbk3k4
.

3.3.2. Endemic equilibrium point
At a typical non-trivial equilibrium point E∗ =

(

V∗
B ,V

∗, S∗,E∗, I∗,R∗,B∗
)

, we have the following.

dV

dt
= 0,

dS

dt
= 0,

dE

dt
= 0,

dI

dt
= 0,

dR

dt
= 0,

dVB

dt
= 0,

dB

dt
= 0.

Solving the set of equations above, the endemic equilibrium point

can be explicitly expressed in terms of λ∗ and other model

parameters as follows:

S∗ =
(φ(1−n)+nk1)3h

8λ∗k1+k1k2−φν1
,

E =
η(φ(1−n)+nk1)3hλ

∗

k3(8λ∗k1+k1k2−φν1)
,

I∗ =

(

ψη

k3k4
+

1−η
k4

)

λ∗S∗,

R∗ =

[

ηω
k3k5

+

(

ψη

k3k4k5
+

1−η
k4k5

)

τ
]

λ∗S∗,

B∗ =

[

ηξ1
k3µb

+

(

ψη

k3k4µb
+

1−η
k4µb

)

ξ2

]

λ∗S∗,

V∗ =
(1−n)3h

k1
+

[

ν1
k1

+ ν2

(

ηω
k1k3k5

+

(

ψη

k1k3k4k5
+

1−η
k1k4k5

)

τ
)

λ∗
]

S∗,

V∗
b
=

ρ
µ

[

ν1
k1

+ ν2

(

ηω
k1k3k5

+

(

ψη

k1k3k4k5
+

1−η
k1k4k5

)

τ
)

λ∗
]

S∗

+
ρ(1−n)3h
µ k1

,

8 = 1−
(φν2+θk1)
k1k3k4k5

[

τ (1− η) k3 + η
(

ωk4 + ψτ
)

]

.























































































(9)

Where

λ∗ = β
(

γ1E
∗ + γ2I

∗ + γ3B
∗
)

(10)

Substituting E∗, I∗, and B∗ into (10) and simplifying give

λ∗

[

λ∗ −

(

k1k2 − φν1
)

8
(R0 − 1)

]

= 0. (11)

Solutions of Equation (11) are λ∗ = 0, corresponding to

the typhoid-free equilibrium, and λ∗ =
(k1k2−φν1)

8
(R0 − 1),

corresponding to the typhoid-persistent equilibrium. The following

result is easily established.

Lemma 1. The typhoid fever model (Equation 12) has an

epidemiologically reasonable disease-free equilibrium point only

whenR0 > 1.

Proof. It is easy to notice that
(k1k2−φν1)

8
> 0 by substituting the

expressions for k1, k2, . . . k5, and simplifying. This implies that

the λ∗ > 0 if R0 > 0 and λ∗ ≤ 0 if R0 ≤ 1. We note that λ∗ > 0

is associated with a positive endemic equilibrium. This concludes

the proof.

3.4. Stability of equilibrium points

We investigate the local stability of the typhoid-free equilibrium

and the endemic equilibrium of the basic reproduction number, in

this section, using the Lyapunov second technique, which states

that an equilibrium point is locally asymptotically stable if all

eigenvalues of the associated Jacobian have negative real parts and

unstable otherwise.

3.4.1. Local stability of equilibrium points
The typhoid-free equilibrium ET0 is locally asymptotically

stable, if and only if all eigenvalues of the Jacobian matrix of system

(Equation 1) at the ET0 have negative real parts. Now, let X =

(S, E, I, R, V , VB, B). Then, model (Equation 1) can be written

in the form dX
dt

= f (X), where fi(X) =
dXi
dt
, where Xi is the ith

component of X.

The Jacobian matrix of the model evaluated at typhoid-free

equilibrium we have J(ET0) is given by

J(ET0) =























−k1 ν1 0 0

φ −k2 −γ1β S
0 −γ2β S

0

0 0 ηγ1β S
0 − k3 ηγ2β S

0

0 0 (1− η) γ1β S
0 + ψ (1− η) γ2β S

0 − k4
0 0 w

ρ 0 0 0

0 0 ξ1 ξ2

ν2 0 0

θ 0 −γ3β S
0

0 0 ηγ3β S
0

0 (1− η) γ3β S
0

−k5 0 0

0 −µ 0

0 0 −µb
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FIGURE 2

(A–H) Graphs of sensitivity indices of endemic equilibrium point, and R0.
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TABLE 2 Sensitivity indices of endemic equilibrium andR0.

Par V∗ S∗ E∗ I∗ R∗ V∗
b

B∗ R0

3h 0.94967 0.025017 1.4518 1.4518 1.4518 0.94967 1.4518 1.0000

ν1 0.079707 –0.021137 –0.38175 –0.38175 –0.38175 0.079707 –0.38175 –0.84487

ν2 0.11923 0.0000 –0.48209 –0.48209 –0.70626 0.11923 –0.48209 0.0000

φ –0.052327 –0.092072 0.27321 0.27321 0.27321 –0.052327 0.27321 0.17508

n –0.24147 0.020089 1.1659 1.1659 1.1659 –0.24147 1.1659 0.80302

ρ –0.93200 –0.56061 0.041211 0.041211 0.041211 0.068004 0.041211 –0.16601

µ –0.21621 0.015254 –0.38595 –0.39528 –0.43201 -1.2162 –0.3894 –0.21526

η –0.018594 –0.21486 1.0862 –1.0999 0.081086 –0.018594 0.27634 0.22037

τ 0.049869 0.33092 –0.094795 –1.0465 –0.072583 0.049869 –0.44736 –0.33941

ω 0.073227 0.55791 –0.96616 –0.36404 –0.14909 0.073227 –0.7431 –0.57222

δ –0.00163 0.00086 –0.00338 –0.00584 –0.00451 –0.00163 –0.00429 –0.00088

ψ 0.0030737 0.035518 –0.17955 0.18182 –0.013404 0.0030737 –0.045681 –0.036429

θ –0.057561 0.0000 0.59224 0.59224 –0.14181 –0.057561 0.59224 0.0000

β –0.050327 –0.97498 0.45184 0.45184 0.45184 –0.050327 0.45184 1.0000

ξ1 –0.027968 –0.54182 0.2511 0.2511 0.2511 –0.027968 0.88064 0.55572

ξ2 –0.016458 –0.31884 0.14776 0.14776 0.14776 –0.016458 0.51822 0.32702

γ1 –0.0044106 –0.085445 0.039598 0.039598 0.039598 –0.0044106 0.039598 0.087638

γ2 –0.0014909 –0.028883 0.013386 0.013386 0.013386 –0.0014909 0.013386 0.029625

γ3 –0.044426 –0.86065 0.39886 0.39886 0.39886 –0.044426 0.39886 0.88274

µb 0.044426 0.86065 –0.39886 –0.39886 –0.39886 0.044426 –1.3989 –0.88274

If Y is a typical eigenvalue, then the characteristic polynomial

of J is given by

(µ+ Y)
(

Y + k5
) (

Y2 +
(

k1 + k2
)

Y + k1 k2 − ν1 φ
)

9 (Y) = 0

where

9 (Y) = Y3 +11Y
2 +12Y +13,

11 = µb + k3 + k4 − β S
0 (η γ1 + (1− η) γ2) ,

12 = β S0
[

k4γ1η + ηψγ2 + ξ2 (1− η) γ3

−
(

µbγ1η + γ2 (1− η)
(

µb + k3
))

+ ηξ1γ3

]

+µb

(

k3 + k4
)

+ k3 k4,

13 = k3 k4 µb (1−R0) ,

12 = β S0
[

k4γ1η + ηψγ2 + ξ2 (1− η) γ3

−
(

µbγ1η + γ2 (1− η)
(

µb + k3
))

+ηξ1γ3

]

+ µb

(

k3 + k4
)

+ k3 k4

Clearly, two of the eigenvalues of J (ET0), namely,−µ and−k are

negative. Two other eigenvalues can be determined as,

Y3,4 =

(

k1 + k2
)

±

√

(

k1 + k2
)2

− 4
(

k1k2 − ν1φ
)

2
,

which clearly have negative real parts since
(

k1k2 − ν1φ
)

> 0,

and
(

k1 + k2
)

> 0. Now, the condition for stability of typhoid-

free equilibrium point rests on the zeros of 9(Y). These roots have

negative real parts if11 > 0, 12 > 0, 13 > 0, and1112 > 13.

Clearly, 13 > 0 wheneverR0 < 1. Therefore, the local stability of

ET0 is characterized in the following result.

Lemma 2. The typhoid-free equilibrium point ET0 is locally

asymptotically stable whenever R0 < 1 and the conditions 11 >

0, 12 > 0, and1112 > 13 also hold. The equilibrium point is

unstable otherwise.
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FIGURE 3

Contour plots showing the impact of various parameters on the basic reproduction number R0 as functions of (A, B), β and γ2, (C) β and γ3, and (D)

τ and ρ.

3.5. Global stability of typhoid-free
equilibrium points

To study the global stability of the typhoid-free equilibrium

point, we define the Lyapunov function

L =
[

γ1k4µb + ψγ2µb +
(

ψξ2 + k4ξ1
)

γ3
]

E

+ k3 (γ2µb + γ3ξ2) I + γ3k3k4B.

The time derivative of L is given by

dL

dt
=

[

γ1k4µb + ψγ2µb +
(

ψξ2 + k4ξ1
)

γ3
] dE

dt

+ k3 (γ2µb + γ3ξ2)
dI

dt
+ γ3k3k4

dB

dt
.

Upon substituting the expressions for dE
dt
, dI

dt
, and dB

dt
into

the aforementioned equation and simplifying, we obtain

the following.

dL
dt

= k3k4µb

(

S
S0
R0 − 1

)

(γ1E+ γ2I + γ3B) ;

≤ k3k4µb

(

3h

µ S0
R0 − 1

)

(γ1E+ γ2I + γ3B) , since S ≤ N ≤
3h
µ
.

Now,
3h

µ S0
R0 =

(k1k2−φν1)R0

µ((1−n)φ+nk1)
, and hence, L

t ≤ 0 if R0 ≤

µ((1−n)φ+nk1)
(k1k2−φν1)

.

Therefore, even though R0 ≤ 1 is required for local stability, it

is not sufficient for global stability. This suggests the existence of

backward bifurcation, which will be explored in the next section.

3.6. Sensitivity analysis

Mathematical models have always been proposed and used

to make predictions. The reliability of the predictions from these
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FIGURE 4

(A–D) Time series plots of model variables showing the impact of varying the rate of administration of the first dose of vaccine.

models depends not only on the precision or accuracy of the

models, but also on the precision or accuracy of the model inputs,

which are mostly in the form of model parameters. Data on these

model parameters are often uncertain. Thus, the measurement of

model parameters can affect predictions by models. It is therefore

important to study the impact of variations in model parameters

on the model output. This is done through sensitivity analysis. In

this section, we adopt the forward normalized sensitivity index to

study the effect of small changes in model parameters on model

predictions. This index allows us to determine the parameters with

the maximum impact on the model output, so that these models

can be targeted for an accurate or precise measurement and also

to optimize model predictions. The normalized sensitivity index is

defined as follows:

ϒ
p
z =

∂ z

∂ p
×

p

z
.

Where z is an output that depends differentiably on the

model input p. Using this index, we determined the sensitivity

indices of endemic equilibrium and the basic reproduction

number and evaluated them using the model parameter values

given in Table 1. The sensitivity indices are presented in

Table 2.

The sensitivity indices indicate the percentage change in the

given model output that follows from a percentage change in the

model input. Positive indices indicate that a percentage increase

(decrease) in the model input leads to a corresponding decrease

(increase) in the model output. The graphs in Figure 2 present the

sensitivity indices.

We observe that the recruitment rate, 3h, has a high impact

on all, except the susceptible population at equilibrium. The

proportion of immigrants who are susceptible also has a high

impact on exposed and infected populations. This implies that

the inflow of persons into the population should be checked, so

as to ensure that they are all vaccinated against typhoid. The

transmission rate, β , also has a high impact on disease progression.

We also observe that the rate at which individuals who come into

contact with the pathogen sources remain exposed and not become
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FIGURE 5

(A–D) Time series plots showing the impact of administration of the booster dose of vaccine.

infected has a high impact on disease spread. These parameters

should be targeted to ensure that they are reduced or increased

(whichever is appropriate) to keep the infections low. Specifically,

to reduce or eradicate typhoid, the following measures should be

carried out:

• The parameters, 3h,φ, n, β , ξ1, ξ2, γ1, γ2, and γ3, should

be reduced.

• The parameters, ν1, µ, τ , ω, δ,ψ , and µb, should be increased.

We note however that increasing death rate in humans is not

a good option and should hence be ignored.

3.7. Bifurcation analysis

In this section, we study the existence and direction of

bifurcation in model (Equation 1). It is easy to show that the

Jacobian of the model evaluated at the typhoid-free equilibrium

point ET0 has a simple eigenvalue (i.e., a zero eigenvalue)

when R0 = 1. Therefore, the center manifold theory [27]

can be employed to study the nature of the bifurcation of

the model.

To do this, we set x1 = V , x2 = S, x3 = E, x4 = I, x5 = R, x6 =

VB, and x7 = B, so that the model can be written as follows:

0 = (1− n)3h + ν1 x1 + ν2 x5 − k1x1;

0 = n3h + φ x1 + θ x5 − k2λ x2;

0 = ηλ x2 − k3x3;

0 = (1− η) λ x2 + ψ x3 − k4x4;

0 = τ x4 + wx3 − k5x5;

0 = ρ x1 − µ x6;

0 = ξ1x3 + ξ2x4 − µbx7.































































(12)
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FIGURE 6

(A–D) Time series plots of model variables for varying values showing the impact of treatment rate.

The left and right eigenvectors
(

v andw, respectively
)

associated with the simple eigenvalue are given as follows:

w1 =
w4[((τ (γ1µb+γ3ξ1)−(γ2µb+γ3ξ2)ω)(θν1+k2ν2)η+k3k5ν1(γ2µb+γ3ξ2))βS0−k3µbτ(θν1+k2ν2)]

(k1k2−φν1)(βηS0(γ1µb+γ3ξ1)−k3µb)k5
,

w2 =
w4[((φν2+θk1)(τ (γ1µb+γ3ξ1)−(γ2µb+γ3ξ2)ω)η+k3k5k1(γ2µb+γ3ξ2))βS0−k3µbτ(φν2+θk1)]

(k1k2−φν1)(βηS0(γ1µb+γ3ξ1)−k3µb)k5
,

w3 =
βηS0(γ2µb+γ3ξ2)w4

k3µb−βηS
0(γ1µb+γ3ξ1)

,

w5 =

(

ωβηS0(γ2µb+γ3ξ2)

k5(k3µb−βηS
0(γ1µb+γ3ξ1))

+ τ
k5

)

w4,

w6 =
ρw1
µ

,

w7 =

(

ξ1βηS
0(γ2µb+γ3ξ2)

(k3µb−βηS
0(γ1µb+γ3ξ1))µb

+
ξ2
µb

)

w4,

v1 = v2 = v5 = v6 = 0, v3 =
[k4µb−β S0(1−η)(γ2µb+γ3ξ2)]v4

(γ2µb+γ3ξ2)βηS
0 , v7 =

γ3k4v4
γ2µb+γ3ξ2

.

Taking

β∗ =
µbk3k4

S0
[

γ1µbη k4 + γ2
[

µbηψ + (1− η) k3µb

]

+ γ3
[

(1− η) k3ξ2 + η
(

ψξ2 + ξ1k4
)]]

as a bifurcation parameter, the nature and direction of

bifurcation are determined by the bifurcation coefficients
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FIGURE 7

(A–D) Time series plots showing the impact of loss of immunity after the first vaccination.

defined by

a =

n
∑

i,j,k=1

vkwiwj
∂2fk

∂xi∂xj

(

ET0,β
∗
)

,

b =

n
∑

i,k=1

vkwi
∂2fk

∂xi∂β

(

ET0,β
∗
)

.

Direct computation and simplification yield the following.

a =
2k4µb

(γ2µb+γ3ξ2)S
0

(

k3(γ2µb+γ3ξ2)

k3µb−β
∗ηS0(γ1µb+γ3ξ1)

)

w4w2v4;

b =
k4k3µbw4v4

β∗(k3µb−β
∗ηS0(γ1µb+γ3ξ1))

.

where w4 and v4 satisfy

(

k4µb − (γ2µb + γ3ξ2) β (1− η) S
0

k3µb − βηS0 (γ1µb + γ3ξ1)
+ 1

+

(

ηβ (−γ1ξ2 + γ2ξ1) S
0 + k3ξ2

)

γ3k4
(

k3µb − βηS0 (γ1µb + γ3ξ1)
)

(γ2µb + γ3ξ2)

)

w4v4 = 1.

Since the signs of the bifurcation coefficients are not clearly known,

the system exhibits backward bifurcation at R0 = 1 whenever

a > 0 and b > 0 [27].

4. Numerical simulation

In this section, we perform numerical simulations of the

proposed model (Equation 1). The dynamic model system is

simulated using the ode45 routine in MATLAB. The initial

conditions used are given by

N(0) = 1, 548, V(0) = 300, S(0) = 1, 000, E(0) = 50, I(0) = 25,

R(0) = 23, VB(0) = 120, B(0) = 500.

The the parameter values listed in Table 1 were used in the

simulation. The simulation was performed to demonstrate the

impact of each parameter on the transmission of typhoid fever.

Contour plots, showing the impact of various parameters on the

basic reproduction numberR0, are presented in Figure 3.
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In Figure 4, the time series plots of model variables, showing

the impact of varying the rate of administration of the first

dose of typhoid vaccine, are presented. It is observed that

increasing the rate of vaccine administration has the potential of

driving infections downward. A similar effect of booster vaccine

administration is observed from Figure the time series plots

given in Figure 5. However, the booster vaccine is observed

to have a far lesser impact on driving infections than the

single dose. In Figure 6, the time series plots of model variables

for varying values of the treatment rate are presented. It

is observed that increasing the treatment rate has a very

significant impact on infections but not so much for the other

compartments. In Figure 7, time series plots showing the impact

of loss of immunity after the first vaccination are presented.

It is observed that an increased loss of immunity leads to an

increase in the susceptible population and an increase in the

Infected population.

5. Conclusions

This study formulated and analyzed a mathematical model

for the transmission dynamics of typhoid fever disease, taking

into account, both the booster vaccination and treatment. The

region within which the analysis of the model is reasonable was

determined. The typhoid-free and endemic equilibrium points

were also determined. The basic reproduction number, R0, was

then calculated using the next-generation matrix method of

Driessche and Watmough [26]. The local and global stability

conditions for the equilibrium points were investigated. We

demonstrated that the model may exhibit backward bifurcation

when R0 = 1 under some conditions. Therefore, the condition

R0 < 1 may not be sufficient to eradicate typhoid fever in

the community. A sensitivity analysis of the model parameters

was conducted to determine the relative impact of changes

in those model parameters on endemic equilibrium values

and R0. It was observed that the most influential parameters

include the transmission rate, β , recruitment rate, 3h, and

the fraction of recruits who are susceptible, n. A numerical

simulation was then conducted to illustrate the impact of various

model parameters on the state variables. The results largely

agree with the sensitivity index results. However, the results

show that the booster vaccination may not be very effective in

endemic areas.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it

for publication.

Acknowledgments

This article was produced from the M.Phil. thesis of the first

author under supervision of the co-author.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. Typhoid fever. N Engl J Med.
(2002) 347:1770–82. doi: 10.1056/NEJMra020201

2. Antillón M, Warren JL, Crawford FW, Weinberger DM, Kürüm E, Pak
GD, et al. The burden of typhoid fever in low- and middle-income countries:
a meta-regression approach. PLoS Neglect Trop Dis. (2017) 11:e0005376.
doi: 10.1371/journal.pntd.0005376

3. Dougan Baker GS. Salmonella enterica serovar typhi and the
pathogenesis of typhoid fever. Ann Rev Microbiol. (2014) 68:317–36.
doi: 10.1146/annurev-micro-091313-103739

4. Näsström E.Diagnosis of acute and chronic enteric fever using metabolomics (Ph.D.
thesis). Umeå Universitet (2017).

5. Nthiiri J, Lawi G, Akinyi C, Oganga D, Muriuki W, Musyoka M, et al.
Mathematical modelling of typhoid fever disease incorporating protection against
infection. J Adv Math Comput Sci. (2016) 14:1–10. doi: 10.9734/BJMCS/2016/
23325

6. CDC-US X. Typhoid and Paratyphoid fever: Information for Healthcare
Professionals. Washington, DC: U.S. Department of Health and Human Services
(2019).

7. Musa SS, Zhao S, Hussaini N, Usaini S, He D. Dynamics analysis of typhoid fever
with public health education programs and final epidemic size relation. Results Appl
Math. (2021) 10:100153. doi: 10.1016/j.rinam.2021.100153

8. Daabo MI, Makinde OD, Seidu B. Modeling the combined effects of careless
susceptible and infective immigrants on the transmission dynamics of hiv/aids
epidemics. J Public Health Epidemiol. (2013) 5:362–9.

9. Daabo MI, Makinde OD, Seidu B. Modelling the spread of HIV/AIDS epidemic
in the presence of irresponsible infectives. Afr J Biotechnolo. (2012) 11:11287–95.
doi: 10.5897/AJB12.786

10. Ghosh I, Tiwari PK, Samanta S, Elmojtaba IM, Al-Salti N, Chattopadhyay J. A
simple si-type model for HIV/AIDS with media and self-imposed psychological fear.
Math Biosci. (2018) 306:160–9. doi: 10.1016/j.mbs.2018.09.014

Frontiers in AppliedMathematics and Statistics 13 frontiersin.org

https://doi.org/10.3389/fams.2023.1151270
https://doi.org/10.1056/NEJMra020201
https://doi.org/10.1371/journal.pntd.0005376
https://doi.org/10.1146/annurev-micro-091313-103739
https://doi.org/10.9734/BJMCS/2016/23325
https://doi.org/10.1016/j.rinam.2021.100153
https://doi.org/10.5897/AJB12.786
https://doi.org/10.1016/j.mbs.2018.09.014
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Kailan Suhuyini and Seidu 10.3389/fams.2023.1151270

11. Seidu B, Makinde OD, Seini IY. Mathematical analysis of the effects of hiv-
malaria co-infection on workplace productivity. Acta Biotheoretica. (2015) 63:151–82.
doi: 10.1007/s10441-015-9255-y

12. Gumel AB, Song B. Existence of multiple-stable equilibria for a multi-drug-
resistant model of mycobacterium tuberculosis. Math Biosci Eng. (2008) 5:437–55.
doi: 10.3934/mbe.2008.5.437

13. Seidu B. Optimal strategies for control of covid-19: a mathematical perspective.
Scientifica. (2020) 2020:4676274. doi: 10.1155/2020/4676274

14. Tiwari PK, Rai RK, Khajanchi S, Gupta RK, Misra AK. Dynamics of
coronavirus pandemic: effects of community awareness and global information
campaigns. Eur Phys J Plus. (2021) 136:994. doi: 10.1140/epjp/s13360-021-
01997-6

15. González-Guzmán J. An epidemiological model for direct and
indirect transmission of typhoid fever. Math Biosci. (1989) 96:0–46.
doi: 10.1016/0025-5564(89)90081-3

16. Wameko M, Koya P, Wodajo A. Mathematical model for transmission dynamics
of typhoid fever with optimal controlâĂŐ strategiesâĂŐ. Int J Ind Math. (2020)
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