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Experimental study on the
information disclosure problem:
Branch-and-bound and QUBO
solver

Keisuke Otaki*, Akihisa Okada and Hiroaki Yoshida

Toyota Central R&D Labs., Inc., Bunkyo-ku, Tokyo, Japan

The aim of this study was to explore the information disclosure (ID) problem,

which involves selecting pairs of two sides before matching toward user-oriented

optimization. This problem is known to be useful for mobility-on-demand (MoD)

platforms because drivers’ choice behaviors are appropriately modeled, but

solving the problem is still under development, although heuristic solvers

have been proposed. We develop new branch-and-bound-based (BnB) solvers

and a new heuristic solver based on a quadratic unconstrained binary

optimization (QUBO) formulation. Our numerical experiments show that the

QUBO-based solver indeed works within the limit of available bits, and the BnB

solver performs slightly better than existing heuristic ones.

KEYWORDS

information disclosure, heuristics, branch-and-bound, quantum annealing, quadratic

unconstrained binary optimization

1. Introduction

Matching between two sides (e.g., items and users, items and markets) is an essential

task in many real-world applications. Bipartite graph matching has been investigated as a

fundamental problem to model such a matching between two sides [1]. A weighted variant

of bipartite matching is often applied to find the best matching in terms of associated weights

and some global objective functions defined on bipartite graphs. Individual weights could

represent various indicators, such as prices, distances, times, and probabilities of taking

certain pairs. Real-world applications of matching include matching between children and

schools [2, 3], resource allocation [4, 5], and transportation [6, 7]. In another category

of settings, the weights of edges can be defined following some probabilistic semantics

to represent intuitionistic phenomena [8]. From the optimization viewpoint related to

matching, particularly on transportation, other related studies using Fuzzy logic for the

intuitionistic phenomena are found in Kumar [9, 10]. Previously, several global properties

desired by participants (e.g., platformer/service provider, and individual users) have been

studied for bipartite graph matching; an example is to consider stable matching with stated

preferences (e.g., given preferences concerning items on another side) [11]. Other examples

representing preferences include the use of ranked lists of elements to represent preferences

and the use of utility values to quantify preferences (e.g., [12–14]).

Figure 1 illustrates a global optimization task on bipartite matching between drivers

and customer orders in the transportation domain. Therefore, each driver has four possible

assignments. Typically, driver–order pairs have given weights, representing benefits earned

by the service, for example. Then, weighted bipartite matching is used to decide a bipartite

matching to select the most profitable pairs as a traditional global optimization task.

The optimized result on matching is meaningful for some platformers. However, it is

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2023.1150921
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2023.1150921&domain=pdf&date_stamp=2023-03-29
mailto:otaki@mosk.tytlabs.co.jp
https://doi.org/10.3389/fams.2023.1150921
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2023.1150921/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Otaki et al. 10.3389/fams.2023.1150921

FIGURE 1

Global optimization task on bipartite graphs for the transportation

domain. Out of possible driver–order assignments, pairs among

drivers and orders are decided in terms of some global metric (e.g.,

total profit).

not always valuable and acceptable for individuals; for example,

some drivers in the traditional matching should pick up some less

profitable orders due to the global optimal matching criteria.

Focusing on individual participants on each side of bipartite

matching is now an emerging topic for human-oriented decision-

making. In contrast to the traditional scenario illustrated in

Figure 1, possible assignments are not equivalently acceptable,

and weights are not fixed by users from the user-oriented

perspective. Yang et al. [15] studied the information disclosure

(ID) problem, where weights are not directly and explicitly given,

but weights themselves are determined following relative values

of items displayed to drivers. In particular, such weights can be

optimized by selecting displayed items for each driver. Figure 2

illustrates the idea discussed in the ID problem. The authors

adopted discrete choice models to represent the probability of

each driver wanting to choose orders and try to optimize the

probabilities of drivers’ choices. In the ID problem, the authors

proposed to prune redundant choices. Pruning redundant choices

can be beneficial to drivers as they match with items with higher

probabilities than those without pruning, where we can design

candidates of choice for users by focusing on the aspect from

the users’ side. The idea of the ID problem is to cover as

many orders as possible with higher probabilities using selection

probability (see Section 2 for details), and finally, to solve ordinal

weighted matching to realize the driver–order pairs. The authors

showed that the aforementioned indirect optimization task is

valuable for real-world mobility-on-demand (MoD) services.

Note that such a user-oriented aspect of optimization problems

has attracted much attention (e.g., user-oriented routing [16, 17]

and on-demand transportation [18]). In particular, the adopted

discrete choice model is connected to stated preferences, which are

studied in the stable matching literature. However, the essential

difference is whether or not such preferences are given. That

is, in the ID problem, we optimize our decisions to fix such

choice probabilities, which indirectly represent preferences among

orders.

Along with the formulation of the ID problem, Yang et

al. developed two heuristic solvers, which are reviewed in

Section 2.2 and [15]. However, comparisons with other solvers

have yet to be made and the ability of these solvers in terms

of algorithms is unknown. Since Yang et al. [15] discussed and

evaluated the ID problem in real-world MoD applications, we

expect that studying solvers for the ID problem improves such

service qualities directly. Furthermore, experimentally comparing

the solvers give us insights into the ID problem itself, as it

is a relatively new optimization problem. In article paper,

we propose new approaches and make comparisons with

their previous results. The systematic comparisons clarify the

performance of existing methods and the newly developed three

approaches: a method based on a quadratic unconstrained

binary optimization (QUBO) formulation compatible with the

quantum annealing, an enumeration-based exact method, and

a branch-and-bound-based solver. We experimentally evaluate

these approaches together with re-implemented existing solvers

using two sets of randomly generated ID problems with (a)

uniform distribution and (b) truncated Gaussian distribution in

accordance with Yang et al. [15]. Throughout the experiments,

the existing algorithms perform well empirically, particularly in

instances of (b). The QUBO-based formulation is shown to give

good solutions, but the problem size is rather limited mainly

because of the many dummy variables required to transform the

original problem. The enumeration-based and the branch-and-

bound-based solvers are found to provide slightly better solutions

than the existing solvers in certain ranges of the number of orders

and drivers.

2. Materials and methods

2.1. Preliminary

2.1.1. Discrete choice model
Following an MoD scenario, let D = {d1, . . . , dm} and O =

{o1, . . . , on} be sets of drivers and customer orders, respectively.

We assume that each driver d ∈ D selects an order o ∈ O with

probability pd,o
1, which is formally defined following a discrete

choice model [14, 19]. From the perspective of MoD platforms, a

utility2 Ûd,o is the sum of a deterministic term Ud,o and a random

term ǫd,o, that is, Ûd,o : = Ud,o + ǫd,o. Therefore Ud,o is evaluated

for each transportation service with the fee fo of an order o ∈ O,

and the distance τd,o of a pair (d, o) ∈ D × O, Ud,o is defined as

Ud,o : = β0 + β1fo + β2τd,o with three preference parameters β : =

{β0,β1,β2}. In particular, these parameters β can be estimated from

collected data by using maximum-likelihood estimation3 [20]. The

use of this model is a standard approach in MoD research (e.g.,

Hikima et al. [18]).

Let Od ⊂ O be a set of orders displayed to the driver d ∈ D.

Let U0
d
be the initial utility4 of driver d. Furthermore, we denote by

{s} that d does not select any order from Od. Yang et al. adopted the

following nested multinomial logit (NMNL) model in Equation (1)

1 The original notation in Yang et al. [15] is po,d , but we write it as pd,o for the

convenience.

2 The term utility is from economics that refers to the total (objective)

satisfaction received from consuming a good or service.

3 Yang et al. [15]. reported that β0 = 0, β1 = 1[USD], β2 = −0.7[USD/km],

α = 1.0, U0
d = 15[USD] in New York city.

4 Intuitively, the value U0
d means the objective satisfaction without any

choice. If Ud,o > U0
d of an order o, the driver possibly chooses o.
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FIGURE 2

Concepts of the information disclosure, where probabilities, drivers, and orders are illustrated. In the first step, choice probabilities are optimized by

selecting disclosures in the ID problem to clarify the structure among drivers and orders. In the second step, we try to solve the matching problem.

TABLE 1 Examples of evaluating probabilities pd,o with

Od = {o1,o2},α = 1 under di�erent four (xd,o1 , xd,o2 ) values [i.e.,

(0, 0), (0, 1), (1, 0), and (1, 1)].

X = (xd,o1 , xd,o2 ) (0, 0) (0, 1) (1, 0) (1, 1)

pd,o1 0.0 0.0 0.982 0.867

pd,o2 0.0 0.881 0.0 0.117

pd,{s} 1.0 0.119 0.018 0.016

To reproduce these examples, we can use U0
d
= 8,Ud,o1 = 12, and Ud,o2 = 11.

to define pd,o with the parameter α [15]5:

pd,o =

{

p(o | Od)p(Od) if o ∈ Od

p({s}) if o = s
, (1)

Where p(Od) : =
exp(αVOd

)

exp(U0
d
)+exp(αVOd

)
, p({s}) : =

exp(U0
d
)

exp(U0
d
)+exp(αVOd

)
, p(o | Od) : =

exp(Ud,o)
∑

o′ exp(Ud,o′ )
, and

VOd
: = ln

(

∑Od
o exp(

Ud,o

α
)
)

.

2.1.2. Evaluation with decision variables
We prepare the binary decision variables X = {xd,o ∈ {0, 1} |

d ∈ D, o ∈ O}, where xd,o = 1 means the system displays o to d.

Table 1 shows an example of evaluating pd,o when Ud,o and U0
d
are

given. Figure 3 illustrates four possible displays for the ordersOd =

{o1, o2}; that is, we have (xd,o1 , xd,o2 ) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

The probabilities computed with different X are summarized

in Table 1. In the following, pd,o(;X ) means the probabilities

evaluated with the decision variables X .

The ID problem studied in Yang et al. [15] is an unconstrained

maximization problem of the objective function:

fID(X ) : =
∑

o∈O

Po(X ), (2)

Where the term Po(X ) : = 1 −
∏

d∈D

[

1− pd,o(;X )
]

is the

probability of at least one driver selecting o for each order o ∈ O.

5 The choice becomes at random (α → 0) and seems to be deterministic

(α→∞).

2.2. Existing solvers

The solvers studied in Yang et al. [15] are classified into

two categories: (1) closed-form solvers and (2) optimization-

based solvers. Therefore, we focus on (2), which is actually the

main contribution of Yang et al. [15] showing their solvers to

be promising. Optimization-based solvers in (2) are designed to

maximize Equation (2). The authors proposed a greedy local

search method called intuitive edge cutting (IEC) and a method

called minimal-loss edge cutting (MLEC), which accelerates IEC by

pruning redundant candidates.

The basic idea of the two methods is to design a greedy method

by evaluating the increments of objective values. LetX be a current

disclosure solution, and X update be a modified solution, where one

edge (d, o) ∈ D × O is removed from X , that is, X update
: =

X \ {(d, o)}. The difference δd,o′ : = p
update
d,o′

− pd,o′ for o
′ ∈ Od \ {o}

of the probability for (d, o′) affects the probability Po′ as P
update
o′ −

Po′ : = δd,o′
∏

d′∈D\{d}(1 − pd′ ,o′ (;X
update) · xd′ ,o′ ). Furthermore,

the difference P
update
o −Po : = −pd,o

∏

d′∈D\{d}(1−pd′ ,o(;X ) ·xd′ ,o)

arises for o. With these differences combined, the gain of removing

(d, o) is defined as follows:

1 : =
∑

o′∈Od\{o}

(P
update
o′ − Po′ )− (P

update
o − Po). (3)

With Equation (3), IEC and MLEC are executed as follows:

• IEC: Begin with X = {xd,o = 1 | d ∈ D, o ∈ O}. Find (d′, o′)

that maximizes 1, and updates X ← X \ {(d′, o′)} while such

(d′, o′) exists.

• MLEC: When computing 1 in IEC, filter (d, o) with the

probabilities pd,o(;X ) and reduces the number of candidates

of size O(nm) to O(m).

Recall that Yang et al. stated that (1) MLEC can be faster

than IEC, (2) MLEC can find better solutions within limited

computational resources, and (3) the use of ID problem enhances

matching results (e.g., more beneficial for MoD platforms) [15].

However, we have no insights on howwell IEC andMLEC perform,

as they are greedy solvers.
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FIGURE 3

Four possible disclosure instances. (A) means no choice is shown. (B, C) Mean only one order is displayed. (D) The case all orders are given to the

driver d. Note that pd,o = 0 if xd,o = 0, i.e., a driver cannot select an order that is not displayed.

2.3. Proposed methods

To deeply understand and conduct experimental comparisons

to analyze the ID problem, we develop new solvers. For complex

combinatorial optimization problems such as the ID problem in

this article, the standard approach to design a solver is to follow

the branch-and-bound idea [21]. Therefore, this article develops

a branch-and-bound-based solver for the experimental study of

the ID problem. Furthermore, recent advantages of quantum-based

methods have attracted much attention to the use of quantum-

inspired methods to solve combinatorial problems. From this

perspective, we also design how to apply such a quantum-inspired

method to the ID problem.

2.3.1. QUBO formulation
Quantum annealing (QA) is a heuristic optimization method

that is to solve combinatorial optimization problems [22] and

has been attracting attention from the theory and industry

communities [23]. Its theoretical and physics-based backgrounds

are stated in Lucas [22]. The QA is supposed to efficiently and

approximately solve QUBO problems, which minimizes as follows:

H(s1, . . . , sN) = −
∑

i<j

Qi,jsisj −

N
∑

i=1

Qi,isi,

si ∈ {0,+1}.

Although the current objective function in Equation (2) is

not a quadratic function, any higher order terms are essentially

transformed into linear combinations of quadratic terms once the

problem is expressed in terms of binary variables. We, therefore, try

to develop a QUBO-based solver, considering that the upcoming

performance of QUBO solvers, including the QA should be

promising for optimization [23, 24].

2.3.1.1. Formulation revisited for QUBO formulation

From Po(X ) = 1 −
∏

d(1 − pd,o(;X )) and max
∑

o∈O Po(X ),

we solve min
∑

o∈O

∏

d∈D(1− pd,o(;X )). From Equation (1),

pd,o(;X ) = p(o | Od)p(Od),

=
exp(Ud,o) · xd,o

∑

o′∈Od
exp(Ud,o′ ) · xd,o′

×

∑

o′∈Od
exp(Ud,o′ ) · xd,o′

exp(U0
d
)+

∑

o′∈Od
exp(Ud,o′ ) · xd,o′

=
exp(Ud,o) · xd,o

exp(U0
d
)+

∑

o′∈Od
exp(Ud,o′ ) · xd,o′

=
F1(o, d)

F2(d)
,

and 1− pd,o(;X ) leads to a fraction of the following form:

1− po,d(;X )

=
F2(d)− F1(o, d)

F2(d)

=
F3(o, d)

F2(d)
.

We then need to minimize
∑

o

∏

d
F3(o,d)
F2(d)

. To solve this

fractional optimization problem (i.e., F3(o,d)
F2(d)

) with higher order

multiplications (i.e.,
∏

d), we apply a technique [25, 26] tominimize

f
QUBO
ID : = Hnum(;X )− K ×Hden(;X ), (4)

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2023.1150921
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Otaki et al. 10.3389/fams.2023.1150921

Where Hnum(;X ) : =
∑

o

∏

d F3(o, d), Hden(;X ) : =
∏

d F2(d), and the positive number K ∈ R+. This technique is

based on the fact that minimizing A
B is equal to simultaneously

minimizing A and maximizing B. A direct method of minimizing

Equation (4) is labeled QUBO-Exact in this article.

2.3.1.2. Implementation

As mentioned earlier, any higher order unconstrained binary

optimization problem (HUBO) is essentially transformable to a

QUBO problem; see Zaman et al. [27] for the transformation

algorithm. Note that, however, the transformation often requires

many binary variables on top of the original ones.

Then, we implement a method labeled QUBO-Approx, which

removes the redundant higher-order terms of Hnum and/or Hden

of Equation (4). Note that pd,o(;X ) = F1(o,d)
F2(d)

=
exp(L)·F1(o,d)
exp(L)·F2(d)

,

which means that values in F1 and F2 can be exponentially

shifted by a constant, such as exp(L). With this technique, parts

of terms in Hden and/or Hnum can reach zero in the HUBO

optimization problem. Hence, we expect that QUBO-approx

could approximately solve ID problem instances with a smaller

number of bits than QUBO-Exact.

2.3.2. Branch-and-bound-based solver
We develop a solver labeled BnB, based on the branch-and-

bound idea [21].

2.3.2.1. Branching phase

We have the set X = {xd,o ∈ {0, 1} | d ∈ D, o ∈ O} and

|X | = |D| × |O| = mn. The number of possible assignments

of X is 2mn if we branch the problem into two sub-problems,

namely, with xd,o = 0 or xd,o = 1. There are different possibilities

for splitting the problem, e.g., driver-wise branching for d ∈ D

enables us to generate 2n with n orders in O. An appropriate

branching implementation is selected considering the scalability

and/or possibilities of evaluating objective values in the bounding

phase.

2.3.2.2. Bounding phase

We need to assess the upper/lower bounds of a sub-problem

to prune any redundant sub-problems generated. Since the upper

bound of pd,o, denoted by p̄d,o, is obtained from xd,o = 1 and

xd,o′ = 0 for o′ ∈ Od \ {o}, collecting p̄d,o for d ∈ D leads to

the upper bound of Po, denoted by P for o ∈ O. Therefore, we

can prune redundant sub-problems if
∑

o∈O P < fID(X
′) for the

current-best feasible solution X ′.

Together with the branching phase, we can discuss the

computational aspect of branch-and-bound solvers for the ID

problem. That is, the computational complexity of BnB solvers is

straightforwardO(2mn) in the worst case. Numerical evaluations of

the average running times of the branch-and-bound-based solvers

still need to be investigated in the current status.

2.3.2.3. Incremental deepening with implicit constraints

Since the set of 2nm decision variables is quite large, the

aforementioned branch-and-bound-based solver is still inefficient

for some ID problem instances. We then incorporate a new

perspective into our branch-and-bound-based solver for the ID

problem using implicit constraints. Typical solutions obtained with

TABLE 2 Summary of two datasets, UnifID and NormID.

U U0 N = |O| = |D| trial

UnifID Unif(8, 14) Unif(8, 14) 2, 3, . . . , 8 50

NormID [15] TrunNorm(20,

10, 5, 40)

15 2, 3, . . . , 8 50

Value trialmeans the number of generated instances for each size N.

IEC/MLEC often satisfy
∑

o∈Od
xd,o = 1 for d ∈ D. This is because

increasing the number of displayed orders reduces pd,o, and so the

value of Po.

Based on the aforementioned implicit constraints, we propose

a heuristic, range-constrained branch-and-bound-based solver.

Here, a range [Ld,Hd] should be given for each d ∈ D, which

means that items whose numbers are in [Ld,Hd] are assumed to

be displayed. If [Ld,Hd] = [1, 1], then d accepts only one order.

These range constraints drastically reduce the number of sub-

problems. The solutions obtained with the aforementioned range

constraints are approximations whenHd < m = |O|. In this article,

we always assume that Ld = 1 for d ∈ D and that Hd = H for

d ∈ D. This range-constrained branch-and-bound-based solver

is labeled BnBH with value H. Then, we implement an iterative

deepening procedure [28] for the hyperparameter H, i.e., we run

BnBH iteratively asH = 1, 2, . . . and if the obtained solutions with

H and H + 1 are the same, then we halt the increment of H.

3. Results and discussions

We experimentally evaluate methods for the ID problem.

3.1. Datasets

We prepare two sets of randomly generated instances and

name them UnifID and NormID. UnifID is generated using

uniform distributions, denoted by Unif in Table 2, for U and

U0, while NormID is based on truncated normal distributions,

denoted by TrunNorm in Table 2, in accordance with Yang et al.

[15]. For simplicity, we focus on the case, where N = m =

n (i.e., N = |O| = |D|) following the experiments using

the synthetic datasets in Yang et al. [15]. Table 2 summarizes

two datasets.

3.2. Methods

Here, we compare the following methods:

• Random: a random assignment of X ,

• ExactEnum: generate-and-test method for 2nm variables,

• BnB: branch-and-bound-based method,

• BnBH: heuristic solver with BnB and range constraints H,

• QUBO-Exact: a naive QUBO-based method,

• QUBO-Approx: a method approximating higher-order terms

up to dim 3, and

• IEC/MLEC: our re-implementation of the IEC/MLEC [15].
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FIGURE 4

Results for UnifID, objective values, computational times, and objective values of selected methods. (A) Objective values of UnifID. (B)
Computational times of UnifID. (C) Selected results of UnifID with standard variations in filled regions.

3.3. Experimental results

Figures 4, 5 show experimental results of UnifID and

NormID, respectively. Both figures illustrate the mean objective

values (Figures 4A, 5A), computational times (Figures 4B, 5B),

and objective values (Figures 4C, 5C) of selected methods with

standard variations with filled ribbons. Note that computational

times of QUBO-based methods are not illustrated because we

use a GPU-based annealing solver, and we repeatedly use them

(e.g., 30 times) fixed times. According to the results on the

two datasets, the two existing heuristic solvers (IEC and MLEC)

efficiently find approximate solutions. As seen in Figures 4C,

5C, compared with results of BnB (up to N = 5, meaning

that 225 binary variables in X ), IEC and MLEC are efficient

heuristic solvers. Our results seem to indicate that IEC is

better than MLEC for small instances, although Yang et al. [15]

reported that MLEC could find better solutions with shorter

computational times. That is, we can conjecture the two methods

are almost comparable for small instances used in this article.

We can interpret our experimental results as follows. First,

obtained solutions by IEC and MLEC were almost competitive

for NormID, as shown in Figure 5A. Second, Yang et al. did

not investigate uniform distributions to evaluate their heuristic

solvers in their experiments using synthetic data [15]. One

possible reason is that MLEC is not good at solving instances

generated in UnifID since MLEC halts at some local optima.

Another possible explanation is that the two solvers, IEC

and MLEC, have different properties according to the sizes of

instances. We only adopt small instances in this experimental

study due to computational issues of the current status of

developed solvers.

Furthermore, the QUBO-based methods did find optimal

solutions for N ≤ 3. The applicability is still limited for

practical use; however, since the binary variables consumed for

transformation to the QUBO problem are significant for the

current QUBO solver. We expect that the significance of these

methods will be pronounced as the development of hardware for

the QUBO solvers.

Compared with BnB and ExactEnum, the current BnB is

not much efficient; yet, since the computational times of the two

methods are similar. We conjecture that this is because (1) current

branching evaluations are not tight enough and (2) the targeting

ID objective function fID does not suit the branch-and-bound-

based solver. Since Po depends on the whole X , there is no clear

structure (e.g., independence) for dividing fID, and BnB could be

less effective in estimating the upper and lower bounds of fID.

Linear relaxations of xd,o (i.e., relaxation of xd,o ∈ {0, 1} to 0 ≤

xd,o ≤ 1) do not accelerate the bounding phase as fID is the sum

of high-dimensional products. Therefore, developing an efficient

bounding method would be an important next step in elucidating

the branch-and-bound-based method for the ID problem. Such a

development could be valuable also for evaluating the performance

of ICE and MLEC since the current experimental study in this

article focuses on small instances.

To estimate the performance of IEC in greater detail, we

compare BnB, BnB1, and IEC on 50 random instances sized N ∈
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FIGURE 5

Results for NormID, objective values, computational times, and objective values of selected methods. (A) Objective values of NormID. (B)
Computational times of NormID. (C) Selected results of NormID with standard variations in filled regions.

TABLE 3 Objective values comparison with BnB1 and IEC for UnifID and

NormID.

NormID UnifID

BnB1 and IEC BnB1 and IEC

N > = < > = <

2 0 47 3 1 32 17

3 9 40 1 6 26 18

4 17 33 0 8 21 21

5 24 26 0 12 14 24

Columns (>,=,<) indicate the number of instances whose objective values are better than

counterparts.

{2, 3, 4, 5} with both NormID and UnifID settings. The results

of BnB1 and IEC are summarized in Table 3 and those between

BnB and IEC are given in Table 4. The columns show the number

of instances after a comparison of objective values with the two

methods. For example, with N = 2 on NormID, BnB1, and

IEC obtain the same objective values for 47 out of 50 instances.

According to Table 3, BnB1 obtains better solutions than IEC

on average, particularly on NormID. Similar results are observed

in Table 4. Note that BnB requires much longer computational

times, as shown in Figures 4B, 5B, indicating that BnB1 is to find

better solutions than those of IEC. These results may be due to

the distributions of Ud,o in the computation pd,o, i.e., the possible

TABLE 4 Objective values comparison with BnB and IEC for UnifID and

NormID.

NormID UnifID

BnB and IEC BnB and IEC

N > = > =

2 0 50 1 49

3 9 41 7 43

4 17 33 9 41

5 24 26 18 32

Columns (>,=,<) indicate the number of instances whose objective values are better than

counterparts.

ranges in UnifID are less than those in NormID, and so pd,o
values are similar (i.e., modifications in xd,o change objective values

drastically).

4. Conclusion and future study

In the present article, we have studied the ID problem by

revisiting the methods proposed by Yang et al. [15]. Our

experimental evaluations comparing their solvers revealed that

the heuristic solver IEC and MLEC are comparable for small

instances. These results can also support the findings in Yang et

al. [15]. In addition, experimental results on uniformly random
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data (i.e., UnifID) indicate that MLEC cannot find better solutions

than those by IEC on specific instances. We also expect that

we could improve the current heuristic MLEC according to the

property of input data in future study to find better solutions

to the ID problem. We confirm that the QUBO-based methods

give optimal solutions for N ≤ 3, but significant hardware

development is demanded for practical applications with larger N.

This is because the transformation to the QUBO problem requires

many dummy binary variables. Better approximation incorporating

the effect of higher order terms than the one we employed in

this study as a first step would accelerate the application of

QUBO solvers. For branch-and-bound-based solvers, BnB1 slightly

improves IEC solutions with shorter computational times than

BnB. We expect that developing better branching estimation

for BnB1 and BnB could improve the quality of solutions with

shorter times.

These results for a class of optimization problems based on

decision models (i.e., probabilities of selecting items) are valuable

for discussions of human-centric optimization tasks. In our future

study, we will investigate the theoretical background of problems

and other objective functions for real applications involving

MoD services.
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