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The human leukocyte antigen (HLA) system is a complex of genes on chromosome

6 in humans that encodes cell surface proteins responsible for regulating the

immune system. Viral peptides presented to cancer cell surfaces by the HLA

trigger the immune system to kill the cells, creating antibody–peptide epitopes

(APE). This study proposes an in silico approach to identify patient-specific APEs

by applying complex networks diagnostics on a novel multiplex data structure

as an input for a deep learning model. The proposed analytical model identifies

patient- and tumor-specific APEs with as few as 20 labeled data points. In addition,

the proposed data structure employs complex network theory and other statistical

approaches that can better explain and reduce the black box e�ect of deep

learning. The proposed approach achieves an F1-score of 80% and 93%on patients

one and two, respectively, and above 90% on tumor-specific tasks. In addition, it

minimizes the required training time and the number of parameters.

KEYWORDS

complex networks, machine learning, deep learning, personalized medicine, cancer,
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1. Introduction

The human leukocyte antigen (HLA) system or complex is a complex of genes on

chromosome 6 in humans that encode cell surface proteins responsible for regulating

the immune system. The HLA system also known as the human version of the major

histocompatibility complex (MHC) is found in many animals.

HLA genes are highly polymorphic, which means that there are thousands of different

forms of these genes called alleles, allowing them to fine-tune the adaptive immune system.

The proteins encoded by certain genes are also known as antigens because of their historic

discovery as factors in organ transplants.

As shown in Figure 1, HLA’s proteins present viral peptides from inside the cell to the

surface of the cell. For example, if the cell is infected by a virus or is cancerous, the HLA

system brings abnormal fragments, called peptides, to the surface of the cell so that the cell

can be destroyed by the immune system.

Predicting the specific HLA peptide combination that will present the peptide to the

cell’s surface permits the creation of a treatment that will trigger the human immune system

to destroy the cell. Specifically, in cancer, this ability is essential, given that cancer is highly

mutagenic with tumor and patient-specific mutations. This means that patients with the

same tumor type will have different mutations that result in different reactions to the

same treatment.
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FIGURE 1

HLA proteins (green) display peptides (red) from inside the cell to help immune cells find cancerous or infected cells.

Advances in deoxyribonucleic acid (DNA) sequencing,

messenger ribonucleic acid (mRNA) vaccines, and high-

computational power allow us to work toward patient-specific

therapy. This approach, called personalized mRNA-based

antitumor vaccine, visualized in Figure 2, is bound to play a major

role in future.

The approach is meant to trigger an antitumor immune

response in patients by challenging them with mRNAs encoding

tumor-specific antigens [1]. These mRNAs can be directly injected

as naked RNA or loaded into patient-derived dendritic cells.

In this study, we propose to extend the approach with

additional laboratory and analytical optimization steps. Concretely,

DNA sequenced from the patient is used to select candidate

peptides that will result from gene expression. As the space of

possible combinations is huge a subset of potential peptides is

synthesized and their reaction to the patient’s specific HLA alleles

are tested by applying an enzyme-linked immunospot (ELISpot)

assay. An enzyme-linked immunospot (ELISpot) assay [2], shown

in Figure 3, is a highly versatile and sensitive technique, that is,

used for qualitative and quantitative measurement of the cytokine-

secreting cells at the single-cell level [3].

This assay involves culturing cells on a surface on which a

reagent (e.g., a specific capture antibody) is immobilized. Secreted

proteins by the cells, such as cytokines, will be captured by the

specific antibodies on the surface. Post-appropriate incubation

time, cells are washed, and the secreted molecule is identified

by applying a detection antibody. Adding a substrate produces

a colored fluorescent or luminescent reaction (e.g., visible spots

on the surface). Each spot corresponds to an individual cytokine-

secreting cell and indicates the reactants’ concentration. The

generated data permit fine-tuning an analytical approach to a

specific patient’s and tumor’s mutations and reevaluating the

peptide sequences with the purpose of selecting the optimal HLA

allele–peptide combination. Once a subset of peptides is identified

an mRNA vaccine is created that will force the body to trigger an

immune response and destroy cancerous cells. The mRNA vaccine

creation and evaluation are outside the scope of this study. The

purpose of this study is to identify an analytical approach that

can predict HLA-peptide interaction. With this effort, we hope to

provide a framework that gives the ability to select and optimize

personalized analytical methods from a wide range of possibilities

as graph theory, machine learning, deep learning, meta-learning,

andmachine learning on graphs and leverage on high-performance

computing with graphic processing unit (GPU) acceleration.

2. Related work

Epitope prediction is an important approach in tumor

immunology and immunotherapy. The main classes of importance

in the HLA molecules are the Class I and II molecules,

which present epitopes to CD8+ T cells and CD4+ T cells,

respectively. The methods for assessing immunogenicity are MS-

based MHC-I peptide binding prediction and immunogenicity

verification by specific response assays [4–6]. Many analytical

approaches have been applied to distinguish two main types of

approaches: allele-specific and pan-specific. Where the former

trains one model for every MHC-I allele [7–12], and the

latter considers them to be as one and trains a global model

together on both [13–16]. The methods with the highest achieved

accuracy use data from the immune epitope database [17]. In

recent years, the high rate of deep learning research resulted

in a variety of deep learning based methods proposed by

researchers [12, 13, 18, 19]. Many approaches combine graph

theory principles with deep learning or deep learning on

graphs [20–23] to detect interactive propensities embedded in

HLA–peptide pairs.

Even though high affinity in an MHC–peptide complex

tends to be associated with immune responsiveness, it

is not sufficient to define immunogenicity. The existing

analytical models lack several aspects influential to

immunogenicities, such as the rate of expression, failure

to represent sophisticated dynamics in molecular systems,

and abundance of proteins. A number of top-ranking

analytical approaches regularly falsely predict neoantigens

[24–26]. Hence, the need to better comprehend immune

responsiveness based on MHC–peptide complex and dynamic

structures and interaction in the context of a complex

dynamical system environment is a key for peptide-based

personalized vaccines.
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FIGURE 2

Exome of tumor cells isolated from a biopsy sample and the exome of normal cells are compared to identify tumor-specific mutations. Point

non-synonymous mutations, gene deletions, or rearrangements can give rise to neoantigens. Several bioinformatic tools are used to predict major

histocompatibility complex (MHC) class I and class II binding (necessary for recognition by T cells) and RNA expression presence of the mutated

antigen among tumor cells (clonality). RNA sequencing enables verification that the gene encoding the neoantigen is expressed by tumor cells. A

tandem gene encoding several neoantigen peptides is cloned into a plasmid and transcribed to mRNA. Finally, these mRNAs are injected as naked

RNA, formulated into liposomes, or loaded into dendritic cells.

FIGURE 3

Visualization of an enzyme-linked immunospot (ELISpot) assay.

3. Approach

To compare and predict system interactions and behavior, we

will look at measures and metrics that these networks express.

Calculating and assigning these metrics for every individual system

permit us to create a dataset that can be used in statistical, machine,

and deep learning analysis approaches. Our approach takes the

network measures as input and makes a binary decision about
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FIGURE 4

Approach is divided into the following phases: (1) data collection, (2) ELISpot assay, (3) structures and measurements generation, (4) analytical

approach evaluation.

whether a system composed of multiple patient-specific peptides

and HLAs will result in the presentation of viral epitopes (in known

EBV-driven cancer such as nasopharyngeal cancer) on the surface

of the cancer cells. As shown in Figure 4, the study can be divided

into the following phases: (1) data collection, (2) ELISpot assay,

(3) structures and measurements generation, and (4) analytical

approach evaluation.

3.1. Data

The data, originally published in a study on patient-derived

nasopharyngeal cancer (NPC) organoids for disease modeling

[27], consist of 18 NPC tissue samples obtained from patients

who underwent biopsy or surgical resection at the National

University Hospital Singapore between March 2015 and April

2019. The datasets presented in Lucky et al. [27] can be found

in online repositories. The names of the repository/repositories

and accession number(s) can be found at NCBI Gene Expression

Omnibus.

Specimen collection and experimental use for the study have

been approved by the Institutional Review Board of the National

Healthcare Group (DSRB Reference: 2015/00098-SRF0004). One

part of the tissue collected from patients was immediately

transferred to RPMI-1460 media with HEPES and L-Glutamine

and 5X antibiotic/antimycotic and 5 µg/ml Metronidazole at 4◦C.

The other part was fixed in 10% neutral buffered formalin (10%

NBF) for routine hematoxylin and eosin (HI&E) staining, and the

remaining tissues were snap-frozen in liquid nitrogen for DNA and

RNA extraction. As proof of our methodology, we used mRNA and

DNA sequences of two patients where one sequence areas of the

mutation have been selected and potential peptide candidates have

been identified. Patient one was diagnosed with lung cancer and

patient two with nasopharyngeal cancer.

In addition, enzyme-linked immunospot (ELISpot) assays have

been performed with the corresponding patient-specific HLA

alleles and peptides producing the quantitative measurements of

the immune response (i.e., values we wish to predict).

To show the ability of the model to perform well on tumor-

specific tasks, we apply the analytical approach to the Cancer

TABLE 1 Data dictionary of the used dataset.

Attribute Description

Peptide sequence Represents the structure of amino acids of peptide

and is of type string. Every letter represents an

amino acid.

HLA alleles The patient’s HLA alleles. Represents the HLA

protein structure as a sequence of amino acids

represented as letters.

Matched PBMCs The number of matched blood mononuclear cells

(PBMCs)

Discretized PBMC’s PBMC values are discretized into 2 classes: ‘no

reaction’, “reaction”

Epitope Database and Analysis Resource (CEDAR) [28] containing

1,345,569 peptidic epitopes, 116,026 T-cell assays, 855,280 B-

cell assays, 4,030,973 MHC ligand assays,1,588 epitope source

organisms, 652 restricting MHC alleles and 4,452 references,

originating from cancer-related studies.We apply the grouping and

filtering described in Section 4.2 to select data points from studies

close to patients one and two. This produces a total of 9,386 data

points that grouped by the chosen antigen presenting cells tissue

type blood, breast, lung, and lymphoid yield 2084,15,30,687 data

points, respectively.

3.1.1. Data overview
The produced data’s attributes as listed in Table 1 will give us the

ability to create the data structures that represent the relationships

between HLA alleles and peptides. This data structure will give

us better insights and permit to apply analytical approaches to

predict HLA–peptide interactions expressed as a discretized class

representing ranges of the numbers of matched bloodmononuclear

cells (PBMCs).

3.1.2. Generated molecular structures
A peptide, as illustrated in Figure 5, is a short chain of amino

acids (typically 2–50) linked by chemical bonds (called peptide

bonds). The HLA cell surface protein, as illustrated in Figure 6, is a
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FIGURE 5

Peptide, a short chain of amino acids, represented in

three-dimensional space.

FIGURE 6

HLA cell surface protein, chain of amino acids, represented in

three-dimensional space.

chain of amino acids, that is, responsible to regulate the immune

system. To understand HLA–peptide interactions, we need to

understand how the peptide is binding, as illustrated in Figure 7,

to the HLA.

The HLA–peptide interaction is dependent on the amino acid

atoms’ chemical reactions that will fall close enough in three-

dimensional space. During phase 2 of our study, as shown in

Figure 8, we generate an in silico representation of the molecular

FIGURE 7

HLA–peptide complex formed by the binding of a peptide to an HLA

cell surface protein, represented in three-dimensional space.

structures composing a system, i.e., the patient-specific peptides

and HLAs in a system.

3.2. Generated network structures

We chose a network representation with layers to study the

diverse relations and interactions between the components. These

network representations are called multiplex networks, where a

node corresponds to a “physical object,” while node-layer pairs are

different instances of the same object.

For instance, a node could represent an online user, while

node-layer pairs would represent different accounts of the same

user in different online social networks; or a node could represent

a social actor, while node-layer pairs would represent different

social roles (e.g., friend, worker, and family member) of the

same social actor; or a node could stand for a location in a

transportation network, while node-layer pairs would represent

stations of different transportation modes (e.g., streets, highways,

and subways).

The connection between nodes and node-layer pairs is given

by the notion of supra-nodes: i.e., cliques in the supra-graph

formed by node-layer pairs that are instances of the same object.

To correctly represent a physical object in the different layers of

the multiplex network, we break down the peptides into amino

acids and the amino acids to their smallest component atoms and

their connection bonds. The layers coordinate, atom, monomer,

polymer, complex, and system are introduced. The coordinate layer

represents the three-dimensional coordinates of every atom in the

system. The atom layer, as shown in Figure 9, is the layer that

represents the atoms and their bonds that construct objects in the

monomer layer, e.g., an amino acid.

The monomer layer, as shown in Figure 9, represents the

objects of type monomer that are a molecule of any of a class of

compounds, mostly organic, that can react with other molecules to

form very large molecules or polymers.
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FIGURE 8

In silico molecular complexes present in a system, represented in three-dimensional space.

The polymer layer, as shown in Figure 9, represents the objects

of type polymer. A polymer is any object of a class of natural

or synthetic substances composed of very large molecules, called

macromolecules, which are multiples of monomers.

The complex layer, as shown in Figure 9, represents polymers

that form a complex by binding to each other, e.g., the peptide binds

to an HLA to form a complex as shown in Figure 5.

The system layer represents the totality of complexes that exist

in an ELISpot assay and is representative of multiple HLA–peptide

complexes. One system could be represented as shown in Figure 9

where we are omitting the coordinates layer.

3.3. Networks measures and metrics

After generating the graph structures, we calculate network

measures on each system. The goal was to select measures such

that the analytical model would be able to identify patterns in

their values to allow them to distinguish between the two classes of

systems, i.e., systems that will produce an antibody–peptide epitope

and systems that will not produce an antibody–peptide epitope.

The used network measures are discussed in detail in Section 8.3

in Appendix.

4. Model training

4.1. Model

We define the prediction of an antibody–peptide epitope as a

binary classification problem. Our proposed model takes as input

a set of complex networks measures and uses them as features to

learn patterns and distinguish between systems that are more likely

or less likely to produce an antibody–peptide epitope. Since we seek

to discover latent features in the complex networks that represent

systems, we choose to rely on deep learning, discussed in Section

8.2.4 in Appendix.

Our U-Net with self-attention (UNET-ATT) takes the U-net

with attention deep learning architecture previously successfully

applied on molecular structures by Jacobs and Maragoudakis [29],

consisting of blocks of convolutions and deconvolutions, where

a convolution block consists of one-dimensional convolutional

layer followed by a max pooling layer and deconvolution

blocks consisting of one-dimensional deconvolutional layer. The

visualization of this architecture can be found in Figure 10.

The input of the UNET-ATT is a vector with 22 complex

network measure values that undergo batch normalization by

introducing additional layers, to stabilize their distribution and

control their mean and variance. The batch-normalized input flow

into a convolution that reduces the input space. Convolutional

layers extract higher dimensional representations by processing

local features layerwise. Resulting in the separation of complex

network measurements in a high-dimensional space based on their

semantics. The output value of the layer with input size (N,Cin, L)

and output (N,Cout , Lout) can be described as follows:

out(Ni,Coutj ) = bias(Coutj )+

Cin−1∑

k=0

2(Coutj , k) ∗ input(Ni, k), (1)

Where * is the valid cross-correlation operator, N is the

batch size, C denotes the number of channels, L is the length

of the signal sequence, and 2 is the optimizable parameters,

i.e., weights. The layer output is produced by the sequential

application of a linear transformation followed by a nonlinear

activation function. We apply the rectified linear unit (ReLU)

(Equation 2) as a nonlinear activation function for the convolution

layers. To refine the weighting of the latent features, we apply a

max-pooling layer.

Relu(z) = max(0, z) (2)

The max pool layer considers the most prominent

feature values by eliminating non-prominent features and

reducing the feature space. The input to a deconvolution

block is the output of the previous deconvolution gated

through an attention gate together with the output of a

corresponding convolution block. The deconvolution layer
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FIGURE 9

System layer represents the totality of complexes that exist in an ELISpot assay and is representative of multiple HLA–peptide complexes, represented

in three-dimensional space.

FIGURE 10

Block diagram of the proposed U-NET with self-attention model architecture. The input feature vector is progressively down-sampled and filtered at

each step. Attention gates (AG) filter the latent feature vectors that flow through the skip connections.

performs the opposite transformation to a convolution

layer, by applying transformation with the layer parameters

to augment the feature space. By minimizing the training

objective, e.g., binary cross entropy loss (Equation 3), the

weights of the layer are adjusted such that it learns to boost

important features and makes them more prominent in
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the network.

L = −(y log(p)+ (1− y) log(1− p)). (3)

The deconvolutional network layer applied to the network

measures takes an input as a feature map yi, composed ofKo feature

channels yi1, ..., y
i
o. Each channel c is represented as a linear sum of

Ki latent feature maps zi
k
convolved with filter fk,c:

K1∑

k=1

zik ⊕ fk,c = yic. (4)

Attention coefficients, α ∈ [0.1], are highlighting salient

features that are flown through the skip connection, see Figure 10.

The attention gate output is elementwise multiplication of the input

and the attention coefficients: x̂l = xl · αl. Information extracted

from previous layers is transformed through gating to disambiguate

irrelevant activations in skip-connections. This is applied before

the concatenation to merge exclusively important features. Hence,

every attention gate optimizes to focus on a set of features, i.e.,

network measures. As depicted in Figure 10, the gating vector g ∈

R is applied on each networkmeasure to identify regions of interest.

The attention mechanism is formulated as follows:

qlatt = ψT(σ1(W
T
x x

l
i +WT

g gi))+ bψ (5)

αli = σ2(q
l
att(x

l
i, gi;2att)), (6)

Where σ2(xi,c) =
1

1+exp(−xi,c)
is the sigmoid activation function.

The parameters 2att comprised of: linear transformation and bias

Wx ∈ R
Fl×Fint , Wg ∈ R

Fg×Fint ,ψ ∈ R
Fint×1 are computed

using vector concatenation-based attention, i.e., channelwise

convolutions of the input vector. The applied randomizing training

procedure risk introducing bias into the model by overpredicting

classes that are repeatedly fed into the model during training. To

avoid this potential overfitting, we introduce a dropout layer that

hides a random subset of nodes at each training iteration.

We extend [30] by using the output of the last deconvolution

block, a dense representation of non-observable feature maps of

the inputted complex network measure values, as input to the fully

connected dense layer in which each node of the layer applies a

transformation to output from all nodes from the previous layer.

The fully connected layer produces the classification values by

producing a probabilistic decision on whether the system will

produce an antibody–peptide epitope given the initial inputs, i.e.,

the complex networkmeasures of the system. The parameters of the

UNET–ATT are learnt by minimizing the error, e.g., cross-entropy

loss using a stochastic gradient descent (SGD).

4.2. Data preparation

To prepare the dataset, we discretize PBMC values and label

the ELISpot assays with “1” if the value is above a threshold and is

likely to produce an antibody–peptide epitope, and “0” if the value

is beneath it. Our feature vector consists of 22 network measure

values calculated for the positive and negative examples. For the

tumor-specific task, we group the CEDAR data on the tissue type

of the antigen-presenting cells and take epitopes into account with

a length between 8 and 25 amino acids, originating from homo

sapiens and being a part of MHC class I.

5. Evaluation and discussion

This section describes our empirical study aimed at evaluating

the proposed approach and its main results. We formulated the

following research questions:

Research question 1: To what extent is the UNET–ATTmodel able

to correctly predict that a system composed of multiple patient and

tumor-specific peptides and HLAs or T-cell receptors (TCRs) will

result in the presentation of viral epitopes on the surface of the

cancer cells in comparison with other models?

Research question 2: To what extent are the models personalized

to the patient?

In the following paragraphs, we discuss the aforementioned

research questions in detail.

5.1. Research question 1

5.1.1. Approach
To address research question 1, we explore the ability of the

proposed models to correctly predict if a system composed of

multiple patient-specific peptides and HLAs will result in the

presentation of viral epitopes on the surface of the cancer cells.

Hence, we train individual models for both patients and compare

the performance of the decision tree classifier (DTC), multi-

layer perceptron classifier (MLPC), random forest classifier (RFC),

support vector machine (SVM), naive Bayes classifier (NBC),

logistic regression classifier (LRC), K-neighbors classifier (KNC),

U-net with self-attention (UNET–ATT), deep learning on graphs

classifier (DLGCL). To evaluate the performance of the algorithms,

we use out-of-sample bootstrap validation since this validation

technique yields the best balance between the bias and variance

compared with single-repetition holdout validation [30].

5.1.2. Results
Four metrics were used to measure the effectiveness of our

various models: recall, precision, and F-measure, described in

detail in Section 8.4 in Appendix. Precision is the ideal metric

to determine the validity of our models and their adequacy in

identifying potential systems that will trigger an immune system

response. Precision tells the level in which the model was able

to correctly identify the systems with high PBMC values in all

instances with high PBMC values.

Recall was used because it allowed us to see the potentially

skipped opportunities that the model missed. Utilizing the F-

measure statistic, we combined recall and precision into a metric

that was able to test the accuracy of the various models. The final

metric used to compare the model types was the ROC curve area

score, which computes a score from the variability generated by

the ROC curve. This metric is useful to show an overall level of

model effectiveness, although it summarizes the variability, that
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is, shown in the ROC curve. We trained personalized models for

patients one and two with their respective data and evaluated them

on unseen data. As shown in Table 2, for the personalized models

of patient one, the decision tree classifier, random forest classifier,

and UNET–ATT performed the best.

However, as shown in Table 3, decision tree classifier and

random forest classifier did not perform consistently in contrast

with UNET–ATT with data from patient two.

We conjecture that a proper conveyance of the topological

attributes, measures, and relationships in complex networks

requires sophisticated feature engineering using a neural

network classification strategy rather than traditional machine

learning classification models. Since the UNET–ATT consistently

outperforms the other models, we opt to choose it as our

best candidate.

To statistically compare the performance of the models, we

apply the McNemar test [31] and the odds ratio (OR) effect

size, where OR larger than 1 indicates that the first technique

outperformed the second.

We ran the statistical tests 10 times and compared the results, as

shown in Tables 4, 5. To accommodate the fact that we performed

multiple comparisons, we adjusted the p-values by applying the

Bonferonni correction [32].

In this context, we formulate our null hypothesis for each

test as there is no statistically significant difference between

the performance of the two algorithms and the alternative

hypothesis as there is a statistically significant difference between

the performance of the two algorithms.We adjusted the alpha value

to 0.005 to perform the hypothesis test at a 5% significance level.

As we can observe in Tables 4, 5, the McNemar test results

show that the null hypothesis is rejected as there are statistically

significant differences (p < 0.5/10) in the performance of the

UNET–ATT model compared with all the other models. The OR

values show that the UNET–ATT model has more chances to

correctly predict that a system will result in the presentation of viral

epitopes on the surface of the cancer cells from the other methods.

We further apply the analytical approach to the CEDARdataset,

which contains 1,345,569 tumor-related peptidic epitopes, where

we create tumor-specific UNET–ATT models by grouping the data

and filtering the data, as described in the data preparation Section

4.2, based on the cell tissue type of the antigen-presenting cells.

In Table 6, we present the performance metrics of the

tumor-specific UNET–ATT models trained on antigen-

presenting cell tissue type-specific data. The UNET–ATT

model can generalize with acceptable F-measure performance

on all tissue types, when trained on specific tissue types

it archives remarkable F-measures of 100% and 92%

for breast and lung, respectively, and is acceptable 71%

for lymphoid.

5.2. Research question 2: Personalized
model

5.2.1. Approach
To address research question 2 we compare the characteristics

and derived network measures ofăantibody–peptide epitopes for

patient 1 and patient 2 to show the patient-specific nature of tumors

expressed through peptides originating from tumor-induced

mutations. To do so, we apply statistical analysis techniques such

as multivariate analysis of variance (MANOVA) on the network

measures to evaluate if they are statistically significantly different

per patient. In addition, we look at how different network measures

correlate with PMBC values per patient. We apply a structure

learning algorithm to the data to learn the structure of the

directed acyclic graph (DAG) to analyze the causality of data

features, i.e., network measures and the matched PBMC values.

Finally, we compare the performance of personalized models on

unseen data from different patients to understand if models can

generalize over unseen data from different patients. The applied

statistical analysis techniques are discussed in detail in Section 8.3

in Appendix.

5.2.2. Results
We can conclude that data attributes have a patient-

specific distribution and correlation from the performed data

exploration on the network measures. This finding agrees with the

general understanding that tumor mutations and immune system

reactions are patient- and tumor-specific and that a personalized

approach is required. In addition, the data exploration shows that

network attributes of the molecular structures are patient- and

tumor-specific and that some show correlations with statistical

significance with the produced PMBC values. This indicates

that a machine learning approach that relies on these attributes

as input can be applied to produce predictions personalized

toward a patient. Finally, we compared the performance of

personalized models on unseen data from different patients.

We observed that they do not generalize well to data from

different patients and perform better on unseen data from the

same patient. Concretely, as shown in Table 8 in Appendix,

the metrics precision, recall, and F-measure drop compared

with their respective values in Tables 2, 3 with 35%, 33%,

and 33% and with 16%, 30%, and 26% for patient one and

two, respectively.

6. Threats to validity

6.1. Internal and construct validity

Our analysis is mostly threatened by the generation of

the molecular structures in a system, as the wrong placement

of molecular structures in a complex may result in different

network measure values. However, not all network measures

will be impacted, and the “skewing” of these network measure

values will be consistent over all the data systems. As for

the selection of a threshold for the PBMC values such that

they are split into positive and negative systems, i.e., systems

that produce an antibody–peptide epitope and systems that do

not, this threshold can be modified by domain experts. The

same reasoning can be applied in choosing to predict more

than two classes, i.e., splitting the PBMC values into bins and

predicting a range of PMBC values within which a system
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TABLE 2 Patient’s one model: Performance of the classifiers with the highest value in bold.

Classifier Precision Recall F-measure PR-AUC

Decision tree classifier 1.0 1.0 1.0 1.0

Multi-layer perceptron classifier 0.05 0.21 0.08 0.89

Random forest classifier 1.0 1.0 1.0 1.0

Support vector machine 0.05 0.21 0.08 0.89

Naive bayes classifier 0.88 0.86 0.83 0.92

Logistic regression classifier 0.84 0.43 0.43 0.92

K-Neighbors classifier 0.88 0.86 0.83 0.92

UNET-ATT 0.95 0.93 0.93 0.99

TABLE 3 Patient’s two model: Performance of the classifiers with the highest value in bold.

Classifier Precision Recall F-measure PR-AUC

Decision tree classifier 0.43 0.4 0.4 0.52

Multi-layer perceptron classifier 0.05 0.21 0.08 0.89

Random forest classifier 0.8 0.6 0.57 0.75

Support vector machine 0.16 0.4 0.23 0.7

Naive bayes classifier 0.6 0.6 0.6 0.6

Logistic regression classifier 0.43 0.4 0.4 0.52

K-Neighbors classifier 0.16 0.4 0.23 0.7

UNET-ATT 0.87 0.8 0.8 0.83

TABLE 4 Patient one: Statistical comparison between di�erent

classification algorithms (McNemar’s test and Odds Ratio).

Comparison p-value OR

UNET-ATT vs. MLPC <0.005 1.46*

UNET-ATT vs. RFC <0.005 1.20*

UNET-ATT vs. SVM <0.005 1.46*

UNET-ATT vs. NBC <0.005 1.39*

UNET-ATT vs. LRC <0.005 1.39*

UNET-ATT vs. KNC <0.005 1.39*

“*” Captures the smallest OR among 10 times statistical tests.

would fall, e.g., map the qualitative measures “positive,” “positive-

high,” and “negative” to bins of intervals [30, 300), [300, 1, 500),

[0,−1500) where the qualitative measures class is assigned to

all measurements whose PMBC values fall into its respective

bin range.

6.2. External validity

Our analysis was performed on data from two patients

with the same tumor. However, we cannot claim the generality

of our observations to other tumors or all patients with the

concrete tumor of our data. Further investigation is needed

TABLE 5 Patient two: Statistical comparison between di�erent

classification algorithms (McNemar’s test and Odds Ratio).

Comparison p-value OR

UNET-ATT vs. MLPC <0.005 1.37*

UNET-ATT vs. RFC <0.005 1.37*

UNET-ATT vs. SVM <0.005 0.92*

UNET-ATT vs. NBC <0.005 1.36*

UNET-ATT vs. LRC <0.005 0.91*

UNET-ATT vs. KNC <0.005 0.91*

“*” Captures the smallest OR among 10 times statistical tests.

on data from multiple tumors and more patients to mitigate

this threat.

7. Conclusion

Predicting the specific antibody–peptide that will be presented

on the surface of a tumor cell is of paramount importance. It

permits the creation of personalized treatments that will trigger

the human immune system to destroy the tumor cell. In this

study, we proposed a novel data structure leveraging multiplex

networks and derive network measures as attributes leveraging the

theory and methods of complex networks, together with a deep

learning approach for optimal feature engineering and personalized

antibody–peptide epitope binary classification. Our results reveal
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TABLE 6 Tumor-specific classifiers: Performance of the classifier on tumor-specific tasks.

Tumor specific classifier Accuracy Precision Recall F-measure PR-AUC

All tissue types 0.69 0.66 0.76 0.70 0.69

Blood 0.61 0.70 0.61 0.65 0.61

Breast 1 1 1 1 1

Lung 0.90 1 0.86 0.92 0.92

Lymphoid 0.68 0.80 0.77 0.78 0.68

that machine learning and deep learning models are able to binary

classify antibody–peptide epitopes based on the derived attributes

from the proposed data structure.

In particular, the proposed UNET–ATT demonstrates

an F-measure of 0.8 and 0.93 for personalized models for

patients one and two, respectively. In addition, the UNET–

ATT model consistently outperforms the other models on

both patients in contrast with machine learning baseline

models that show different results for different patients. In

addition, UNETT–ATT can generalize with acceptable F-

measure of 0.7 on a subset from a larger CEDAR dataset

containing 9386 T-cell assays, 3679 peptidic epitopes, 69

restricting MHC alleles, and 374 references compared with

patients one and two data containing combined 67 potential

peptidic and 11 MHC alleles. UNETT–ATT demonstrated F-

measures of 0.92 and 1.0 for lung and breast antigen-presenting

tissue types, respectively, proving its ability to specialize in

tumor-specific tasks.

In addition, we analyzed the validity of building personalized

models and found that data attributes have patient-specific

distribution and correlation. The data exploration shows that

network measures of the molecular structures are patient-

and tumor-specific and that some show a correlation with

statistical significance with PMBC values. Finally, we compared

the performance of models personalized toward a patient on

unseen data from different patients. We observed, as demonstrated

in Section 8.3.21 in Appendix and shown in Table 8 in

Appendix, that they do not perform well in contrast to their

performance on unseen data from the same patient as shown in

Tables 2, 3.

These findings agree with the general understanding that

tumor mutations and immune system reactions are patient-

and tumor-specific and that a personalized approach is required

for optimal results. However, we need to caution that these

findings cannot be generalized to other tumors or even other

patients with the same tumor from our data, given that the

sample size is too small. Further investigation is needed on

data from multiple tumors and more patients to mitigate

this threat.
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