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Model order reduction for
optimality systems through
empirical gramians

Luca Mechelli†, Jan Rohle�† and Stefan Volkwein*†

Department of Mathematics and Statistics, University of Konstanz, Konstanz, Germany

In the present article, optimal control problems for linear parabolic partial

di�erential equations (PDEs) with time-dependent coe�cient functions are

considered. One of the common approach in literature is to derive the first-order

su�cient optimality system and to apply a finite element (FE) discretization. This

leads to a specific linear but high-dimensional time variant (LTV) dynamical system.

To reduce the size of the LTV system, we apply a tailored reduced order modeling

technique based on empirical gramians and derived directly from the first-order

optimality system. For testing purpose, we focus on two specific examples: a

multiobjective optimization and a closed-loop optimal control problem. Our

proposed methodology results to be better performing than a standard proper

orthogonal decomposition (POD) approach for the above mentioned examples.

KEYWORDS

model order reduction, empirical gramians, proper orthogonal decomposition, parabolic

partial di�erential equations, multiobjective optimization, model predictive control,
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1 Introduction

Optimization problems constrained by time-dependent partial differential equations

(PDEs) arise in many fields of application in engineering and across all sciences. Examples

of such problems include optimal (material) design or optimal control of processes and

inverse problems, where parameters of a PDE model are unknown and need to be estimated

from measurements. The numerical solution of such problems is very challenging as the

underlying PDEs have to be solved repeatedly within outer optimization algorithms, and the

dimension of the parameters that need to be optimized might be very high or even infinite

dimensional, especially when one is interested in multiobjective optimization or closed-

loop optimal control. In a classical approach, the underlying PDE (forward problem) is

approximated by a high dimensional full ordermodel (FOM) that results from discretization.

For the spatial discretization, often a finite element (FE) method is used, leading to high

dimensional dynamical systems. Hence, the complexity of the optimization problem directly

depends on the numbers of degrees of freedom (DOF) of the FOM.Mesh adaptivity has been

advised to minimize the number of DOFs (see, e.g., [1, 2]).

A more recent approach is the usage of model order reduction (MOR) methods in

order to replace the FOM by a surrogate reduced order model (ROM) of possibly very low

dimension. MOR is a very active research field that has shown tremendous development

in recent years, both from a theoretical and application point of view. For an introduction

and overview, we refer to the monographs and collections [3–6]. In the context of optimal

control, ROM is utilized [7–11]. In multiobjective optimization (cf., e.g., [12, 13]) and model

predictive control (cf., e.g., [14, 15]), the situation is even more complex because many

optimization problems have to be solved for varying data functions.
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An appropriate ROM for the optimal control problem governed

by high dimensional dynamical systems has to guarantee not

only a sufficiently accurate surrogate model for the dynamical

system but also, in particular, provide an acceptable suboptimal

control. For that reason, MOR should inheritate properties such

as controllability and observability of the ROM for the dynamical

system (see [9, 16–19]). In the context of linear time-invariant

(LTI) systems, it is well known that balanced truncation is an

MOR strategy that ensures controllability and observability of the

reduced LTI system under reasonable conditions [7, 9]. However,

for linear time-variant (LTV) systems, balanced truncation cannot

be applied directly. Here, the empirical gramian approach offers

a promising extension [20], where an empirical controllability

gramian and an empirical observability gramian are computed by

simulations of the dynamical system for different impulse controls

and different initial conditions, respectively. Then, the MOR can be

derived from a suitable singular value decomposition; cf. Section 3.

Recalling that for LTI systems, this approach is equivalent to

balanced truncation (see [20, 21] for more details). In this study,

we consider optimal control problems governed by linear parabolic

PDE constraints with transient inhomogeinities or coefficients.

After an FE discretization, we derive an LTV system of the form

as follows:

ẏ(t) = A(t)y(t)+ B(t)u(t)+ f (t) for t ∈ (0,T], y(0) = y◦,

(1a)

z(t) = C(t)y(t) for t ∈ (0,T]. (1b)

Let us mention that the empirical gramian approach can be

also used for general non-linear dynamical systems. However, to

get a low-dimensional ROM for a non-linear dynamical system,

an efficient realization of the non-linear term is required, for

instance, by applying the (discrete) empirical interpolation method

(cf. [22–24]) or missing point evaluation (cf. [25]). For this

reason, in this study, we focus on LTV systems and quadratic

cost functionals. The optimal solutions can be characterized by a

linear first-order optimality system due to convexity. This first-

order optimality system can be observed as a extended coupled

linear LTV system in the state and the adjoint variable. The new

contribution of the present study is the development of a ROM,

which is tailored to the optimization problem by utilizing empirical

gramians computed from solutions of the coupled LTV system

that describes the first-order necessary optimality conditions. The

parameters of the state equation (different convection functions)

and the cost functional (different desired states) lead to different

inputs for the simulations required to compute the empirical

gramians. It turns out that the obtained ROM is more reliable

and robust regarding changes in the parameters than a multiple

snapshot proper orthogonal decomposition (POD) method [11].

Furthermore, our MOR approach is certified by a-posteriori error

estimates for the controls.

The study is organized as follows: In Section 2 we recall the

empirical gramian framework and explain how this framework can

be utilized to get a ROM for (1). Our empirical gramian approach

is stated in Section 3. Based on the first-order optimality system,

an MOR is computed. In Section 4, we first recall the multiple

snapshot POD method. Moreover, the multiobjective optimal

control problem and the closed-loop control are discussed. We

presented some conclusions in Section 5. Finally, the a-posteriori

error estimate is briefly presented in the Appendix.

2 Empirical gramians

In this section, we explain the concepts of empirical gramians

and how they are used to perform model order reduction for

linear time-variant input—output systems of the form (1). We

mainly follow the study by [26] and suppose that T = ∞ holds.

Throughout this study, we make use of the following hypothesis.

Assumption 1. For given control u ∈ L∞(0,∞;Rnu ), the state

and the output of system (1) satisfy y ∈ L∞(0,∞;Rny ) and z ∈

L∞(0,∞;Rnz ), respectively.

Remark 1. Assumption 1 is a standard assumption in the context of

dynamical systems. As also noted in the study mentioned in [20],

this assumption is generally satisfied for stable linear systems and

exponentially stable non-linear systems. 3

First, gramian-based methods are introduced for linear time-

invariant (LTI) systems when

A(t) = A, B(t) = B, C(t) = C and f (t) = 0 for t > 0

(2)

hold with constant matrices A ∈ R
ny×ny , B ∈ R

ny×nu , and C ∈

R
nz×ny (see [27]). We recall the following definition from the study

mentioned in [18] (Definitions 3.1 and 3.4).

Definition 2. The LTI system

ẏ(t) = Ay(t)+ Bu(t) for t > 0, x(0) = y◦,

z(t) = Cy(t) for t > 0
(3)

is called controllable if, for any initial state y◦ ∈ R
ny , final time

T > 0 and final state yT ∈ R
ny ; there exists a piecewise continuous

input u :[0,T] → R
nu such that the solution of (3) satisfies y(T) =

yT . Otherwise, the LTI system is said to be uncontrollable. The

LTI system (3) is said to be observable, if, for any T > 0, the

initial condition y◦ can be determined from the knowledge of the

input u(t) and the output y(t) for t ∈ [0,T]. Otherwise, (3) is

called unobservable.

Suppose that the LTI system is stable, i.e., all eigenvalues of A
have strictly negative real part; cf. [18] (Definition 3.1). In that case,
the linear controllability gramian is defined as the symmetric matrix

Lc : = CC∗ =

∫ ∞

0
eAtBB⊤eA

⊤t dt =

∫ ∞

0

(
eAtB

)(
eAtB

)⊤
dt ∈ R

ny×ny ,

where C : L2(0,∞) → R
ny , u 7→

∫∞
0 eAtBu(t) dt, is the (linear)

controllability operator. Throughout the study, the symbol “⊤"

stands for the transpose of a vector or matrix. Since the LTI system

is stable, the operator C is bounded and its (Hilbert space) adjoint

C∗ :Rny → L2(0,∞) satisfies

〈C∗v,ϕ〉L2(0,T) = 〈v, Cϕ〉Rny for v ∈ R
ny and ϕ ∈ L2(0,T).
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Moreover, the linear observability gramian is given as the symmetric

matrix

Lo : = O∗O =

∫ ∞

0
eA

⊤tC⊤CeAt dt =

∫ ∞

0

(
eA

⊤tC⊤
)(
eA

⊤tC⊤
)⊤

dt ∈ R
ny×ny ,

where O :R
ny → L2(0,∞;Rnz ), x 7→ CeAtx is the (linear and

bounded) observability operator. Recalling that Lc and Lo have the

following properties (cf., e.g., [18, 28]; Section 3.8):

Lemma 3. Let us consider the LTI system (3). We assume that

all eigenvalues of A have strictly negative real part. Then, the

controllability gramian Lc is a positive semidefinite solution to the

Lyapunov equation

ALc + LcA
⊤ + BB⊤ = 0. (4)

If Im(C) = R
ny , (4) admits a unique solution Lc which has

full rank ny and is positive definite. Moreover, the observability

gramian Lo is a positive semidefinite solution to the Lyapunov

equation

A⊤Lo + LoA+ C⊤C = 0. (5)

If ker(O) = {0}, system (5) admits a unique solution Lo.

Moreover, Lo is positive definite.

The matrices Lc and Lo contain essential information which

states that the dynamical system is controllable and observable,

respectively. This is utilized in model order reduction approaches

such as balanced truncation, where states which are not or only less

controllable and observable are neglected; cf., e.g., [9, 29, 30]. To

combine both information, the so-called cross gramian matrix has

been introduced; cf., e.g., [31–33]. Here, we have to assume that the

input and output dimensions are the same. Thus, we have nu = nz
and define the cross gramian matrix

Lx : =

∫ ∞

0
eAtBCeAt dt =

∫ ∞

0

(
eAtB

)(
eA

⊤tC⊤
)⊤

dt ∈ R
ny×ny .

Unfortunately, the previous relationships cannot be used in

the time variant case (or even in the more general non-linear

case). In the case of linear time variant systems, both gramians are

functions of two variables: the initial time moment and the final

time moment. Unlike linear time-invariant systems, the difference

in time moments alone does not uniquely characterize the gramian

matrices. If one changes the initial time moment while maintaining

the interval length for both gramians, the resulting solutions will

also differ. This discrepancy arises because the system description

evolves over time, leading to changes in system characteristics.

Consequently, the shifted system will differ from the original one.

Therefore, in the literature, various methods exist for computing

gramians in the context of linear time variant systems. A general

extension is a data-driven approach, where tentative candidates are

constructed by subsequent simulations of the model. That is the

reason why such candidates are called empirical gramians. This

concept is introduced in the study by [30] and extended in the study

by [20]. It turns out that we get a data-driven approach because the

empirical gramians can be computed from measured or computed

trajectories of the dynamical system.

Definition 4. For given k ∈ N let Ik ∈ R
k×k be the identity matrix,

we denote by T
k an arbitrary set of nT orthogonal matrices, i.e.,

T
k
: =

{
T1, . . . ,Tn

T

∣∣Ti ∈ R
k×k, T⊤

i Ti = Ik, i = 1, . . . , nT
}

⊂ R
k×k

with M an arbitrary set of s positive constants, i.e.,

M : =
{
c1, . . . , cn

M

∣∣ ci ∈ R, ci > 0 for i = 1, . . . , nM
}
⊂ R,

and with E
k ⊂ R

k the set of standard unit vectors e1, . . . , ek ∈ R
k.

Furthermore, given n ∈ N and a function w ∈ L∞(0,∞;Rn), we

define the mean w̄ ∈ R
n as

w̄ : = lim
T→∞

1

T

∫ T

0
w(t) dt ∈ R

n

provided the limit exists.

Definition 5 (see [20, Definition 4]). Suppose that the sets T
nu , M,

and E
nu are given as in Definition 4 for k = nu. For (1) the empirical

controllability gramian L̂c ∈ R
ny×ny is defined as follows:

L̂c : =

n
T∑

i=1

n
M∑

j=1

nu∑

l=1

1

c2j nTnM

∫ ∞

0
Y ijl(t) dt with Y ijl(t) =

(
yijl(t)− ȳijl

)(
yijl(t)− ȳijl

)⊤
,

where yijl(t) ∈ R
ny solves (1) corresponding to the impulse input

u(t) = cjTielδ(t) and ȳijl(t) stands for its mean.

Remark 6. In our numerical example, we utilize the following

weighted inner product in the state space R
ny induced by the

symmetric positive definite matrixW ∈ R
ny×ny :

〈y, ỹ〉W = y⊤Wỹ, ‖y‖W =
√
〈y, y〉W for y, ỹ ∈ R

ny . (6)

In Definiton 5, the matrices Y ijl(t) have to be replaced by

(yijl(t)− ȳijl)(yijl(t)− ȳijl)⊤W. 3

Definition 7 (see [20, Definition 6]). Let the sets T
ny , M, and E

ny

be defined as in Definition 4 for the choice k = nu. For (1) the

empirical observability gramian, L̂o ∈ R
ny×ny is defined as

L̂o : =

n
T∑

i=1

n
M∑

j=1

1

c2j nTnM

∫ ∞

0
TiZ

ij(t)T⊤
i dt with Z

ij
νµ(t) =

(
zijν(t)− z̄ijν

)⊤(
zijµ(t)− z̄ijµ

)
,

where zijν(t) ∈ R
nz , ν = 1, . . . , ny, is the output of (1)

corresponding to the initial condition y◦ = cjTieν , and z̄ijν denotes

its mean.

Remark 8. 1) In our numerical examples, we have ny = nz so that

the output space is also supplied by the weighted inner product

〈· , ·〉W introduced in (6). Then, we replace the matrix elements

Z
ij
νµ(t) by (z

ijν(t)− z̄ijν)⊤W(zijµ(t)− z̄ijµ).

2) Recalling that the empirical gramians reconstruct the true

gramians in the case of LTI systems; cf. [20] (Lemmas 5 and 7).

In all the other cases, they can be observed as an extension of the

gramian notion.
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3) In [26] (Section 3.1.3), also an empirical cross gramian is

introduced. Since in our numerical examples, the results based

on empirical cross gramians are not as good as the ones using

a combination of empirical controllability and observability

gramians, we skip the empirical cross gramian here. 3

Given the symmetric empirical gramians L̂c and L̂o, it is

possible to define a reduced order model through a balancing

transformation which is based on the singular value decomposition

(SVD).We follow the approach proposed in the study by [21]. First,

we compute the SVD of the symmetric matrices L̂c and L̂o:

L̂c = Uc6cU
⊤
c ∈ R

ny×ny and L̂o = Uo6oU
⊤
o ∈ R

ny×ny (7a)

with orthogonal matrices Uc, Uo ∈ R
ny×ny and diagonal matrices

6c, 6o ∈ R
ny×ny containing the non-negative singular values in

descending order. Then, we can compute thematrices L̂
1/2
c and L̂

1/2
o

as well as their product

L̂1/2co : = L̂1/2c L̂1/2o = Uc6
1/2
c U⊤

c Uo6
1/2
o U⊤

o ∈ R
ny×ny . (7b)

Finally, we derive the SVD of L̂
1/2
co :

L̂1/2co = U6V⊤ (7c)

with orthogonal matrices U, V ∈ R
ny×ny and a diagonal matrix

6 ∈ R
ny×ny containing the non-negative singular values σi, i =

1, . . . , ny, of L̂
1/2
co in descending order.

Remark 9. Recalling that for LTI systems, the matrix Lco = LcLo
possesses an eigenvalue decomposition (cf. [18, p. 77]):

LcLo = Ũ

[
6̃2 0

0 0

]
Ũ−1

which is equivalent to the fact that L
1/2
co has the following SVD

L1/2c L1/2o =
[
Û1 | Û2

]
[
6̃ 0

0 0

][
V̂⊤
1

V̂⊤
2

]
,

see [21] (Theorem 1). Then, the LTI system can be transformed into

a minimal realization, i.e., the transformed LTI system is balanced,

and its controllability and observability gramians are both equal

to6. 3

Next, we turn to the reduced order modeling (ROM). Here, we

utilize the approach from balanced truncation. To build a reduced-

order model, we truncate the sufficiently small singular values,

taking only ℓ ≪ ny so that σi < ε holds for i = ℓ + 1, . . . , ny.

For that purpose, we partition the SVD as follows:

L̂1/2c L̂1/2o = U6V⊤ =
[
U1 |U2

]
[
61 0

0 62

]
[
V1 |V2

]⊤
=

(
U161V

⊤
1 0

0 U262V
⊤
2

)
,

where U1 ∈ R
ny×ℓ, U2 ∈ R

ny×(ny−ℓ), and 61 ∈ R
ℓ×ℓ, 62 ∈

R
(ny−ℓ)×(ny−ℓ). We suppose that the matrix Wℓ = V⊤

1 U1 ∈ R
ℓ×ℓ

is invertible. Now the reduced-order model for (1) is derived in a

standard way (cf., e.g., [9]). For given large terminal time T > 0 and

t ∈ [0,T], we approximate y(t) ∈ R
ny by U1y

ℓ(t), where yℓ(t) ∈ R
ℓ

solves together with zℓ(t) ∈ R
nz

Wℓẏℓ(t) = Aℓ(t)yℓ(t)+ Bℓ(t)u(t)+

V⊤
1 f (t) for t ∈ (0,T], yℓ(0) = V⊤

1 y◦, (8a)

zℓ(t) = C(t)U1y
ℓ(t) for t ∈ [0,T].

(8b)

with Aℓ(t) = V⊤
1 A(t)U1 ∈ R

ℓ×ℓ, Bℓ(t) = V⊤
1 B(t) ∈ R

ℓ×nu ,

f ℓ(t) = V⊤
1 f (t) and yℓ◦ = V⊤

1 y◦.

Remark 10. 1) Equation (8a) is an ℓ-dimensional nonlinear system

of differential equation. Since we assume ℓ≪ ny, (8) is called a

low-dimensional or reduced order model for (1).

2) Note that for an LTI system this approach is equivalent to

balanced truncation; see, e.g., [20, 21] for more details.

3) In our numerical examples the matrices are given as Wℓ =

V⊤
1 WU1, A

ℓ(t) = V⊤
1 WA(t)U1 ∈ R

ℓ×ℓ, Bℓ(t) = V⊤
1 WB(t) ∈

R
ℓ×nu , f ℓ(t) = V⊤

1 Wf (t) and yℓ◦ = V⊤
1 Wy◦; cf. Remarks 6 and

8. 3

3 Model reduction for linear
time-variant optimality systems

Notices that (1) is an LTV system and therefore to reduce it

one cannot apply directly balanced truncation. Here we follow

a different approach. We are interested in controlling (1) in an

optimal way. Thus, we define the following objective function

J(y, u) =
1

2

∫ T

0
‖C(t)y(t)− zd(t)‖

2
Q dt +

1

2

∫ T

0
‖u(t)‖2R dt

=
1

2

∫ T

0
‖z(t)− zd(t)‖

2
Q dt +

1

2

∫ T

0
‖u(t)‖2R dt,

(9)

where zd ∈ L2(0,T;Rnz ) is a desired state, Q ∈ R
nz×nz and R ∈

R
nu×nu are symmetric positive definite matrices, ‖ · ‖Q = 〈· , ·〉

1/2
Q

and ‖ · ‖R = 〈· , ·〉
1/2
R hold. Now the optimal control problems reads

minJ(y, u) subject to (s.t.) (y, u) ∈ H1(0,T;Rny )× (P)

L2(0,T;Rnu ) satisfies (1).

The Lagrange functional associated with P is given by

L(y, u, p, p◦) = J(y, u)+

∫ T

0
〈ẏ(t)− A(t)y(t)− B(t)u(t)−

f (t), p(t)〉W dt + 〈y(0)− y◦, p◦〉W ,

where the weighted inner product has been defined in (6).
Due to convexity, a first-order sufficient optimality system can be
derived from stationarity conditions of the Lagrangian (see, e.g.,
[34])

ẏ(t) = A(t)y(t)+ B(t)R−1B(t)⊤Wp(t)+ f (t), t ∈ (0,T], y(0) = y◦,

(10a)

−ṗ(t) = W−1
(
A(t)⊤Wp(t)+

C(t)⊤Q(zd(t)− C(t)y(t))
)
, t ∈ [0,T), p(T) = 0 (10b)
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and

u(t) = R−1B(t)⊤Wp(t) for t ∈ (0,T). (11)

Note that utilizing (11) the control u is replaced in (10a). System

(10) can be rewritten to get the form of a dynamical system,

although formally it is not. We introduce the transformed variable

q(t) : = p(T − t). For brevity, we set

z̃d(t) = zd(T − t) ∈ R
nz , Ã(t) = A(T − t) ∈ R

ny×ny ,

C̃(t) = C(T − t) ∈ R
nz×ny

for t ∈ [0,T]. This allows us to express (10) as

ẏ(t) = A(t)y(t)+ B(t)R−1B(t)⊤Wq(T − t)+ f (t), t ∈ (0,T], y(0) = y◦,

q̇(t) = W−1
(
Ã(t)⊤Wq(t)+ C̃(t)⊤Q

(
z̃d(t)−

C̃(t)y(T − t)
))
, t ∈ [0,T), q(0) = 0.

(12)

For t ∈ (0,T) let

x(t) =

[
y(t)

q(t)

]
∈ R

2ny , F(t) =

[
f (t)

C̃(t)⊤Qz̃d(t)

]
∈ R

2ny ,

x◦ =

[
y◦
0

]
∈ R

2ny .

Then, (12) can be written as

ẋ(t) = A(t)x(t)+ Ã(t)x(T − t)+ F(t) for t ∈ (0,T), x(0) = x◦
(13)

with the two (2ny)× (2ny)-matrices

A(t) =

[
A(t) 0

0 W−1Ã(t)⊤W

]
, Ã(t) =

[
0 B(t)R−1B(t)⊤W

−W−1C̃(t)⊤QC̃(t) 0

]
.

Although (13) has not a canonical form, it can be seen as a

dynamical system, because the solution x evolves from 0 to the final

time T. Thus, we can apply a model-order reduction scheme based

on empirical gramians as introduced in Section 2. For that purpose

we interprete (13) as an input-output system, where we consider the

desired states zd as input and the control ũ(t) = R−1B(t)⊤Wx̂(T −

t) as output with x̂(t) = (xny+1(t), . . . , x2ny (t))
⊤. Note that

x̂(t) is nothing else than the adjoint variable (modulus a time

transformation) for P. Hence the output ũ is the optimal control

sought. Applying the empirical gramian approach explained in

Section 2, we can construct a reduced-order model for (13) which

should achieve satisfactory approximation performances while the

target zd varies. What we aim in fact is not to construct a

reduced order model for (1), but a way to cheaply compute the

optimal solution of problem P for different values of its underlying

parameters, such as the right-hand side f or the target zd. This

technique is particularly useful in the context of multiobjective

optimization or model predictive control (MPC), where many

optimization problems with changing parameters must be solved;

cf. Section 4.

Remark 11. Let us define the right-hand side

F(t, x) =

(
A(t) B(t)R−1B(t)⊤W

W−1C(t)⊤QC(t) −W−1A(t)⊤W

)
x+

(
f (t)

−W−1C(t)⊤Qzd(t)

)

for t ≥ 0 and x = (y, p) ∈ R
ny × R

ny . Then we can write the

differential equations (10) as follows

ẋ(t) = F(t, x(t)) for t > 0. (14)

However, we cannot pose an initial condition for the second

component p of x (due to the terminal condition for the dual

variable). Suppose that 8t(x◦) denotes the solution to (14) at time

t ≥ 0 for an arbitrarily chosen initial condition x◦ ∈ R
2ny . Then,

8t is a symplectic function [35, Lemma 1], and we can introduce

symplectic Koopman operators to get accurate approximations of

certain optimal nonlinear feedback laws; cf. [35] for more details.

Here we follow a different approach. 3

4 Two applications

In this section we illustrate our proposed strategy for two

different examples, which are highlighting the power of the

empirical gramians in comparison to a standard approach based

on Proper Orthogonal Decomposition (POD). In both examples we

consider optimization problems with parabolic PDE constraints.

In Section 4.1 we introduce the POD method, which will serve as

comparison for our results. In Section 4.2 we apply our proposed

methodology to a multiobjective optimization framework, while in

Section 4.3 we test it in a feedback control context.

From now on, let T > 0 and � ⊂ R
d (d ∈ {1, 2, 3}) with

boundary Ŵ = ∂�. We set Q = (0,T) × � and 6 = (0,T) × ∂�.

Furthermore, we define the function spaces V = H1(�), H =

L2(�), Y = W(0,T) = L2(0,T;V) ∩ H1(0,T;V ′) and H = U =

L2(0,T;H). For more details on Lebesgue and Sobolev spaces we

refer the reader to [36], for instance.

4.1 The POD method

The (discrete) POD method is based on constructing a low-

dimensional subspace that can resemble the information carried

out by a given set of vectors {ykj }
n
j=1, 1 ≤ k ≤ ℘, (the so-called

snapshots) belonging to the Euclidean space Rm; cf., e.g., [37] and

[11] (Section 2.1). Let

V = span
{
ykj
∣∣ 1 ≤ j ≤ n and 1 ≤ k ≤ ℘

}
⊂ R

m

be the space spanned by the snapshots with dimension nV =

dimV ≤ min{n℘,m}. To avoid trivial cases we assume nV ≥ 0.

For ℓ ≤ nV the POD method generates pairwise orthonormal

functions {ψi}
ℓ
i=1 such that all ykj , 1 ≤ j ≤ n and 1 ≤ k ≤ ℘,

can be represented with sufficient accuracy by a linear combination
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of theψi’s. This is done by a minimization of the mean square error

between the ykj ’s and their corresponding ℓ-th partial Fourier sum:





min

℘∑

k=1

n∑

j=1

αj

∥∥∥ykj −
ℓ∑

i=1

〈ykj ,ψi〉W̃
ψi

∥∥∥
2

W̃

s.t. {ψi}
ℓ
i=1 ⊂ R

m and 〈ψi,ψj〉W̃ = δij, 1 ≤ i, j ≤ ℓ,

(15)

where the αj’s are positive weighting parameters for j = 1, . . . , n. In

fact, the weights αj are chosen to resemble a trapezoidal rule for the

temporal integration. Moreover, W̃ ∈ R
m×m defines the weighted

inner product 〈· , ·〉W̃ and associated norm ‖·‖W̃ ; cf. (6). The symbol

δij denotes the Kronecker symbol satisfying δii = 1 and δij = 0 for

i 6= j. An optimal solution to (15) is denoted as a POD basis of

rank ℓ. It can be proven that such a solution is characterized by the

eigenvalue problem

Rψi = λiψi for 1 ≤ i ≤ ℓ, (16)

where λ1 ≥ . . . ≥ λℓ ≥ . . . ≥ λn
V
> 0 denote the eigenvalues of

the linear, compact, nonnegative and self-adjoint operator

R :R
m → R

m, Rψ =

℘∑

k=1

n∑

j=1

αj 〈ψ , y
k
j 〉W̃

ykj for ψ ∈ R
m;

cf., e.g., [11] (Lemma 2.2). We refer to [11] (Remark 2.11) for an

explicit form of the operatorR in the case ℘ = 2. Recall that for a

solution {ψi}
ℓ
i=1 to (16) the following approximation error formula

holds true:

℘∑

k=1

n∑

j=1

αj

∥∥∥ykj −
ℓ∑

i=1

〈ykj ,ψi〉W̃
ψi

∥∥∥
2

W̃
=

n
V∑

i=ℓ+1

λi;

cf. [11] (Theorem 2.7). In our numerical tests the (temporal)

snapshots {ykj }
n
j=1 will generally come from simulations of (13) for

℘ different choices of the inputs. The index n is related to the

discrete time steps 0 = t1 < . . . < tn = T and ℘ to the number

of inputs used. We define the POD matrix 9 : = [ψ1| . . . |ψℓ] ∈

R
m×ℓ and derive – analogous to (8a) – a POD-based reduced order

model for (13) by choosing U1 = 9 and V1 = W̃9 which satisfy

U⊤
1 V1 = 9⊤W̃9 = Iℓ.

4.2 Multiobjective optimization problem

There is hardly ever a situation, where only one goal is of

interest at a time. When carrying out a purchase for example,

we want to pay a low price while getting a high quality product.

In the same manner, multiple objectives are present in most

technical applications such as fast and energy efficient driving

or designing light and stable constructions. This dilemma leads

to the field of multiobjective optimization (cf., e.g., [12]), where

the aim is to minimize all relevant objectives J = (J1, . . . , Jk)

simultaneously. While we are usually satisfied with one (global

or even local) optimal solution in the single-objective setting, there

generally exists an infinite number of optimal compromises in the

situation where multiple objectives are present since the different

objectives are in conflict with each other. Let us recall the concept

of Pareto optimality:

1) A point ū dominates a point u, if J(ū) ≤ J(u) componentwise

and Ji(ū) < Ji(u) for at least one i ∈ {1, . . . , k};

2) A feasible point ū is called Pareto optimal if there exists no

feasible u dominating ū;

3) The set of Pareto optimal points is called the Pareto set, its image

under J the Pareto front.

In multiobjective optimization, the goal can be therefore to

compute the Pareto set, i.e., the set of points ū for which no u exists

that is superior in all objective components, cf. Figure 1.

4.2.1 Problem formulation
Now we turn to our PDE-constrained multiobjective

optimization problem (MOP). Given the canonical embedding

C :Y → H and two desired states z1d, z
2
d ∈ H we consider the

following strictly convex MOP:

min J(u) =

[
J1(u)

J2(u)

]
=

1

2



‖Cyu − z1d‖

2

H
+ σ ‖u‖2

U

‖Cyu − z2d‖
2

H
+ σ ‖u‖2

U




s.t. u ∈ U and y = yu ∈ Y solves the linear parabolic problem

∂yu

∂t
(t, x)−1yu(t, x)+ v(x) · ∇yu(t, x) = u(t, x)+

f(t, x) for (t, x) ∈ Q,

∂yu

∂n
(t, s) = 0 for (t, s) ∈ 6, yu(0, x) = y◦(x) for x ∈ �,

(P̂)

where σ > 0, v ∈ C(�;Rd), f ∈ H and y◦ ∈ H hold. Recall that

a unique (weak) solution yu ∈ Y follows from standard results for

any control u ∈ U; cf., e.g., [38, 39].

Due to convexity it can be proven that a sufficient first-order

optimality condition for P̂ is given as follows: If there exist a weight

ᾱ ∈ [0, 1] satisfying together with an element ū ∈ U the conditions

ᾱ∇J1(ū)+ (1− ᾱ)∇J2(ū) = 0 (17)

then ū is a Pareto optimal point for P̂; see [12] (Theorem 3.27) and

[13] (Section 2.1), for instance.

Remark 12. For fixed weight ᾱ ∈ [0, 1] we observe that (17)

is a sufficient first-order optimality condition for the (strictly)

convex problem

min Jα(u) = αJ1(u)+
(
1− α

)
J2(u) s.t. u ∈ U. (18)

with the choice α = ᾱ. This motivates the well-known weighted

sum method; cf. [40]. By varying the weight α ∈ [0, 1] the strictly

convex problem (18) is solved. This requires many optimization

solves, and model order reduction offers the possibility to speed-up

the solution process. 3

For arbitrarily chosen α ∈ [0, 1] we set

Cα =

(
αC

(1− α)C

)
:Y → H × H and zαd =

(
αz1d

(1− α)z2d

)

∈ H × H.
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FIGURE 1

Sketch (red lines) of a Pareto set (A) and Pareto front (B) for min{J(u) |u ∈ R
2} with J :R2 → R

2, J1(u) = (u1 + 1)2 + (u2 + 1)2 and

J2(u) = (u1 − 1)2 + (u2 − 1)2. The goal is to simultaneously minimize J1 and J2 represented by the blue and the orange paraboloid, respectively.

Following Remark 12, we consider the (strictly) convex scalar

optimization problem

min Jα(u) =
1

2
‖Cαyu − zαd‖

2
H×H

+
σ

2
‖u‖2

U

s.t. u ∈ U and yu ∈ Y solves the linear parabolic problem

∂yu

∂t
(t, x)−1yu(t, x)+

v(x) · ∇yu(t, x) = u(t, x)+ f(t, x) for (t, x) ∈ Q,

∂yu

∂n
(t, s) = 0 for (t, s) ∈ 6, yu(0, x) = y◦(x) for x ∈ �.

(P̂α)

Next, we discretize P̂α in space using piecewise linear finite

elements (FE). Let m = ny = nu, nz = 2m be valid and

ϕ1, . . . ,ϕm ∈ V denote the FE ansatz functions. The FE subspace is

V fe = span {ϕ1, . . . ,ϕm} ⊂ V . For (t, x) ∈ �T we approximate the

state and control as

y(t, x) ≈ yfe(t, x) =

m∑

i=1

yi(t)ϕi(x), u(t, x) ≈ ufe(t, x) =

m∑

i=1

ui(t)ϕi(x),

respectively. Moreover, let

z
j

d(t, x) ≈

m∑

i=1

z
j

di(t)ϕi(x) (j = 1, 2), f(t, x)

≈

m∑

i=1

fi(t)ϕi(x), y◦(x) ≈

m∑

i=1

y◦iϕi(x)

for (t, x) ∈ Q. Finally, we introduce them×mmatrices

M =
((
〈ϕj ,ϕi〉H

))
, D =

((
〈ϕj , v · ∇ϕi〉H

))
,

S =
((
〈∇ϕj ,∇ϕi〉Hd

))
, A = S+ D, B = Im , R = σ M, W = W̃ = M

C =

(
αIm

(1− α)Im

)
, zαd (t) =

(
αz1d(t)

(1− α)z2d(t)

)
, Qα =

(
αM 0

0 (1− α)M

)
.

Now problem P̂αfe is approximated by the following FE

optimization problem

min Jαfe(u) =

∫ T

0

1

2
‖Cαy(t)− zαd(t)‖

2
Qα

+
1

2
‖u(t)‖2R dt

s.t. u ∈ U
fe and y ∈ Y

fe solves the initial value problem

Mẏ(t) = Ay(t)+Mu(t)+Mf (t) for t ∈ (0,T], y(0) = y◦,

(P̂αfe)

where U
fe = L2(0,T;Rm) and Y

fe = H1(0,T;Rm). Notice that

in this semidiscrete setting, our problem is equivalent to (1a) of

Section 3. For (10) we derive

ẏ(t) = M−1Ay(t)+
1

σ
p(t)+ f (t), t ∈ (0,T], y(0) = y◦,

(19a)

−ṗ(t) = M−1A⊤p(t)+ αz1d(t)+

(1− α)z2d(t)− y(t), t ∈ [0,T), p(T) = 0,

(19b)

where we have used u(t) = R−1B(t)⊤Wp(t) = p(t)/σ .

In particular, a solution to P̂αfe can be computed by solving the

sufficient first-order optimality system (13). For the specific case of

P̂αfe we have

ẋ(t) = Ax(t)+Ãx(T− t)+Fα(t) for t ∈ (0,T), x(0) = x◦ (20)

with

A =

[
M−1A 0

0 M−1A⊤

]
, Ã =

[
0 1

σ
Im

−Im 0

]
,

Fα(t) =

[
f (t)

z̃αd(t)

]
, x◦ =

[
y◦
0

]

and z̃αd(t) = αz1d(T − t)+ (1− α)z2d(T − t).

In conclusion, to compute the Pareto front of themultiobjective

optimization problem P̂αfe with a weighted sum approach we have
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to solve several optimality systems of the form (20) with changing

parameter α. For the gramian based MOR approach we proceed as

described in Algorithm 1.

Require: Weight α, sets T
m, T

2m, M, E
m, E

2m (cf.

Definition 4), truncation value ℓ ≥ 1.

1: Compute empirical controllability gramian

L̂c ∈ R
(2m)×(2m) for (20) with inputs

z̃d(t) = cjTiel ẑd(t), j = 1, . . . ,

nM, i = 1, . . . , nT, l = 1, . . . ,m, t ∈ [0,T],

where ẑd is a random target, cj ∈

M, Tj ∈ T
m, el ∈ E

m.

2: Compute empirical observability gramian

L̂o ∈ R
(2m)×(2m) for (20) with the two outputs

z(t) =
1

2


 ‖y(t)− z1d(t)‖

2

M + ‖u(t)‖2R

‖y(t)− z2d(t)‖
2

M + ‖u(t)‖2R




and random initial guesses x◦ = cjTieν with cj ∈ M,

Tj ∈ T
2m, eν ∈ E

2m.

3: Compute the balancing transformation

L̂
1/2
co ∈ R

(2m)×(2m).

4: Compute truncated SVD of L̂
1/2
co = U6V⊤ with

truncation value ℓ ∈ N.

5: for α ∈ [0, 1] do

6: Solve the reduced-order system

ẋℓ(t) = U⊤AUxℓ(t)+ U⊤ÃUxℓ(T − t)+ U⊤Fα(t)

for t ∈ (0,T),

xℓ(0) = U⊤x◦ ∈ R
ℓ. (21)

7: end for

8: Compute the (sub-)optimal state by setting

yα(t) = U(:,1 :m)x
ℓ
1 :m(t) ∈ R

m.

9: Determine the (sub-)optimal control

uα(t) = U(:,m+1 : 2m)x
ℓ
m+1 : 2m(T − t) ∈ R

m.

Algorithm 1. Gramian-based MOP using the weighted sum

approach.

Remark 13.(1) Steps 1–4 of Algorithm 1 we call training or

offline phase. For the gramian orthogonal matrices set T
2m,

respectively the positive constant set M we choose nT =

nM = 3, where I2m ∈ T
2ny and 1 ∈ E. The other

two orthogonal matrices and scalars were chosen randomly.

Furthermore, we restrict the set E
2m to ten random unit vectors

to save computational effort. Altogether, we compute 3 × 3 ×

10 = 90 trajectories to (20) to get the empirical controllability

gramian. For ẑd we choose a random input instead of δ-impulse

inputs; cf., e.g., [26].

(2) Note that our gramian-based approach ensures sufficiently good

approximation qualities for varying desired state z̃αd for α ∈

[0, 1]. This is required in the weighted sum method.

(3) For solving the dynamical systems (20) and (21) over a fixed

time horizon [0,T] we use the implicit Euler scheme with the

equidistant time grid tj = (j − 1)1t and 1t = T/(n − 1) for

j = 1, . . . , n with step size 1t > 0. One can show that the

resulting linear system is uniquely solvable.

(4) Since the empirical gramians are trained with respect to the

desired state, the resulting basis functions are flexible while using

different targets. Therefore, they are also more robust for a

varying parameter α, which is pretty important while computing

the Pareto front.3

In our numerical experiments we compare the results that we

got from Algorithm 1 with the ones obtained from a POD reduced-

order modeling approach. The snapshots used to generate the POD

basis are the solutions of (20) while computing the controllabilty

and observability gramians in Algorithm 1. Clearly, this is done

only for fair comparison purposes among the techniques. In

general, building a POD model capable of approximating the

solution of problems with different targets would require to run

many simulations varying targets and controls. Unfortunately this

is possible only if the targets are known a-priori. Otherwise the

only option remaining is choosing random quantities, which would

require exactly the same effort of the gramian approach. As we can

see, the big difference is that the gramian approach is capable to

exploit the randomness to construct a good approximation of the

full order model, while the POD seriously struggles if the generated

snapshots are not close to the optimal solution of the problem.

Furthermore, notice that if we train our POD model by computing

snapshots for varying targets and controls we would get a huge

amount of snapshots, which will lead to a costly SVD, while the

gramian have the advantage to lead to perform SVDs on matrix

which have the same size of the problem. The costly SVD for the

TABLE 1 Domain, optimization and PDE data for the numerical

implementation of P̂.

Domain parameters

Spatial domain � = (0, 1)2

End time point T = 1

Implicit Euler step size in time 1t = 0.02

Maximal finite element edge size hmax = 0.05

Optimization parameters

Cost parameter σ = 10−2

First desired state z1d(t, x) = t sin(2πx1) cos(2πx2)

Second desired state z2d(t, x) = 2t exp
(
− (x1−4)2

2·0.22
+ (x2−2)2

2·2.52

)

PDE parameters

Advection velocity v(x) = (−x1 − x2 , (x1 + x2)/2)
⊤

Right hand side f (t, x) = sin(π t)

Initial data y◦(x) = x21 + x22
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FIGURE 2

Pareto front for the full-order model, for the empirical gramian-based model and the classical POD model with ℓ = 30 (left plot) and ℓ = 50 (right

plot) basis functions.

POD model is directly noticeable at the CPU time of the offline

phase; cf. Table 2.

4.2.2 Numerical results
In the following numerical test the chosen parameter and

problem required functions are summarized in Table 1.
First of all, already in Figure 2 one can notice the better

accuracy of the proposed approach based on empirical gramians
for two different number of reduced order models. To better
quantify the accuracy of the reduced-order solutions we compare
the absolute errors

t 7→ err
J
abs

=

∥∥∥∥
(
J1(u

fe
α )

J2(u
fe
α )

)
−

(
J1(u

ℓ
α)

J2(u
ℓ
α)

)∥∥∥∥
2
,

t 7→ err
y
abs

= ‖yfeα (t)− yℓα(t)‖M , t 7→ erruabs = ‖ufeα (t)− uℓα(t)‖M ,

and also the relative errors

t 7→ err
J
rel =

err
J
abs∥∥∥∥

(
J1(u

fe
α )

J2(u
fe
α )

)∥∥∥∥
2

, t 7→ err
y

rel =
err

y

abs

‖yfeα (t)‖M
,

t 7→ errurel =
erruabs

‖ufeα (t)‖M
.

These errors are reported in Figure 3 for the gramian and POD

approaches. As one can see, the empirical gramians perform better

than the POD method. Since the desired states z1d and z2d are

not part of the training set, it is way harder for the POD-based

reduced order model to reconstruct the optimal solution. Also

switching the desired states z1d and z2d afterwards one get similar

approximation results. This shows the advantage of flexibility of the

gramian-based approach. With significant reduction of time (due

to cheaper SVDs), one can prepare a basis which is more suitable

for varying targets and thus different optimal control problem.

This is a large advantage if one considers that often the POD basis

must be tailored for each problem at a time. In Table 2, one can

see the significant speed-up of the offline phase with the empirical

gramians method with respect to the POD one. We picked here

the cases ℓ = 30 and ℓ = 50. As said, for the gramian approach

we can add all snapshots up in two matrices, whose sizes coincide

with the dimension of the problem. For the POD basis, instead,

we need a way larger matrix, which depends on the number of

snapshots. If one generates many snapshots, as in this case, the

SVD of such a matrix gets numerical costly. The reason is that for

multiple snapshots the matrix that has to be decomposed by SVD

gets larger; cf. [11] (Remark 2.12).

In the brackets there are the respective values including the

training time. Notice that the offline time for the gramian-

based MOR is significantly lower than for the POD method

which leeds to better speed-up factors. The reason for this is

that the required SVD for the POD basis computation has

to be computed for a much larger data matrix including all

snapshots.

4.3 Model predictive control

In the second example we show the potential of the empirical

gramians in a model predictive control (MPC) framework. MPC

is an optimization based method for the feedback control of

dynamical systems where the time horizon usually tends to infinity;

see, e.g., [14] for a general introduction and [41] for parabolic

PDEs. For large terminal time T we are considering problems of

the form

min
(y,u)

J(y, u) =
1

2

∫ T

0
‖C(t)y(t)− zd(t)‖

2
Q dt +

1

2

∫ T

0
‖u(t)‖2R dt

=
1

2

∫ T

0
‖z(t)− zd(t)‖

2
Q dt +

1

2

∫ T

0
‖u(t)‖2R dt,

s.t. (y, u) ∈ H1(0,T;Rny )× L2(0,T;Rnu ) solves

ẏ(t) = A(t)y(t)+ B(t)u(t)+ f (t) for t ∈ (0,T], y(0) = y◦.

(MPC)

MPC is based on iterative, finite-horizon optimization of

dynamical control problems. Let first fix a time discretization with
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FIGURE 3

Errors for the reduced order solutions with empirical gramians (solid line) compared to POD approximimation (dashed line). The parameter ℓ

represents the number of basis functions.

TABLE 2 CPU times to solve the multiobjective optimization problem P̂

and corresponding speed-ups for the respective MOR techniques for ℓ

basis functions.

CPU time Speed-up

Full model 497.9s —

Gramian-based MOR (ℓ = 30) 5.7 s (+ 51.1 s) 87.4 (8.8)

Gramian-based MOR (ℓ = 50) 14.3 s (+ 51.1 s) 34.8 (7.6)

POD-based MOR (ℓ = 30) 5.9 s (+227.7 s) 84.4 (2.1)

POD-based MOR (ℓ = 50) 14.1 s (+227.7 s) 38.9 (2.1)

In the brackets there are the respective values including the training time.

initial time step t0 and tk = t0 + k1t for 1t > 0 and k ∈

N. Fixed a time shift Tpred = N1t for N > 0, N ∈ N, we

compute an optimal control uk such that uk(ti) is minimizing the

cost function for ti in the discrete time interval [tk, tk + Tpred],

i.e., i = k, . . . , k + N. Now, only the optimal control over the

discrete time interval [tk, tk + Tf ] (Tf = M1t with 0 < M ≤

N) is stored and the previous procedure is repeated starting from

the new resulting current state at time tk + Tf . This yields to

a new optimal control uk+1 which will contribute to another

piece of the final reconstructed suboptimal control for the whole

infinite horizon. In conclusion we are solving iteratively optimal

control problems, where the finite prediction horizon keeps being

shifted forward. The parameter Tpred is called MPC prediction

horizon and Tf is the MPC feedback time step. The reason why

we are building a feedback control relies on the fact that each new

computed optimal control for a given time window depends on

the current state of the system. We present our MPC method in

Algorithm 2.

4.3.1 Problem formulation
In our numerical example we study the following problem:

min J(u) =
1

2
‖Cyu − zd‖

2
H

+
σ

2
‖u‖2

U

s.t. u ∈ U and yu ∈ Y solves the linear parabolic problem

∂yu

∂t
(t, x)−1yu(t, x)+ α(t)v(x) · ∇yu(t, x) = χω(x)u(t, x)+

f(t, x) for (t, x) ∈ Q,

∂yu

∂n
(t, s) = 0 for (t, s) ∈ 6, yu(0, x) = y◦(x) for x ∈ �,

(P̃)

where the spaces Y, U and H, the linear embedding operator C

and the data σ , y◦, v and f have been introduced at the beginning

of Sections 4, 4.2.1. Moreover, let α ∈ L∞(0,T) be scalar-valued

parameter function andχω the characteristic function of a nonzero

subset ω ⊂ �. Recall that a unique (weak) solution yu ∈ Y for any

control u ∈ U follows from standard results; see, e.g., [38, 39].

Next, we proceed analog to Section 4.2 to derive the

semidiscrete problem with weighted norms. The semidiscrete first-

order necessary and sufficient optimality system of P̃ is equivalent

to solving the system

ẋ(t) = Aα(t)x(t)+Ãx(T−t)+F(t) for t ∈ (0,T), x(0) = x◦ ∈ R
2m,

(22)

for x = (y, q), q(t) = p(T − t), with y and p solution of state and

adjoint equation of P̃ respectively, and
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1: for n = 0, 1, 2, ... do

2: Set sampling time tn = t0 + nTf and measure

the state ỹ◦ = y(tn) ∈ R
ny.

3: Solve the optimal control problem

minJ(y, u) s.t.





ẏ(t) = A(t)y(t)+ B(t)u(t)+ f (t)

for t ∈ (tn, tn + Tpred],

y(tn) = ỹ◦.

4: Store the optimal control ū over the time

intervall [tn, tn + Tf ) and use this

control value in the next sampling period.

5: end for

Algorithm 2. Model predictive control (MPC).

A
α(t) =

[
M−1Aα(t) 0

0 M−1Ãα(t)⊤

]
, Ã

α
(t) =

[
0 1

σ
M−1BM−1B⊤

−Im 0

]
,

B =
((
〈χωϕj ,ϕi〉H

))
, F(t) =

[
f (t)

z̃d(t)

]
, x◦ =

[
y◦
0

]
,

Aα(t) = S+ α(t)D, Ãα(t) = S+ α(T − t)D.

Moreover, we have u(t) = M−1B⊤p(t)/σ .

Now, the possible approach for applying model-order reduction to

P̃ would be to apply the POD method; cf., e.g., [11]. One would

run simulations of state and adjoint equations varying the control

u in order to construct a POD basis. The more the inputs u for

the training are closer to the unknown optimal control, the better

the POD approximation will be. Clearly this shows the limitation

of this approach, since it is not really possible to guess a-priorly

what the optimal control will be. Anyway, since we are in an

MPC framework, one could think of paying the price of solving

occasionally FE models to generate (and update) the POD basis

and perform the rest of the runs with the resulting reduced-order

model. This strategy has also the advantage that can be controlled

by the use of an a-posteriori error estimator to decide when trigger

the update. For this MPC-POD method we refer to [15, 42].

With respect to this method, the gramian-based approach offers

additional advantages:

1) The possibility of training the controllability gramian (and

thus the reduced-order model) choosing as input the advection

coefficient α(t). In such a way, the resulting basis functions will

be less sensitive to perturbations of this advection coefficient.

2) Similarly, we can train the observability gramian by choosing

as output z(t) = M−1B⊤p(t)/σ , which nothing else that the

first-order optimality condition of the perturbed optimal control

problem that has (22) as optimality system. In such a way, the

reduced-order model will be capable to reconstruct the optimal

control with high accuracy.

As also pointed out in [15], in fact, the MPC-POD method

suffers in presence of advection already for a small Peclet number

and any strong deviation from the original POD snapshots can

also lead to inaccuracy. Although the a-posteriori error estimator

mitigates these problems, the continue triggering of the update

of the basis has also a negative impact in the overall time

performances of the algorithm. The gramian based MPC can

overcome this by preparing a reduced-order model slightly sensible

to perturbations of advection and optimal control. The basis

functions are capable to keep track of the changes in this case,

thanks to the randomized training performed at the begin. For

a more detailed description of the gramian based MPC we refer

to Algorithm 3, for the MPC-POD algorithm we refer to [15]

(Algorithm 11).

Require: Sets T
2m, M, E

2m (cf. Definition 4),

truncation value ℓ ≥ 1.

1: Compute empirical controllability gramian

L̂c ∈ R
(2m)×(2m) for (22) with T = 1 and inputs

α(t) = cjα̂(t), forj = 1, ..., nM

where α̂ is a random advection coefficient.

2: Compute empirical observability gramian

L̂o ∈ R
(2m)×(2m) for (22) with T = 1 and outputs

z(t) = M−1B⊤p(t)/σ

and random initial guess x◦ = cjTieν with cj ∈ M,

Tj ∈ T
2m, eν ∈ E

2m.

3: Compute the balancing transformation L̂
1/2
co ∈ R

2m×2m.

4: Compute truncated SVD of L̂
1/2
co = U6V⊤ with

truncation value ℓ ∈ N.

5: for every MPC step do

6: Solve the reduced-order system

ẋℓ(t) = U⊤Aα(t)Uxℓ(t)+ U⊤ÃUxℓ(T − t)+ U⊤F(t)

for t ∈ (0,T),

xℓ(0) = U⊤x◦ ∈ R
ℓ.

(23)

7: end for

8: Compute the (sub-)optimal state by setting

yα(t) = U(:,1 :m)x
ℓ
1 :m(t) ∈ R

m.

9: Determine the (sub-)optimal control

uα(t) = U(:,m+1 : 2m)x
ℓ
m+1 : 2m(T − t) ∈ R

m.

Algorithm 3. Gramian-based MPC.

4.3.2 Numerical results
For the following numerical tests we choose the same domain

and PDE parameter than in Section 4.1.1 apart from the end

time point, which is here set to T = 250. The additional

advection coefficient function α ∈ L∞(0,T;R) is chosen

randomly in a specified range, which will be varied to defined

different test cases. We report the other chosen parameters

in Table 3.

The numerical results are reported in Tables 4, 5. The quantity

err
y

abs, err
u
abs, err

y

rel and errurel are the absolute errors and the
relative errors in approximating full-order optimal state ȳ and
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control ū, respectively. More precisely, being ȳℓ and ūℓ a reduced-
order model solution, we define

err
y

abs =

(∫ T

0

‖ȳ(t)− ȳℓ(t)‖
2

M dt

)1/2

, err
y

rel =
err

y

abs( ∫ T

0 ‖ȳ(t)‖2M dt
)1/2 ,

erruabs =

(∫ T

0

‖ū(t)− ūℓ(t)‖
2

M dt

)1/2

, errurel =
erruabs( ∫ T

0 ‖ū(t)‖2M dt
)1/2 ,

where the time integrals are realized numerical by applying a

standard trapezoidal approximation. As said, since we train the

gramians with respect to the advection coefficient α, we obtain basis

functions which are robust with respect to changes of the advection

TABLE 3 Optimization and MPC data for the numerical implementation of

P̃.

Optimization parameter

Regularization parameter σ = 10−4

Desired state zd(t, x) = t sin(2πx1) cos(2πx2)

Right hand side f(t, x) = x1x2 sin(π t)

Control operator (Bu)(t, x) = χ{xi≤0.25 for all i}(x)u(t, x),

MPC parameter:

MPC prediction horizon length Tpred = 2, N = 50

MPC feedback time step Tf = 1,M = 25

term. This can be seen in Table 4, where the relative error increases

significantly only for the largest range of [0, 10].

The MPC-POD method, instead, starts loosing accuracy

already at the stage [0, 5]. Furthermore, the relative error for the

control resulting from Algorithm 3 is from two to four order of

magnitude smaller with respect to theMPC-PODone. In particular,

in the last case of α(t) ∈ [0, 10] the MPC-POD method is not

practically usable. Therefore, we can say that Algorithm 3 is able

to recover the optimal solution with a better approximation than

the MPC-PODmethod. Let us mention, that for a fair comparison,

we used the same snapshots for the two approaches. The problem

for POD is that the resulting basis has no capability to track the

information carried by perturbing the advection, while the gramian

TABLE 5 Average CPU times to solve the MPC framework for P̃ and

corresponding speed-ups for the respective MOR techniques after 1,000

simulations with randomly chosen advection coe�cients function α.

CPU time Speed-up

Full model 383.3s —

ℓ = 10 Gramian (Algorithm 3) 9.7 s (+ 51.5 s) 39.5 (6.3)

POD 9.9s (+225.8 s) 38.7 (1.6)

ℓ = 30 Gramian (Algorithm 3) 22.3 s (+ 51.5 s) 17.2 (5.2)

POD 22.1s (+225.8 s) 17.3 (1.5)

ℓ = 50 Gramian (Algorithm 3) 45.8 s (+ 51.5 s) 8.4 (3.9)

POD 44.9s (+225.8 s) 8.5 (1.4)

TABLE 4 Error in approximating the optimal state ȳ and control ū solution of the discretized full order model P̃ with randomly chosen advection

coe�cient function α in the reported range and ℓ ∈ {10, 30, 50} basis functions.

Method α range err
y
abs

erru
abs

err
y
rel

erru
rel

ℓ = 10 MPC-POD [0, 1] 5.61 · 100 8.15 · 10−1 9.14 · 10−1 3.72 · 10−1

[0, 5] 3.77 · 103 7.26 · 100 8.12 · 103 1.45 · 101

[0, 10] 4.76 · 103 3.76 · 105 1.28 · 104 3.03 · 104

Gramian (Algorithm 3) [0, 1] 1.34 · 10−1 5.87 · 10−1 3.26 · 10−1 6.12 · 100

[0, 5] 1.58 · 102 7.31 · 10−1 6.32 · 102 4.16 · 100

[0, 10] 1.45 · 103 3.85 · 104 2.94 · 103 6.31 · 103

ℓ = 30 MPC-POD [0, 1] 1.46 · 10−2 1.99 · 10−1 3.63 · 10−1 1.45 · 10−2

[0, 5] 1.26 · 100 1.48 · 102 2.27 · 100 4.21 · 100

[0, 10] 6.59 · 103 7.02 · 104 3.97 · 103 2.11 · 103

Gramian (Algorithm 3) [0, 1] 4.81 · 10−2 6.41 · 10−1 5.53 · 10−1 7.89 · 10−2

[0, 5] 1.23 · 10−1 1.04 · 101 2.21 · 10−1 1.04 · 10−1

[0, 10] 1.34 · 10−1 7.37 · 100 3.44 · 10−1 1.91 · 100

ℓ = 50 MPC-POD [0, 1] 3.99 · 10−3 4.72 · 10−2 1.23 · 10−2 2.93 · 10−2

[0, 5] 1.47 · 10−2 3.00 · 100 3.82 · 10−2 1.13 · 10−1

[0, 10] 2.13 · 103 1.84 · 105 4.72 · 103 6.60 · 103

Gramian (Algorithm 3) [0, 1] 4.43 · 10−3 3.92 · 10−3 1.05 · 10−4 2.43 · 10−3

[0, 5] 4.38 · 10−3 6.15 · 10−1 1.14 · 10−2 2.31 · 10−4

[0, 10] 5.84 · 10−2 2.81 · 100 9.87 · 10−2 1.01 · 10−1
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FIGURE 4

Reduced MPC with one reduced gramain (left) and POD (right) basis with reduced basis rank ℓ = 50 and range(α) = [0.1]. One every column are the

absolute L2-spatial-di�erence in state and control over the time, i.e., t 7→ ‖ȳ(t)− ȳℓ(t)‖M and t 7→ ‖ū(t)− ūℓ(t)‖M (top) and the particular error estimates

for every MPC step.

can. Anyway, the deterioration of accuracy for increasing advection

emerges also in the context of the gramian basis, although does not

affect its usability in our numerical tests. From Table 5, one can also

see another disadvantage of the POD method.

Since we are using the same number of snapshots for the two

techniques, the POD matrix has the dimension of Nx × L, where

Nx is the of FE nodes and L the number of snapshots. Clearly, if

L≫Nx, the time to compute a POD basis, i.e., performing a SVD on

the matrixNx×L is significantly larger than the two SVDs required

for theNx×Nx gramians. This reflects the difference on the overall

time speed-up betweenMPC-POD (1.7) and Algorithm 3 (4.8). We

can then conclude that our proposed gramian based approach has

the double advantage of robustness with respect to variation of the

advection field and overall time speed-up in comparison to the

MPC-POD method.

4.3.3 A-Posteriori error analysis
To validate our numerical approach we control the MOR

error by an a-posteriori error estimate. The idea is that the

error of the difference between the (unknown) optimal control

and its suboptimal approximation computed by the MOR-based

discretization can be estimated without knowing the optimal

solution (yα , uα) to P̃. The techniques are based on well-known

Galerkin-type estimates. In the Appendix we have summarized the

results. For more details we refer to [8, 10, 11], for instance.

From Figure 4 it can be seen that in each step of the MPC

algorithm the error in the computed suboptimal controls are

smaller than 0.1. The impact of the truncation value ℓ on the error

is thoroughly examined in [43].

5 Conclusions

In the present paper empirical gramian have been used to derive

reduced order models tailored for the first-order optimality system

which consists of the coupled state and dual equation. Here, data

of the optimization problem serve as inputs for the computation

of the gramian matrices. The validation by a-posteriori error

analysis shows that we get reliable reduced order models which

turn out to perform better than reduced order models based on

a standard POD, which utilizes exactly the same snapshots for

the ROM. The reason of such performances is the possibility

of including controllability and observability knowledge through

the empirical gramian approach. This leads to the fact that the

gramian-based ROM is more appropriate for the optimization

purposes. Finally, as future perspective, the proposed approach

can be applied to nonlinear dynamical systems as well. Here,

the accuracy could be checked by hierarchical a-posteriori error

analysis; see, e.g., [44], which extends the work in [45]. To get

an efficient numerical reduced order realization for the nonlinear

dynamical system, one would need to apply the (discrete) empirical

interpolation method (cf. [22–24]) or missing point evaluation

(cf. [25]).
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