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From the beginning of the outbreak of SARS-CoV-2 (COVID-19), South African

data depicted seasonal transmission patterns, with infections rising in summer and

winter every year. Seasonality, control measures, and the role of the environment

are the most important factors in periodic epidemics. In this study, a deterministic

model incorporating the influences of seasonality, vaccination, and the role of the

environment is formulated to determine how these factors impact the epidemic.

We analyzed the stability of the model, demonstrating that when R0 < 1, the

disease-free equilibrium is globally symptomatically stable, whereas R0 > 1

indicates that the disease uniformly persists and at least one positive periodic

solution exists. We demonstrate its application by using the data reported by the

National Institute for Communicable Diseases. We fitted our mathematical model

to the data from the third wave to the fifth wave and used a damping e�ect

due to mandatory vaccination in the fifth wave. Our analytical and numerical

results indicate that di�erent e�cacies for vaccination have a di�erent influence

on epidemic transmission at di�erent seasonal periods. Our findings also indicate

that as long as the coronavirus persists in the environment, the epidemic will

continue to a�ect the human population and disease control should be geared

toward the environment.

KEYWORDS

vaccination, periodic transmission rate, basic reproduction number, stability analysis,

parameter estimation

1. Introduction

The coronavirus disease (COVID-19) pandemic is now a worldwide epidemic that has been

rapidly growing from the onset and is caused by the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) which has a significantmorbidity andmortality estimate of 0.5–

2% of confirmed cases [1]. The world experienced its first zoonotic human coronavirus, in

2002, the severe acute respiratory syndrome coronavirus (SARS-CoV) spread to 37 countries

in 2012, and the second is the Middle East respiratory syndrome coronavirus (MERS-CoV),

also spread to 27 countries [2]. COVID-19 is currently recorded in 230 countries as of

November 2022, with more than 638 million cases and 6.8 million deaths. South Africa was

leading the African continent with over 4 million cases and 102, 000 thousand deaths.

Symptoms of COVID-19 infection include breathing difficulty, fever, fatigue, a dry

cough, and in severe cases, bilateral lung infiltration and others also developed non-

respiratory symptoms, including vomiting, diarrhea, and nausea [2–4] similar to the

symptoms of SARS-CoV andMERS-CoV.

According to WHO [5], the COVID-19 virus is primarily transmitted between people

through respiratory droplets and contact routes. Droplet transmission occurs when an
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infected person sings, breathes, sneezed, coughed, and has nasal

discharge [6]. Transmission can also occur through fomites in the

immediate environment around the infected person [7]. Therefore,

the COVID-19 virus can be transmitted by direct contact with

infected people and indirect contact with surfaces in the immediate

environment or with objects used on or by the infected person [7].

In the analysis done by Kampf et al. [8] on 22 types of

coronaviruses, it revealed that human coronaviruses such as severe

acute respiratory syndrome (SARS) coronavirus, Middle East

respiratory syndrome (MERS) coronavirus or endemic human

coronaviruses (HCoV) could persist on inanimate surfaces such as

metal, glass, or plastic for up to 9 days, and this gives evidence of

the survival of the pathogens in the environment to increase risk

of infection again. In Gralinski and Menachery [3], it was reported

that samples taken from the Huanan Seafood Market, a live animal

and seafood wholesalemarket inWuhan, were positive for COVID-

19, which suggested that pathogens could be transmitted through

the environmental reservoir [9, 10]. COVID-19 has also been found

in the stool of some infected individuals, which may contaminate

the aquatic environment [2, 11].

Evidence suggested that infected humans continued to shed

virus into the environment as long as they were infectious [12].

The European Congress of Clinical Microbiology and Infectious

Diseases [13] reported a COVID-19 patient who tested positive for

505 days until death. Furthermore, a report by Spanish researchers

[14] described a 52-year-old man who shed the virus after 189

days of chemotherapy and a 64-year-old man also continued to

shed the virus for 169 days after being infected [15]. Rahmani et

al. [16] examined the length of time in an infected person with

SARS-CoV-2 continued to shed the virus. It was discovered that the

typical person continues to shed the virus for a month. However,

some individuals’ bodies continued to discharge the virus for a

long time.

López and Rodo [17], Liu et al. [18], and Wang et al.

[19] reported that control measures were important factors in

containing epidemics and reducing the transmission of the disease.

During the early stages, different levels of control measures

had different impacts on the transmission of COVID-19 [20–

22]. Strict controls were by closing public facilities, and some

mild control measures included maintaining social distancing,

taking temperature measurements, and wearing masks. All these

control measures were implemented from the first wave to the

fourth wave of COVID-19 in South Africa since there were no

pharmaceutical inventions. However, during those times, most

developed mathematical models did not consider vaccinations

[9, 23–25]. Recent mathematical models that have been developed

include vaccination as a major control measure [26, 27].

Regardless of these control measures, seasonality is another

important factor that influences epidemics. There has been

much controversy regarding COVID-19, with questions over its

transmission regarding seasonal patterns including other seasonal

epidemics such as flu [9, 28–30]. Some studies have attempted

to establish the relationship between COVID-19 and seasonality

by varying meteorological factors [9]. In a study by Matson et

al. [31] and Liu et al. [18], it pointed out that the stability

of the virus in the air or on surfaces is quick to respond

to environmental conditions, including humidity, temperature,

sunlight, and more. The virus is more stable at low-temperature

and low-humidity conditions, whereas warmer temperatures and

higher humidity give it a half-life. Moreover, experimental data

and regional analysis by Yao et al. [32] showed that COVID-19

in a high-temperature environment had a lower survival rate and

infections declined in summer. At 4◦, 22◦, and 37◦, SARS-CoV-

2 can persist for 14, 7, and 1 day, respectively, under laboratory

conditions. However, at 56◦, it persistence reduce drastically to

10 min [18, 33]. In addition, Chin et al. [33] found that at

4◦ the virus was stable and inactive when increased to 70◦.

Confirmed cases of COVID-19 were found to be concentrated at

an absolute humidity of 3 to 10g/m3 at air temperatures of 5 to

15◦ in Huang et al. [34]. The following study and experiment

also confirmed with similar findings, SARS-CoV-2 can remain

viable and infectious in aerosols for hours at room temperature

21◦—23◦ and a fixed relative humidity of 65% [35]. Simulated

sunlight can rapidly inactivate SARS-CoV-2 suspended in either

simulated saliva or culture media and dried on stainless steel

coupons [18, 36].

Many mathematical models have been developed since the

appearance of COVID-19 disease. Most of these models are based

on the significant role of human-to-human transmission as done by

Chan et al. [37], Ojo et al. [23], and Babasola et al. [24]. However,

several studies have given evidence of pathogen transmission

through the environmental reservoir. Few mathematical models

have been developed so far to consider the role of the human-to-

environment transmission [9, 10, 38]. However, seasonal patterns

expose the limitations of many recent COVID-19 models that

do not incorporate seasonality. In this study, we consider South

Africa, with two main climate seasons in a year. During these

periods, there has always been a surge in infections. We present a

mathematical model for COVID-19 that considers double periodic

transmission pathways: human-to-human periodic transmission

and periodic transmission through the environmental reservoir

(human-to-environment). We divide our human population into

five sub-populations: susceptible individuals, exposed individuals,

asymptomatic individuals, symptomatic individuals, and recovered

individuals. The transmission rate incorporates the influence of

seasonality, control measures (vaccination), and the environment.

We analyzed the basic reproduction number (using the next

infection operator) and establish that it is a sharp threshold for

the COVID-19 models with the periodic transmission. The analysis

method for extinction and persistence results for periodic epidemic

systems is inspired by the research done in Wang and Zhao

[2]. We fit our mathematical model to data obtained from the

National Institute for Communicable Diseases, South Africa [39],

to estimate parameters and then simulate the efficacy driven by the

vaccination parameter.

The study is organized as follows. In Section 2, we present the

model and its properties. In Section 3, a detailed mathematical

analysis is performed on the model developed. In Section 4, we

explain numerical simulations, and conclude the study with some

discussion and recommendations in Section 5.

2. Model formulation and properties

2.1. Model formulation

We define N(t) as the total human population at time t. The

human population is divided into five classes: the susceptible class
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S(t), the exposed class E(t); those who have been exposed to the

virus but have not yet been diagnosed as COVID-19 positive,

the asymptomatic class Ia(t); people who have been diagnosed

with COVID-19 but do not exhibit any clinical symptoms, the

symptomatic individuals Is(t); people with clinical symptoms who

have been diagnosed as COVID-19 positive and recovered class

R(t); and people who have recovered from the virus. The human

population has a natural mortality rate of µ. The total population is

given as

N(t) = S(t)+ E(t)+ Ia(t)+ Is(t)+ R(t). (1)

Ce(t) is the pathogen concentration in the environment

at a given time (t). The removal rate of the virus is σ . The

environmental reservoir is defined in this study as fomites in

the immediate environment around the infected person and

sheddings by infected humans either through droplets or feces. The

relationship between humans and the environment is represented

in Figure 1.

The dynamics of the susceptible population is given in Equation

(2), 3 being the recruitment rate. The second term δ(t, Ia, Is,Ce)

determines the rate of new infection, the parameter δ is the disease

transmission rate and is time dependent.

dS

dt
= 3− δ(t, Ia, Is,Ce)S− µS, (2)

where

δ(t, Ia, Is,Ce) =
β(t)Ia

N
+
β(t)ηIs

N
+

β(t)Ce

K50 + Ce
and β(t) =





β̂ + β̄β̂ sin
(
2π t
ω

)
, t0 ≤ t ≤ t2

(
β̂ + β̄β̂ sin

(
2π t
ω

))
m(t), t ≥ t2.

(3)

The parameter β(t) is the effective contact rate of susceptible

humans with the asymptomatic class Ia, symptomatic class

Is, and the environment Ce, respectively. K50 gives the

concentration of virus in the environment that yield 50%

chance of infection with COVID-19. η measures the relative

infectivity between Ia and Is, and it is measured between

0 ≤ η ≤ 1.

β̂β̄ is the amplitude of the periodic oscillations when β̄ = 0

means there are no infections in the periodic function. Here, β̂

is the baseline value or the time average, ω = 365
2 = 182.5

days since there are only two waves in a year and a time-

varying vaccination parameter m(t), to formulate the influence

of control measures. It gives the quantitative estimation of the

control measure implemented in South Africa. We define our

m(t) = e−mxtx , which falls between (0, 1], when m(t) =

1 then the epidemic spreads without any restrictions; however,

m(t) can not be assumed to be one except when there are

no any control measures, and when m(t) = 0, then there is

no epidemic. mx controls the speed at which the vaccination

reaches its maximum or minimum values, and we call it the

vaccination efficacy in our study. Moreover, tx gives the start time

of the vaccination.

For the exposed population, in Equation (4), the first

term represents those who enter from the susceptible

pool driven by the force of infection δ. The rate κ is the

progression rate of exposed individuals to the asymptomatic and

symptomatic classes.

dE

dt
= δ(t, Ia, Is,Ce)S− (µ+ κ)E. (4)

dIa

dt
= κpE− (µ+ α + γa)Ia, (5)

The dynamics of the symptomatic individuals infected

with COVID-19 is given in Equation (5). In the first term,

p gives the proportion of humans that are moving from

the exposed class to the asymptomatic class, α is the rate

of transfer from the asymptomatic to the symptomatic

class, and γa is the recovery rate for the asymptomatic

class respectively.

The dynamics of the asymptomatic individuals

infected with COVID-19 is given in Equation (6). In

the third term, ψ is the disease-induced mortality

rate and γs is the rate of recovery for symptomatic

individuals.

dIs

dt
= κ(1− p)E+ αIa − (µ+ ψ + γs)Is, (6)

The dynamics of the recovered

individual are represented in

Equation (7),

dR

dt
= γsIs + γaIa − µR. (7)

dCe

dt
= ǫa(t)Ia + ǫs(t)Is − σCe. (8)

The environmental dynamics is given in Equation (8),

where ǫa(t) is the shedding rate from the asymptomatic

class, which is time-dependent, ǫs(t) is the shedding rate

from the symptomatic class which is time-dependent,

and the rate σ is is the removal of the virus from the

environment, respectively. Here, ǫa(t) and ǫs(t) are given

by

ǫa,s(t) = ǫ̂a,s

[
1+ ǭa,s sin

(
2π t

ω

)]
. (9)

The amplitude of the periodic oscillations in ǫa,s(t) is

given by ǫ̂a,sǭa,s and when ǭa,s = 0, no infections in the

periodic function and baseline values or the time-average is

ǫ̂a,s. ω = 365
2 = 182.5 days since we have only two waves in a

year.

We re-scale Equations (2)–(8), using the following

substitutions:

s =
S

N
, e =

E

N
, ia =

Ia

N
, is =

Is

N
, r =

R

N
,

x =
Ce

KCe

, and K̃ =
K50

KCe

.
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FIGURE 1

Schematic diagram for the presented model. The human population is divided into susceptible class (S), exposed class (E), asymptomatic class (Ia),

symptomatic class (Is) and the recovered class (R). Thus, the population at any time t is N = S+ E+ Ia + Is + R. In the environmental population, Ce is

the environmental pathogens. We have used the dashed lines with arrowheads to indicate contact and solid lines with arrowheads to indicate

movement.

The virus in the environment has a carrying capacity of Kce ,

Equations (2)–(8) changes into the following subsystems

ds

dt
= 3̃− δ̃(t, ia, is, x)s− µs

de

dt
= δ̃(t, ia, is, x)s− (µ+ κ)e,

dia

dt
= κpe− (µ+ α + γa)ia,

dis

dt
= κ(1− p)e+ αia − (µ+ ψ + γs)is,

dr

dt
= γaia + γsis − µr,

dx

dt
= ǫ̃a(t)ia + ǫ̃s(t)is − σx,





(10)

where

δ̃(t, ia, is, x) = β̃(t)ia + ηβ̃(t)is +
β̃(t)x

K̃ + x
and ǫ̃ =

ǫN

Kce

.

We remove the fifth equation in Equation (10) since it is

independent of the rest of the equations and rewrite the system

as follows:

ds

dt
= 3̃− δ̃(t, ia, is, x)s− µs

de

dt
= δ̃(t, ia, is, x)s− (µ+ κ)e,

dia

dt
= κpe− (µ+ α + γa)ia,

dis

dt
= κ(1− p)e+ αia − (µ+ ψ + γs)is,

dx

dt
= ǫ̃a(t)ia + ǫ̃s(t)is − σx,





(11)

2.2. Model properties

The human population and environmental reservoir are

differentiable and periodic in time with a common period ω.

δ(t+ω, ia, is, x) = δ(t, ia, is, x) and ǫ̃a(t)ia+ǫ̃s(t)is−σx = ζ (t, ia, is, x).

To make biological sense, we assume that the functions δ and ζ

satisfy the following conditions for all t ≥0:

•(P1) δ(t, 0, 0, 0) = ζ (t, 0, 0, 0) = 0, the disease-free

equilibrium is unique and constant. Let E0 denote the disease-free

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2023.1142625
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Assan and Nyabadza 10.3389/fams.2023.1142625

equilibrium, which is given as

E0 = (s, e, ia, is, x) =

(
3̃

µ
, 0, 0, 0, 0

)
(12)

•(P2) The force of infection, δ(t, ia, is, x) ≥ 0. This property

ensures we have a non-negative for all time.

β̃(t)ia + ηβ̃(t)is +
β̃(t)x

K̃ + x
≥ 0, for all t ≥ 0.

•(P3)

∂δ(t,ia ,is ,x)
∂ia

= β̃(t) ≥ 0,

∂δ(t,ia ,is ,x)
∂is

= β̃(t) ≥ 0,

∂δ(t,ia ,is ,x)
∂x = β̃(t)(K̃+x)−β̃(t)x

(K̃+x)2
≥ 0.





(13)

∂ζ (t,ia ,is ,x)
∂ia

= ǫ̃a(t) ≥ 0,

∂ζ (t,ia ,is ,x)
∂is

= ǫ̃s(t) ≥ 0,





(14)

∂ζ (t, ia, is, x)

∂x
= −σ ≤ 0. (15)

The first set of equations in Property (13) ensures that the
rate of new infection increases with both the infected human

population and the pathogen concentration. The second set

of equations in Property (14) ensures an increase in human

infections and, therefore, a higher level of human contribution to

the environmental virus, leading to a higher growth rate for the

pathogens. The property (15) ensures that the rate of change of the

pathogen concentration would be negatively related to itself [40].

•(P4) δ(t, ia, is, x) and ζ (t, ia, is, x) are both concave for any
t ≥ 0. This property ensures that the second partial derivative is
concave.

D2δ =




∂2δ
∂i2a

∂2δ
∂ia∂is

∂2δ
∂ia∂x

∂2δ
∂is∂ia

∂2δ
∂i2s

∂2δ
∂is∂x

∂2δ
∂x∂ia

∂2δ
∂x∂is

∂2δ
∂x2




≤ 0 and D2ζ =




∂2ζ

∂i2a

∂2ζ
∂ia∂is

∂2ζ
∂ia∂x

∂2ζ
∂is∂ia

∂2ζ

∂i2s

∂2ζ
∂is∂x

∂2ζ
∂x∂ia

∂2ζ
∂x∂is

∂2ζ

∂x2




≤ 0,

and is negative semidefinite everywhere. This is a common

assumption for non-linear incidence [41, 42]. In our model, this

condition regulates δ(t, ia, is, x) as a biologically realistic incidence

based on a consequence of saturation effects: when the number

of the infective or the environmental pathogens concentration is

high, the incidence rate will respond more slowly than linearly to

the increase in ia, is, and x. Similar arguments hold for ζ (t, ia, is, x).

•(P5) δ(t, 0, 0, x) > 0 if x > 0; ζ (t, ia, is, 0) > 0 if ia, is > 0.

This property implies that infection can begin solely through

indirect transmission. Positive pathogen concentration can lead

to a positive incidence even if ia, is = 0 at the beginning.

Infected people will contribute to the increase of the virus in the

environment by shedding even if x = 0.

3. Basic reproduction number and
analysis

From Equation (11), the disease-free equilibrium (E0) is given

as

E0 = (s0, e0, i0a, i
0
s , x

0) =

(
3̃

µ
, 0, 0, 0, 0

)
.

By using Wang and Zhao’s [2] approach, we obtain

FE0 (t) =




0 β̃(t) ηβ̃(t) β̃(t)

K̃

0 0 0 0

0 0 0 0

0 0 0 0




and− VE0 (t) =




−w 0 0 0

κρ −x 0 0

y α −z 0

0 ǫa(t) ǫs(t) −σ




where

w = κ(1−p), x = (µ+κ), y = (µ+α+γa), and z = (µ+ψ+γs).

We denote Y(t, s) as the evolution operator of the linear ω−

periodic system

dy

dt
= −V(E0)y. (16)

For each s ∈ R, the 4× 4 matrix Y(t, s) satisfies Equation 17 I is

a 4× 4 identity matrix:

dY(t, s)

dt
= −V(E0)Y(t, s), ∀t ≥ s, and Y(s, s) = I (17)

Thus, the monodromy matrix 8−V(E0)
of Equation (16) yields

Y(t, 0), t ≥ 0. Given a periodic environment, let the initial

distribution of infectious individuals be φ(s) ∈ Cω , the rate of new

infections caused by the infected humans who were introduced at

time s be F(s)φ(s), and Y(t, s)F(s)φ(s) represent the distribution of

those infected humans who were newly infected at the time s and

remains in the infected compartments at time t for t ≥ s.

Let Cω be the ordered Banach space of all ω-periodic functions

from R to R that possesses the maximal norm ||.|| and the positive

cone

C+
ω := {φ ∈ Cω :φ(t) ≥ 0, ∀t ∈ R}.

As a result, the distribution of cumulative new infections caused

by all of the diseased people who were introduced at the previous

time t is given by

9(t) =

∫ t

−∞

Y(t, s)F(s)φ(s)ds =

∫ ∞

0
Y(t, t − a)F(t − a)φ(t − a)da.

The framework created by Zhang and Zhao [43] was expanded

upon byWang and Zhao [2] to incorporate epidemiological models

in periodic environments. Let L :Cω → Cω , the next infection

operator is donated by L, and R0 := ρ(L) is the basic reproduction

ratio, where L is the spectral radius. To solve R0 numerically, see

Wang and Zhao [2] and Assan et al. [44, 45].

Lemma 1. [43] The following statements are valid for model

(Section 2.1):

(i) R0 = 1 if and only if ρ(8F−V (ω)) = 1.

(ii) R0 > 1 if and only if ρ(8F−V (ω)) > 1.

(iii) R0 < 1 if and only if ρ(8F−V (ω)) < 1.
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3.1. The stability of the disease-free
equilibrium and existence of periodic
solutions

3.1.1. The stability of disease-free equilibrium
Theorem 1. For system 11, if R0 < 1, then disease-free equilibrium

E0 is globally asymptotically stable.

Proof. Let (s, e, ia, is, x) be a non-negative solution to system (11).

To complete the proof, it is sufficient to show this non-negative

solution tends to E0 as t → +∞. The first equation of system (11)

with 0 ≤ n− s gives

ṡ ≤ 3̃− µs (18)

Hence, for any ε > 0, when tε > 0; when t > tε , we have

s ≤ s0 + ε, and gives the following inequalities

de

dt
= δ(t, ia, is, x)(s

0 + ε)− (µ+ κ)e,

dia

dt
= κpe− (µ+ α + γa)ia,

dis

dt
= κ(1− p)e+ αia − (µ+ ψ + γs)is,

dx

dt
= ǫa(t)ia + ǫs(t)is − σx,





(19)

Mε gives the coefficient matrix of the auxiliary system of system

(19)

Mε =




0 εβ̃(t) εηβ̃(t) ε β̃(t)
K̃

0 0 0 0

0 0 0 0

0 0 0 0




. (20)

If R0 < 1, it is known from Lemma 1 which was originally

stated in Wang and Zhao [2] that ρ(8F−V (ω)) < 1. We choose

ε > 0 small enough giving ρ(8F−V+M(ω)) < 1. It can be

concluded from Lemma 2.1 in Zhang and Zhao [43] that there

exists a positive, ω−periodic function f̄ (t) = (ē(t), īa(t), īs(t), x̄(t))

such that f̂ (t) = e2t f̄ (t) is a solution to Equation (19), where

2 = 1
ω
ln(ρ(8F−V+Mε

(ω))). Here, ρ(8F−V+Mε
(ω)) < 1 H⇒

2 < 0, which implies f̂ (t) → 0 as t → +∞. Thus, the zero

solution of Equation (19) is globally asymptotically stable. For any

non-negative initial value, there is a sufficiently large M. Using the

comparison theorem [46], we get f (t) ≤ Mf̂ (t), ∀t > 0. Thus, we

obtain e(t) → 0, ia(t) → 0, is(t) → 0, x(t) → 0 as t → +∞. By

the theory of asymptotic autonomous system [47], we get

s(t) → s0, e(t) → 0, ia(t) → 0, is(t) → 0, x(t) → 0

as t → +∞. Hence, if R0 < 1, the disease-free equilibrium E0 is

therefore globally asymptotically stable.

3.2. Disease persistence

Let

X := �,

X0 := {(s, e, ia, is, x) ∈ X : e(t) > 0, ia(t) > 0, is(t) > 0, x(t) > 0},

∂X0 := X\X0.

Consider P :X → X, to be the Poincaré map associated with

Equation (11); that is, P(z0) = u(ω, z0), ∀z0 ∈ X, where ω is

the period. u(t, z0) is the unique solution of Equation (11) with

u(0, z0) = z0 = (s(0), e(0), ia(0), is(0), x(0)). We see that Pn(z0) =

u(nω, z0), ∀n ≥ 0.

Lemma 2. For Equation (11), if R0 > 1, then there exist a ν > 0

such that, for any z0 = (s(0), e(0), ia(0), is(0), x(0)) ∈ X0 with

‖z0 − E0‖ ≤ ν, we have limn→+∞ sup d[Pn(z0),E
0] ≥ ν.

Proof. Since R0 > 1, Lemma 1 implies that E0 is unstable;

then, ρ(8F−V (ω)) > 1. Take ε1 > 0 small enough such that

ρ(8F−V−Mε1
(ω)) > 1, where

Mε1 =




0 ε1β̃(t) ε1ηβ̃(t) ε1
β̃(t)

K̃

0 0 0 0

0 0 0 0

0 0 0 0




. (21)

Contrary, now suppose that the limn→+∞ sup d[Pn(z0),E
0] < ν

for some z0 ∈ X0. Without the loss of generality, we assume that

d[Pn(z0),E
0] < ν, ∀n ≥ 0. By the continuity of the solution with

respect to initial value, we have

‖u(t, Pn(z0))− u(t,E0)‖ < ε1, ∀n ≥ 0, ∀t ∈ [0,ω].

From the periodicity of the system, for ε1 > 0, there exists tε1
such that, for all t > tε1 , there holds

s ≥ s0 + ε1. (22)

Then,

de

dt
= δ(t, ia, is, x)(s

0 + ε1)− (µ+ κ)e,

dia

dt
= κpe− (µ+ α + γa)ia,

dis

dt
= κ(1− p)e+ αia − (µ+ ψ + γs)is,

dx

dt
= ǫa(t)ia + ǫs(t)is − σx.





(23)

Let now consider the Equation (23); we conclude that there

exists a positive, ω − periodic function f̄ (t) = (ē(t), īa(t), īs(t), x̄(t))

such that f̂ (t) = e21t f̄ (t) is a solution of the Equation (23), where

21 = (1/ω) ln (ρ(8F−V−Mε1
(ω))). Here, ρ(8F−V−Mε1

(ω)) >
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1 H⇒ 21 > 0, which implies that, for non-negative integer

n, f̂ (nω) → +∞ as n → +∞. For any non-negative initial value,

there is a sufficiently small m > 0. Using the comparison theorem

[46], we have f (t) ≥ mf̂ (t), ∀ > 0. Thus we obtain as follows:

e(t) → +∞, ia(t) → +∞, is(t) → +∞, x(t) → +∞ as t → +∞.

(24)

This contradicts, thus proof end.

Lemma 3. The following equations are established:

M∂ := {z0 ∈ ∂X0 : P
n(z0) ∈ ∂X0, ∀n ≥ 0} (25)

= {(s0, 0, 0, 0, 0) ∈ X : s0 ≥ 0}. (26)

Proof. We know that

{(s0, 0, 0, 0, 0)} ⊆ {z0 ∈ ∂X0 : P
n(z0) ∈ ∂X0, ∀n ≥ 0}.

We prove by contradiction as follows:

{(s0, 0, 0, 0, 0)} ⊇ {z0 ∈ ∂X0 : P
n(z0) ∈ ∂X0, ∀n ≥ 0}.

Suppose that,

z0 = (s(0), e(0), ia(0), is(0), x(0) ∈ {z0 ∈ ∂X0 : P
n(z0) ∈ ∂X0, ∀n ≥ 0}

\{(s0, 0, 0, 0, 0)}.

(27)

We assume that e(nω) > 0 without loss of generality. From the

general solution of Equation (11), we know that

e(t) > 0, ia(t) > 0, is(t) > 0, x(t) > 0.

This means that, (s(t), e(t), is(t), is(t), x(t)) /∈ ∂X0. This

contradicts with (s(0), e(0), ia(0), is(0), x(0)) ∈ ∂X0. Therefore, the

equation is established.

Theorem 2. If R0 > 1, then there exist ε∗ > 0 such that

any solution (s(t), e(t), ia(t), is(t), x(t)) of Equation (11) with initial

value z0 = (s(0), e(0), ia(0), is(0), x(0)) ∈ X0 satisfies

lim
t→+∞

inf e(t) ≥ ε∗, lim
t→+∞

inf ia(t) ≥ ε∗, lim
t→+∞

inf is(t) ≥ ε∗,

lim
t→+∞

inf x(t) ≥ ε∗,

(28)

and at least one positive periodic solution is admissible in Equation

(11).

Proof. We have proved that {Pn}n≥0 is uniformly persistent with

respect to (X0, ∂X0). For any z0 ∈ X0 from the first equation of

Equation (11), it follows that

s(t) = e−
∫ t
0 (δ(s̃,ia(s̃),is(s̃),x(s̃))+µ)ds̃

[
s(0)+ 3̃

(∫ t

0
e
∫ ˜s1
0 (δ(s̃,ia(s̃),is(s̃),x(s̃)+µ)ds̃ds̃1

)]
. (29)

Then, s(t) > 0, ∀t > 0. As generalized to non-autonomous

equations [48], the irreducibility of matrix (30) implies that e(t) >

0, ia(t) > 0, is(t) > 0, x(t) > 0, ∀t > 0 where

M̃(t) =




−(µ+ k) β̃(t) ηβ̃(t) β̃(t)

K̃

κp −(µ+ α + γa) 0 0

κ(1− p) α −(µ+ ψ + γs) 0

0 ǫa(t) ǫs(t) −σ




.

(30)

X and X0 are positively invariant. We see that ∂X0 is relatively

closed in X. E0 of Equation (11) is globally asymptotically stable.

Lemma (3) means that E0 is a unique fixed point of P in M∂ . In

addition, E0 is an isolated invariant set in X, and Ws(E0)
⋂

X0 =

φ. Every orbit in M∂ approaches E0 and E0 is acyclic in M∂ . By

Zhao [49], it follows that {Pn}n≥0 uniformly persists with respect to

(X0, ∂X0) and the solutions of Equation (11) uniformly persists with

respect to (X0, ∂X0); that is, if R0 > 1, there exist ε∗ > 0 such that

any solution (s(t), e(t), ia(t), is(t), x(t)) of Equation (11) with initial

values z0 = (s(0), e(0), ia(0), is(0), x(0)) ∈ X0 satisfies

lim
t→+∞

inf e(t) ≥ ε∗, lim
t→+∞

inf ia(t) ≥ ε∗,

lim
t→+∞

inf is(t) ≥ ε∗, lim
t→+∞

inf x(t) ≥ ε∗ (31)

Furthermore, (s∗(0), e∗(0), i∗a(0), i
∗
s (0), x

∗(0)) ∈ X0 is fixed point

for P. Furthermore, there exists some t̄ ∈ [0,ω] such that s∗(t̄) > 0.

If it is not the case, s∗ ≡ 0. s∗(t̄) ≡ 0, for all t ≥ 0 by the periodicity

of s∗(t̄). From the first equation of Equation (11), we get 0 = 3̃ > 0,

which is a contradiction. Thus, ∀t ∈ [t̄, t̄ + ω], we obtain

s∗(t) = e−
∫ t
t̄ (δ(s̃,i

∗
a(s̃),i

∗
s (s̃),x

∗(s̃))+µ)ds̃

[
s∗ ¯(t)+ 3̃

(∫ t

t̄
e
∫ s̃1
t̄
(δ(s̃,i∗a(s̃),i

∗
s (s̃),x

∗(s̃))+µ)ds̃ds̃1

)]
> 0. (32)

When s∗(t) > 0, ∀t ≥ 0 then s∗(t) is periodic. Similarly, e∗(t) >

0, i∗a(t) > 0, i∗s (t) > 0, x∗(t) > 0. Therefore, (e∗(t), i∗a(t), i
∗
s (t), x

∗(t))

is a positive ω−periodic solution of Equation (11).

4. Numerical simulation

We applied our model to study the COVID-19 epidemic in

South Africa. We used the new case data published daily by the

National Institute for Communicable Diseases [39]. These data

are made up of the daily reported new cases, the recovered,

disease-induced deaths, and cumulative cases for all South African

provinces.

We fitted the constructed model to new cases from South Africa

to illustrate our mathematical results. The total population of South

Africa in the year 2020 was 59.31million according toWorldometer

[50]. The mortality rateµwas obtained by using the life expectancy

of South Africa, which was found to be 64.3 years. The proportion

of exposed individuals p is in the interval (0, 1).

We conduct numerical simulations for an epidemic period

starting from 11th April 2021 to 11th August 2022 in Table 1. We set

time to be in days and period (ω = 182.5) days due to the number

of waves in a year.

To get the initial condition for asymptomatic individuals that

was not given in the collected data, we used the study done by
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Kleynhans et al. [51]. Their studies reveal that the exact number of

COVID-19 infections in Africamay be 97% higher than the number

of confirmed reported cases. The rest of the initial conditions of

state variables are taken from the data and are given below in

Equation (33).

Third wave : E0 = 16972, Ia0 = 16282, Is0 = 438, R0 = 890429, Ce = 1000,

Fourth wave : E0 = 16000, Ia0 = 15296, Is0 = 598, R0 = 1331581, Ce = 1500,

Fifth wave : E0 = 30000, Ia0 = 28744, Is0 = 889, R0 = 890429, Ce = 1800,





(33)

Initial conditions for susceptible and the asymptotic infectives

are given by S0 = N − (E0 + Ia0 + Is0 + R0) and Ia0 = 97
3 ×

Is0, respectively.

We considered the periodic transmission rate

δ̃(t, ia, is, x) = β̃(t)ia + ηβ̃(t)is +
β̃(t)x

K̃ + x
, (34)

β̃(t) is given as a piece-wise function below,

β̃(t) =





β̂
[
1+ β̄ sin

(
2π t
182.5

)]
, t0 ≤ t ≤ t2

β̂
[
1+ β̄ sin

(
2π t
182.5

)]
m(t), t ≥ t2.

(35)

TABLE 1 Time and days for the waves used in the estimation of initial

conditions.

Waves Start date End date Days

3 11th April, 2021 29th October, 2021 200

4 30th October, 2021 19th April, 2022 171

5 20th April, 2022 19th August, 2022 113

where

t0 = 11th of April 2021, t1 = 29th of October 2021,

t2 = 19th of April 2022,

t3 = 19th of August 2022.

The parameter β is positive and denotes the maximum value

of the transmission rate. Time-varying vaccination parameterm(t).

We define our m(t) = e−mxtx , which falls between (0, 1], mx is

the speed of the vaccination (called the vaccination efficacy) and

tx is the start time of the implementation of the vaccine. For our

numerical simulations, we fitted our model to the data starting

from the third wave to the fifth wave, see Assan and Nyabadza

[45] for first and second wave fitting. We added the damping

to the fifth wave because that is when mandatory vaccination

was implemented in South Africa. We used the function curve-

fit from the python module scipy.optimize to fit our data which

uses non-linear least squares to fit data to a functional form, see

Figure 2.

In Table 2, we discuss in detail the values of the parameters

used in Equation (11). When fitting Model (11) to the

South African data obtained, we divided days according to

the number of waves we have, starting with the third wave

which occurred on the 400th day . When comparing the periodic

transmission rate β̃(t), the fifth wave has a low transmission

rate; this is due to the mandatory vaccination that was

introduced by the government, which reduces the disease-

induced death rate drastically. Parameter values used for plotting

are within the range from the third to the fifth wave, see

Figures 3–6.

We hypothetically assume carry capacity K = 106, as a result of

difficulties in estimating such a parameter, the removal rate of the

virus is σ = 1
30 per day, and Lambda = 14, 000 and based on the

FIGURE 2

Fitting our mathematical model to the third, fourth, and fifth wave of data in piece-wise form. New cases in South Africa for the third, fourth, and fifth

waves. The third wave from 11th April to 29th October 2021, the fourth wave from 30th October 2021 to 19th April, 2022 and the fifth wave from 20th

April, 2022 to 19th August, 2022. The blue dots denote the new cases from the data, and the red lines denote our mathematical model prediction. We

can see that in each wave our model constructed fitted well for the given parameters in Table 2.
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TABLE 2 Parameter estimation of the third, fourth, and fifth wave in South Africa in days.

Estimated parameter Wave 3 Wave 4 Wave 5 Source

β̃ 2.0× 10−1 7.4× 10−2 4.5× 10−2 Data fit

κ 8.97× 10−2 1.54× 10−1 1.37× 10−1 Data fit

γa 3.42× 10−1 3.86× 10−1 3.6× 10−1 Data fit

γs 3.53× 10−1 2.44× 10−2 5.2× 10−3 Data fit

α 2.44× 10−1 9.47× 10−1 3.28× 10−1 Data fit

ψ 4.00× 10−1 3.65× 10−1 3.5× 10−2 Data fit

η 3.82× 10−3 4.47× 100 1.70× 10−2 Data fit

FIGURE 3

Proportion of infected humans for di�erent vaccination e�cacy; mx = 0.9, 0.5, and 0.2 and with other parameters made constant as in Table 2. The

infection persists and a periodic solution with ω = 182.25 days forms after a long transient.

model properties in Section 2.2, 0 < B̂, ǫ̂a,s < 1. We also chose B̄

and ǭa,s to be 10. Figure 3 gives the efficacy of the vaccinationmx in

the disease transmission. When mx is carried out to 0.9 (the green

wave), the disease transmission reduces drastically, but the disease

persists after a long transient with a periodic solutionω = 182 days.

Figure 4 gives the periodic threshold of R0 by varying the

efficacy of the vaccination to see its effect on infection transmission.

Figure 5 gives the maximum or minimum values of the vaccination

speed (vaccination efficacy), which is (0, 1.5] and remains constant

(disease dies out) from 1.5 and the upper bound does not make

sense aftermx = 1.5.

Figure 6 gives two different initial conditions for the virus

in the environment. The long-term behavior showed the same

patterns, with infection moving toward a positive solution

and a long oscillating transient, respectively, showing that a

little shedding of the virus in the environment can sustain

infection in the environment for the long term (see the

Supplementary material for sample algorithm for some of

the figures).

5. Conclusion and discussion

We presented a general non-autonomous COVID-19 model

in a periodic environment. Seasonally variational factors have

been incorporated into the incidence function δ and the pathogen

function ζ . We proposed multiple periodic transmission pathways

for COVID-19, human-to-human transmission, and human-to-

environment transmission in this study. A detailed analysis of our

model was conducted, and publicly reported data from the National

Institute for Communicable Diseases was used for the study in

South Africa.

Using the next infection operator, R0 = ρ(L), it was

demonstrated that the disease-free equilibrium is globally

asymptotically stable if R0 < 1. However, when R0 > 1, the disease

persists uniformly, indicating that there is at least one positive

periodic solution.

Our numerical simulation results demonstrate the application

of our model to the COVID-19 outbreak in South Africa. Our

mathematical model fits the reported data well, and through
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FIGURE 4

Gives the periodic threshold of R0 for various mx in model (2). When mx = 1, then R0 < 1, and if mx = 0, then R0 > 1.

FIGURE 5

Maximum and minimum values for mx in model (2). mx = (0, 1.5] and does not make sense after 1.5 for the disease dies out completely.

data fitting, we obtained some of our parameter values for other

simulations. The South Africa data for COVID-19 show evidence

of a seasonal pattern in the new cases, where peaks appear twice

a year, that is in December to January and July to August due

to various festive activities during these seasons. During the first

four waves of COVID-19 in South Africa, non-pharmaceutical

interventions were used as control measures. In this study, we

proposed a control measure (vaccination), seasonality, and the

role of the environment explaining the differences between the

epidemic curves, starting from the third wave. A time-varying

vaccination parameter m(t) was defined with the assumption that

m(t) rises or falls exponentially. We implemented this in the fifth

wave when the implementation of vaccination was mandatory

in the South African population. We set m(t) to be between

(0 − 1]; when m(t) = 1, then the epidemic spreads without

any restrictions. However, m(t) can not be assumed to be one

except when there are no control measures, and when m(t) =

0, then there is no epidemic. mx is the speed of the vaccination

(vaccination efficacy).

We varied the efficacy of the vaccination on the infected

population on a scale of 0.2, 0.5, and 0.9. This was done separately

to see their effects on the disease transmission rate. It was

observed that when vaccination has 0.5 efficacy, it slightly reduces

the infection rate since half of the population will be aware of

the government and policymakers’ prevention strategies. When

vaccination is carried out to 0.9 or a mandatory vaccination is

carried out effectively, the transmission rate decreases substantially,

reducing the infected population. In presenting the results of R0,
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FIGURE 6

Pathogens density for di�erent initial conditions (500 and 1, 000) over a period of 5 years of disease persistence and with the rest of the parameters

being constant as defined in Table 2. The virus persists and a periodic solution with ω = 182.25 days forms after a long transient.

we varied mx while keeping other parameters fixed, and our result

indicates that when mx = 1, then R0 < 1, and when mx = 0,

then R0 > 1. From our result, we found out that the parameter

mx = (0, 1.5] remains constant after 1.5, that is, the disease dies

out completely.

Our simulation results clearly show that individuals continue to

shed the virus back into the environment as long as individuals

are infected. Thus, an increased transmission rate causes more

susceptible individuals to become infected. This study attempts

to model COVID-19 by taking seasonality, control measures

(vaccination), and the influence of the role of the environment.

The findings have implications for developing initiatives and

regulations aimed at reducing COVID-19 transmission in the

presence of seasonality.

The model presented in the study is not without limitations.

After vaccination, the periodic nature of the data somewhat

vanished. The modeling of such a decline requires functions that

reflect damped oscillations, which will be a valuable addition to

the model. The model does not include aspects of hospitalization

and intensive care, which were central to the pandemic. The

inclusion of these would surely make the model more robust. The

model does not capture heterogeneity observed in the disease,

especially aspects of age, COVID-19 variants, long COVID-19,

co-morbidities, and obesity. These were important determinants

of disease progression and outcomes. Despite these limitations,

the model presents some useful findings in the modeling of the

different waves of COVID-19.
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