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Introduction: In the Philippines, scheduling the COVID-19 vaccine rollout has

been a challenging task. The local government units (LGUs) have to carefully

work with limited resources to avoid underutilizing vaccines while considering

prioritization schemes in the rollout. As the country continues to vaccinate its

population to manage the spread of COVID-19, planning the prioritization of

individuals becomes more apparent in the vaccination rollout with respect to the

COVID-19 situation in their respective areas.

Methods: Our study develops a location-allocation model that aims to optimally

schedule the COVID-19 vaccine rollout of a municipality. Here we applied the

analytic hierarchy process (AHP) to determine the prioritization of communities

(i.e., barangays) in the vaccine rollout based on the number of COVID-19 cases,

the population density, and the proximity of the community to the available

vaccine sites. Consequently, an integer programming (IP) model was formulated

to determine the assignment of individuals to the vaccine stations with respect to

the prioritization of their community in the rollout, as well as theminimumnumber

of vaccine stations to open.

Results and discussion: The AHP-based IP model proposed in this study not

only assigns individuals to vaccination centers, but is also capable of tailoring

the vaccine rollout to prioritize individuals depending on the preferences of the

LGUs, and the COVID-19 situation in their areas. Furthermore, the vaccine rollout

framework in this work is applicable to other vaccine-preventable diseases (e.g.,

rabies, measles, etc.) should LGUs embark on adapting this approach.
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Analytical Hierarchy Process, integer programming, local government units, optimal
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1. Introduction

The Coronavirus Disease 2019 (COVID-19) has spread rapidly

across the globe since its first identified case in Wuhan, Hubei

Province, China [1]. The disease has affected millions of people

and imposed an unprecedented burden on global healthcare

systems and economies. As of June 2022, the World Health

Organization [2] has confirmed over 541 million cases and 6.3

million deaths globally. The initial response to this pandemic

involved strict implementation of repression strategies, such as

case identification, quarantine and isolation, contact tracing, and

social distancing [3]. Much research has been geared toward

projecting the impact of COVID-19 to healthcare and the economy

[4, 5], and how the pandemic situation would behave given the

interventions that are currently available [6, 7]. Research does show

that non-pharmaceutical strategies are effective in preventing the

propagation of COVID-19. However, it still does not reduce the

number of susceptible individuals [8, 9].

It has been proven that integrating vaccines with good

adherence to non-pharmaceutical interventions lead to a significant

decrease in disease outcome [10]. Over the years, vaccines have

proven their efficacy in combating outbreaks including COVID-

19 [11, 12]. Global production of COVID-19 vaccines reached 12

billion doses at the end of 2021 [13], Only 58 of the WHO’s 194

Member States attained the 70% target as of June 2022, and just 37%

of healthcare in low income countries achieved a complete course

of primary vaccination [14]. With other areas having more supply

than the others, inequitable access to vaccines is likely the single

most important factor in the uneven recovery of COVID-19. Less

than 10% of people in low-income countries have received at least

one dose of vaccine [15] compared to about 80% in countries with

high income [16].

The Philippines had its first vaccination against COVID-19 in

March 2021 [17], and as of June 2022, ∼69.52 million Filipinos

were fully vaccinated against the COVID-19 virus [18]. Vaccines

are delivered to the country by batches which are deployed to

specific geographical areas based on the burden of COVID-19

cases. The Philippine government has established the Approved

Prioritization Framework of the National COVID-19 Vaccine

Deployment Plan to assure the public that all individuals are

vaccinated. Moreover, in the identification of geographical areas,

the National Immunization Technical Advisory Group (NITAG)

set the indicators in determining the areas with a high burden of

COVID-19 cases [19]. These indicators include: (1) the number

of active cases and (2) the attack rate per 100,000 individuals in

the recent 4 weeks. The country’s Department of Health (DOH)

calculates the attack rate using the total newly reported cases in the

recent 4 weeks divided by the region’s 2021 projected population

and a multiplier of 100,000 population [19].

According to the Philippine National Deployment and

Vaccination Plan for COVID-19 Vaccines, the manner of the

distribution of vaccines will depend on the storage requirements

specific to each vaccine [20]. The Centers for Health Development

of DOH are set to deliver the vaccines to LGUs in coordination

with logistics partners and other government agencies. Eligible

populations for specific vaccines will be called from the main list

and accessed by the appropriate personnel.

The current vaccine allocation strategy of the Philippine

government may work well with the limited number of vaccines.

However, in the event when the supply of COVID-19 vaccines is

large to cater the targeted country’s population for herd immunity

(i.e., 50–70 million), there are logistical concerns and other

factors that must be taken into consideration such as shortage

of manpower administering the vaccines [21], underutilization

of vaccines resulting in their wastage, and supply-demand gap

due to an individual’s vaccine brand preference. Furthermore,

although both of NITAG’s indicators are effective in determining

the prioritization of Philippine regions in the vaccination rollout,

the second indicator may not be effective for smaller communities

inside municipalities whose population is <100,000. The schedule

of vaccination can also affect the daily operations of the

general public [22]. To incorporate the aforementioned logistical

considerations, we developed a decision support system (DSS) that

implements an Analytical Hierarchy Process (AHP)-based Integer

Programming model decision tool in the context of the COVID-19

vaccine rollout of a municipality.

In this paper, we view the vaccine rollout situation as a

location-allocation problem [23] where we determine the optimal

assignment of target individuals of communities to these vaccine

stations in order to meet their demands [24]. Since the problem has

multiple objectives, we consider an integer programming approach

for solving location-allocation models [25, 26].

It can be said that Integer Programming is a well-known

approach for solving location-allocation problems [25, 27].

However, in the context of allocating COVID-19 vaccine vials to

vaccination centers, we are faced with a problem where limited

resources (vaccines) have to be distributed to multiple locations,

and then to communities, each having a priority level in the

vaccination rollout. While IP can accommodate limited resources

to reach an optimum solution, in making decisions for the

prioritization of individuals to be vaccinated and for specifying

the ranks of the considered communities in terms of resource

allocation, we employed the AHP decision tool [28], a widely-used

multi-criteria decision model used to derive prioritization weights

for alternatives in a hierarchy of criteria. The AHP reduces complex

decisions to a series of pairwise comparisons, and by doing so,

both subjective and objective aspects of a decision are captured.

In addition, it incorporates a useful technique for checking the

consistency of the decision maker’s evaluations, thus reducing the

bias in the decision-making process. This approach is suitable

because it allows decision makers to model in a hierarchical

manner the relationships among the decision makers with complex

problems, the ultimate goal of the problem, criteria, subcriteria and

the alternatives [29]. With this fact, it can be seen that the AHP can

be easily implemented with other optimization methods, such as

the mixed integer programming, to make optimal decisions.

We took a step further in this study by developing a decision

support system (DSS) [30], with a user-friendly interface where the

end-user, that is, the LGUs, may collect insights on the allocation of

their residents to the vaccination centers in their area.
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FIGURE 1

Hierarchy structure of the AHP model in determining the prioritization of communities in the vaccination roll-out where the top level is the goal, the

second level represents the criteria, and the bottom level are the alternatives.

TABLE 1 The scale of relative importance in giving judgments for pairwise

comparisons in AHP.

Scale of relative importance

1 Equal importance

3 Moderate importance

5 Strong importance

7 Very strong importance

9 Extreme importance

2,4,6,8 Intermediate values

1/3,1/5,1/7,1/9 Values for inverse comparison

2. Materials and methods

2.1. Prioritizing communities using analytic
hierarchy process (AHP)

To determine the prioritization among communities in the

vaccination rollout, we first determine the selection criteria for

prioritizing the communities since the LGUs of municipalities

cannot vaccinate the entire population simultaneously due to

limited resources and other constraints. We define communities

as the smallest governing agencies for government function, and

constitute the base of citizen participation. In the Philippines, we

call these communities barangays [31].

The criteria considered in the prioritization of communities for

vaccination rollout are labeled as Cases, Density and Distance. As

the pandemic spreads, communities which are most vulnerable to

the virus must be prioritized [32]. The Cases criterion refers to

the number of COVID-19 positive cases in the community. The

second criteria, Density, refers to the population density of the

community, or the number of residents residing in the community.

Lastly, Distance is considered in the aim of providing convenience

to the individuals who are to be vaccinated [33, 34].

An AHP hierarchy structure for the decision problem is then

developed. The overall goal is to determine which community

is to be prioritized, with the three criterias in the second level

of the hierarchy and the set of alternatives, the communities, in

the lowest level of the hierarchy, as presented in Figure 1. With

the determined criteria and alternatives, we performed pairwise

comparisons between criteria and direct comparisons between each

alternative with respect to each criterion.

2.1.1. Pairwise comparison matrix between
criteria

Using Saaty’s fundamental scale of absolute numbers in Table 1,

the decision maker is to score the pairwise comparison by

expressing his preference between each pair of criteria. This

fundamental scale enables the decision-maker to incorporate

experience and knowledge intuitively and indicate how many

times a criterion dominates another with respect to the criterion’s

importance to the consideration of communities for prioritization

in the vaccination rollout such that for the pairwise comparison

matrix of criteria, A = [aij], aij is defined by the pairwise

comparison score of criterion i when compared criterion j.

The numerical values 9, 7, 5, 3, 1 are translated into descriptive

preferences respectively, with 2, 4, 6, and 8 as intermediate

values for comparisons between two successive judgements.

Reciprocals of these values are used for the corresponding

transposed judgements [35]. After the normalization of the

pairwise comparison matrix, the averages of the columns are taken

to produce the preference vector.

That is, if A = [aij] is the pairwise comparison matrix

between criteria,

Âij =

[

aij
∑

i aij

]

=

[

âij

]

is the normalized form. Then, the preference vector Vi =

[

∑

j âij
m

]

where m is the dimension of the matrix A. The vector, V , contains

eigenvalues that correspond to the ranking (weights) of the criteria

in terms of contribution to the decision of which community

to vaccinate.
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FIGURE 2

General system architecture of the decision support system.

2.1.2. Direct comparison between alternatives per
vaccination site

In AHP, the alternatives, i.e., communities, are compared with

each other with respect to each criteria in order to determine

the ranking of each community in terms of population density

(Density), number of active COVID-19 cases (Cases) and the

distance of the community to vaccination site k (Distance). The

elements of the direct data matrix for the communities with respect

to the alternatives, say Bij =

[

BiDensity, BiCases, BiDistance(k)

]

,

where i is the community and j is the criteria, is defined as follows:

biDensity = the population density of community i

biCases = the number of active COVID− 19 cases in community i

biDistance(k) =
1

the euclidean distance (in km) of community i to vaccination site k
.

Notice that b
iDistance(k)

holds values that are reciprocal of the actual

data. It should be noted that as the distance of community i

to vaccination site k increases, the less likely community i is

prioritized in the vaccine rollout of vaccination site k. Taking the

reciprocal of the actual distance data is done to account for the

indirectly proportional relationship of the “Distance” criteria to the

prioritization of communities in the vaccine rollout.

2.1.3. The prioritization matrix of communities for
vaccination

The prioritization matrix, Wk
i , also called the prioritization

vector, is a single column matrix whose elements correspond to

the prioritization score of community i in the vaccination rollout

of vaccination site k. That is, for a preference vector, V , and the

normalized direct data matrix, B̂,

Wk
i = B̂ × V = [wk

i ].

2.1.4. Consistency ratio
We take into consideration that comparisons made by the

decision-maker may not be consistent. In order to verify the

consistency of the pairwise comparison matrix, we utilize Saaty’s

[30] proposed consistency index (CI) and consistency ratio (CR)

defined as follows:

CI =
λmax − m
(m−1)

(1.1)

CR = CI
RI (1.2)

where,

RI = the average consistency index for numerous random

entries of same order reciprocal matrices,

λmax = principal eigenvalue of the pairwise comparisonmatrix,

m= order of the pairwise comparison matrix.

The value of λmax is obtained by first multiplying the pairwise

comparison matrix, Aij, with the preference vector for the pairwise

comparison matrix between criteria, V . By performing element-

wise division between the resulting matrix and the preference

vector, a single column vector is obtained and the average of

the elements gives the value of λmax. For the inconsistency to be

acceptable, the CR must be ≤10%. If the CR is >10%, revision of

the pairwise comparison matrix is advised.

2.2. Integer programming model

With the purpose of maximizing the individuals to be

vaccinated with respect to their prioritization, an integer

programming model is formulated. We now define the following

decision variables and parameters in the model as follows:

wij = AHP-derived prioritization weights of community i at

vaccine station j,

xij = number of individuals to be vaccinated in community i at

vaccine station j in day d of the vaccination period,

Cj = capacity of vaccine station j in a day,

V = total number of available vaccines of the

vaccination period,

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2023.1140434
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Culaste et al. 10.3389/fams.2023.1140434

FIGURE 3

The front-end flow chart of the web application DSS.

d = total number of days of the vaccination period,

Ti = total target number of individuals to be vaccinated in the

vaccination period.

To formulate the vaccination rollout as an IP problem, we

consider the objective functionZ as the weighted sum of individuals

to be vaccinated. Note that the AHP-derived weights wij ǫ [0,

1] describe the prioritization of community i in vaccination site

j. The higher the value of wij, the more prioritized community

i is in the vaccination rollout of vaccination site j. Thus, our

objective function, Z, aims to maximize the allocation of people for

vaccination according to priorities.

With the above model assumptions, we write below the IP

model that maximizes the prioritization of individuals to be

vaccinated given the set constraints.

Max Z =
∑n

i=1

∑m

j=1
wijxij
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FIGURE 4

The back-end flow chart of the web application DSS.

subject to:

∑m
j=1 xij ≤ Ti (target individuals constraint) (2.2)

∑n
i=1 xij ≤ Cj (vaccine station capacity constraint) (2.3)

∑n
i=1

∑m
j=1 xij ≤ V (vaccine supply constraints against total number of individuals for vaccination) (2.4)

V ≤ d
∑m

j=1 Cj (vaccine supply constraints against total capacity of vaccination sites) (2.5)

xij ≥ 0 , xijǫ Z
+ (non− negative integer constraint) (2.6)

To control the number of individuals to be vaccinated from

community i, the target individuals constraint (Equation 2.2) is

constructed. As each community has a target number of individuals

to be vaccinated (Ti), this constraint directs the model to assign

individuals from community i in a manner where the total assigned

individuals does not exceed Ti.

Every identified vaccination site has a declared daily capacity

(Cj). This capacity describes how many individuals vaccination site

j can accommodate in a day. The vaccine station capacity constraint

(2.3) limits the total number of xijs assigned to vaccination site j at

any given day so that it does not exceed the capacity of vaccination

site j. Thus, the model can guarantee that the vaccine stations can

accommodate all the individuals assigned.

On the other hand, the vaccine supply constraints against total

number of individuals for vaccination (2.4) checks if the number

of people to be vaccinated to be lesser than the vaccine supply.

Additionally, this model addresses the underutilization of the

vaccine supply leading to the wastage of vaccines. To ensure that the

vaccine supply is exhausted by the end of the vaccination rollout,

constraint (2.5) is formulated. The right hand side of this constraint

is the total of the capacities of the vaccination sites throughout the

number of days the rollout is scheduled. By constraint (2.2), this

means that constraint (2.5) demands the vaccine supply for the

entire vaccination rollout to not exceed the maximum number of

individuals the vaccination rollout can accommodate.

In the context of vaccine distribution, it is only logical to impose

into the model that the values assumed by the xijs be integers. As

xij represents the number of people to be vaccinated, it is neither

possible to vaccinate a negative number of people nor a fraction of

a person.
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Ultimately, the AHP-IP model is implemented in a website-

based decision support system (DSS) designed to aid the LGUs

in their allocation of COVID-19 vaccines in their respective areas

of jurisdiction.

2.3. Model validation

To verify the accuracy of the AHP-IP model developed in this

study, AHP calculations were also made in SuperDecisions while

the IP model was implemented using Excel Solver. We conclude

that the DSS is accurate when the results of the DSS and the tools

used for model validation formulation are identical.

2.3.1. Validation of the AHP results
To validate the preference vector, V , the CR of the pairwise

comparison matrix between criteria, and the prioritization matrix,

Wk
i , we make use of SuperDecisions (v3.2), a software developed by

Adams and Saaty [36] which implements the AHPmethodology for

decision making. SuperDecisions enables users to establish clusters

to represent a hierarchy level, and then in-cluster nodes, which are

representatives of the items within the hierarchy level. The process

of obtaining the V and the CR of the pairwise comparison matrix

between criteria in SuperDecisions is as follows:

Step 1. In the Network tab, create “Goal,” “Criteria,” and

“Alternatives” clusters. These clusters represent levels of

the hierarchy.

Step 2. Inside each cluster, we add nodes. Nodes are

representatives of the elements inside each level of hierarchy.

For example, in the Goal cluster, add a node and name

it “goal.” Nodes that correspond to the AHP criteria

Density, Cases and Distance should also be created in the

“Criteria” cluster. The “Alternatives” cluster should hold

nodes that correspond to the communities considered in the

vaccination rollout.

Step 3. We specify interactions between nodes by building

connections. Thus, we connect every criteria to the goal, and

then every alternative to each criterion. Connections inform

SuperDecisions that Density, Cases, and Distance are the

factors being ranked in terms of their contribution to the

goal, and that the alternatives are the elements being ranked

per criterion.

Step 4. In the Judgments tab, score the pairwise comparison

matrix between criteria using the scores set by the decision-

maker. Completing this step allows SuperDecisions to

generate the preference vector, V , and the CR of the pairwise

comparison matrix between criteria.

Step 5. To conduct direct comparisons, choose “Direct” on the

judgment modes of the Judgment tab. Populate the tables for

each criteria using the values of Bij.

Step 6. From the “Show Priorities” option in the Information

Panel, the prioritization matrix,Wk
i , is found.

It is important to note that while SuperDecisions is a powerful tool

for the AHP, the software rounds off digits to five decimal places.
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Thus, the values obtained in SuperDecisions may slightly deviate

from the values calculated by the DSS.

2.3.2. Validation of the IP model results
For the validation of the IP model, we utilize Solver, an analysis

utility tool built in Microsoft Excel [37]. The data and formulas

that comprise the parameters of the model are assembled in Excel

Spreadsheets, while the objective function as well as the constraints

that bound the model are set up using the Solver Parameters

dialog box.

2.4. Decision support system

Decision Support Systems (DSSs) are designed to improve

decision making effectiveness, especially on aiding complex tasks

that require a high level of decision making [38]. In this

study, a DSS was developed with the aim of providing LGUs a

readily available tool for scheduling the vaccine rollout of their

municipality. This Vaccination DSS is an online web application

that implements this study’s proposed AHP-IP model, and is

designed to be user-friendly. This section introduces the general

system architecture and flow chart of the Vaccination DSS.

2.4.1. General system architecture of the
vaccination DSS

The General System Architecture of the Vaccination DSS

involves three main components, i.e., LGU users, the Vaccination

Rollout DSS, and Amazon Web Services (AWS) Data Lake, as

shown in Figure 2.

The LGU user is in charge of the necessary inputs required

by the Vaccination DSS in order to create a vaccine rollout

schedule. These inputs are: vaccination rollout details, AHP

pairwise comparison scores, and the individuals and vaccination

site masterlists (see Supplementary Data Sheets 1, 2 for an example

of the masterlists). When input requirements are successfully

complied to, the Vaccination DSS processes the data and

implements the AHP-IP model for optimization, and later on,

submits a Portable Document Format (pdf) containing the

generated vaccine rollout schedule.

In itself, the Vaccination DSS is composed of two parts:

the Front-End/Graphical User Interface and the Back-end.

The Front-End was developed using CodeIgniter Framework.

Codeigniter is a PHP framework used to create a full-featured

web application [39]. In order for the AHP-IP model to

be integrated in the DSS, we created the Back-end of the

DSS using Python, and utilized its PuLP library. PuLP is a

Linear Programming modeler written in Python to solve linear

problems [40].

Lastly, AWS Data Lake, a centralized repository created by

Amazon, serves as the database repository and the virtual machine

where the proposed system is hosted. Information pertaining to the

communities’ distance to all the identified vaccine stations, their

number of active COVID-19 cases, and their population density are

stored in our database.

2.4.2. Web application DSS flowchart
Based on the General System Architecture in Figure 2, the step-

by-step flowchart of the system is divided into two parts: the Front-

End flowchart and the Back-end flowchart as shown in Figures 3,

4 respectively.

The Web Application DSS starts from the input of the user in

the first form page, where preliminary details including the vaccine

brand, vaccination rollout start date, total number of vaccine vials

available, number of doses per vial, and target number of days are

required. The user will then score the AHP matrix of criterias to

determine the prioritization of each community in the vaccination

stations. While the user may score the AHP pairwise comparison

matrix manually, we present four scenarios in the prioritization

of communities as presets to aid in the judgments and for the

convenience of the LGUs. The LGUs may choose to implement any

of these presets depending on their preferences, and the COVID-19

situation in their areas. From these decisions, the values for wij of

the IP model are derived.

Table 2 shows the preset pairwise scores of the 4 scenarios under

consideration. Particularly, in the event that the LGU considers all

criteria to be equally important, the LGU may choose Preset 1.

Under the “All Equal” column of Table 2, all pairwise comparisons

are scored one (1) as no criterion is favored over another. The

second scenario considers the Cases criterion to have very strong

importance, whose pairwise comparison score can be viewed under

Preset 2. As it is highly favored over all the other criterias, a score

of seven (7) is given to Cases and 1/7 for its inverse value. The

third and fourth scenarios consider Density (Preset 3) and Distance

(preset 4) to have strong importance respectively and follow the

same scoring process as the second scenario.

It is also worth noting that the option to proceed to the next

page is only available when the Consistency Ratio (CR) is <10%. If,

for instance, the decision-maker’s manual scores are inconsistent,

a text instructing the user to review the score is displayed. After

successfully scoring the AHP matrix, the user will be asked to

upload the Target Individuals Masterlist and Vaccine Stations

Masterlist. The Target Individuals Masterlist contains all the names

of the individuals to be vaccinated, including some of their personal

information. The Vaccine Stations Masterlist, on the other hand,

contains all the available vaccine stations in the vaccination rollout

including their capacity per day and location coordinates. These

masterlists are processed for file checking in a python script

to check for errors in the data specially, on missing columns,

format errors and blank cells. In the event that the algorithm

detects errors in the masterlists, these errors are displayed and the

option to proceed is disabled until such errors are addressed. Once

clear of errors, the system examines the combined capacities of

the vaccination sites to determine if it is sufficient to cover the

vaccination of the target individuals within the expected timeframe.

If it is insufficient, the system prompts the user to identify more

vaccine stations. On the other hand, if the combined capacities

of these vaccination sites is sufficient, the user is forwarded to a

summary page where he is required to verify the accuracy of his

inputs. Completing these steps redirects the user to a loading screen

while the Vaccination DSS Back-end process generates the result.

In the Back-end, the Python Script of the system obtains

the vaccination details via the HTTP POST request form sent
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TABLE 3 Profile of communities in municipality Z with respect to the vaccination sites.

Community name Density (sq. km) Number of active cases Distance to

VS A VS B VS C VS D

Community 1 360 64 3.56 9.44 10.41 17.25

Community 2 271 54 7.7 4.05 10.8 14.78

Community 3 735 44 16.28 13.61 9.6 2.85

Community 4 631 88 9.89 2.25 9.3 10.76

Community 5 583 34 3.56 6.8 3.19 10.22

Community 6 307 27 8.44 7.51 2.23 5.18

Community 7 709 113 10.35 12.32 4.65 7.73

Community 8 580 5 13.37 8.72 7.95 3.26

Community 9 597 71 15.83 17.22 9.77 8.88

Community 10 690 41 14.48 13.95 7.73 5.09

FIGURE 5

Screenshots of the form pages of the vaccination decision support system. (A) First page, (B) Second page, (C) Third page, and (D) Fourth page.

by the Front-End and parses the Target Individuals Masterlist

and Vaccine Sites Masterlist and stores the data in the pandas

data type variable. The python package, pandas, is used in

reading CSV files for real-world data analysis [41]. After storing

the data from the masterlists, the prioritization of communities

from the Target Individuals Masterlist is calculated based on

the AHP weights provided by the user scores. Consequently,

parameters and variables needed in the IP model are populated,

based on the preliminary details provided by the user. When

all the necessary parameters and variables are complete, the

IP model is then run using the PuLP library in Python. The

PuLP library generates results, and the system interprets these

to determine if the remaining number of vaccines is equal to

zero. Otherwise, the system will recalibrate the model and deduct

the allotted vaccines from the recent result. After the deduction

and recalibration, the system will then run another optimization

process to produce the next day’s result. When the number

of vaccines reaches zero, the system will proceed to create the

whole schedule masterlist based on the results given by the

PuLP library.
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FIGURE 6

Screenshot of the vaccine rollout schedule generated by the vaccination decision support system for municipality Z.

2.5. Sensitivity analysis

Given that vaccine rollouts involve limited resources, it may

be beneficial to understand how the model behaves and how the

outcomes would vary if these limited resources were increased or

decreased. We therefore inspect the sensitivity of the distribution

of xij per community, and then per vaccination site to the percent

changes in the number of target individuals, capacity of vaccination

sites and total number of vaccine doses available. It should be noted

that the upper and lower bounds of these percent changes are

determined by the constraints of the model.

3. Results and discussions

To demonstrate the use of the DSS, we considered a sample

small Municipality Z whose decision-maker aims to vaccinate

3,825 individuals from 10 of its communities. Municipality Z

has four functioning vaccination stations which are labeled as

VS A, VS B, VS C, and VS D. The population density of each

community, its number of active laboratory-tested COVID-19

positive cases, and its distance from the four vaccine stations

are uploaded to the database of the DSS and are presented

in Table 3.
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TABLE 4 Ranking communities based on their AHP-derived prioritization

scores in the vaccination rollout of vaccine stations as derived from the

back-end computations of the vaccination DSS.

Ranking of communities in the vaccine rollout of
vaccine stations

Rank VS A VS B VS C VS D

1 Community 1 Community 4 Community 6 Community 2

2 Community 5 Community 3 Community 5 Community 8

3 Community 7 Community 5 Community 7 Community 10

4 Community 3 Community 7 Community 4 Community 6

5 Community 4 Community 6 Community 10 Community 7

6 Community 6 Community 1 Community 9 Community 9

7 Community 9 Community 8 Community 2 Community 4

8 Community 10 Community 2 Community 8 Community 5

9 Community 2 Community 10 Community 1 Community 3

10 Community 8 Community 9 Community 3 Community 1

The DSS is hosted on a five-page website, the first four of which,

as stated in Section 2.4 and as seen on Figure 5, are form pages

that require decision-makers to input information and submit data

in the form of Excel Spreadsheets. The last page, on the other

hand, presents the generated optimum vaccine rollout schedule. On

the second page, the decision-maker must then perform pairwise

comparisons for the prioritization of communities using Saaty’s

fundamental scale of absolute numbers. In this example, the

decision-maker considers Preset 4 (see Table 2) where Distance is

deemed to have very strong importance. Note further that Preset

4, along with the remaining presets, has a consistency ratio below

10%, as indicated in Table 2.

As for the Target IndividualsMasterlist and the Vaccine Stations

Masterlist required in the third page, the decision-maker may

download the template files directly from the page and then

upload them once all of the necessary information is entered. The

Target Individuals Masterlist and the Vaccine Stations Masterlist

of Municipality Z are shown in Supplementary Data Sheets 1, 2.

Furthermore, the right side of the Masterlist Page displays a panel

that features the error-checking functionality, and confirms that the

information inputted by the decision-maker is consistent.

With all the parameters needed for the AHP-IP model to run

set, the decision-maker is forwarded to the summary page where all

the information submitted in the previous pages is compiled. The

decision-maker may then select the “Create Vaccination Schedule”

button at the bottom part of the page. This action prompts the DSS

to generate the vaccine rollout schedule.

With reference to Figure 6, the Vaccine Rollout Schedule

document generated by the DSS for Municipality Z has successfully

assigned all individuals of the communities to the vaccination

stations in a 2-day timeline, without violating any of the constraints

set in the AHP-IP model. In both Day 1 and Day 2 of the

vaccine rollout, the number of individuals assigned for vaccination

in all vaccine stations did not exceed capacity and the target

of each community in terms of vaccinated individuals has also

been satisfied. Additionally, the number of individuals assigned for

vaccination did not exceed the municipality’s number of available

vaccine doses.

Notice, however, that Communities 3, 7, 9, and 10 still have

individuals scheduled for vaccination on the 2nd day. This can be

explained by taking a closer look at Table 4.

As the DSS is running on the premise of AHP pairwise

comparison Preset 4 where distance is considered to have very

strong importance in choosing which community to prioritize in

the vaccine rollout, this outcome is expected since Communities

3, 7, and 9 are all significantly farther from any of the vaccination

sites compared to the other communities, and thus ranks

low in the prioritization for vaccination. On the other hand,

while Community 10 is considerably ranked higher in VS D,

Communities 2 and 8 have already exhausted the vaccination

site’s capacity for the first day. It is for the same reason that the

residents of Community 1 are assigned to be vaccinated at VS A.

Table 3 shows that among the 10 communities, Community 1 is

the closest community to VS A along with Community 5. It is not

surprising that VS A is assigned to vaccinate the entire population

of Community 1 and only some of the residents of Community 5

since (1) VS A has a limited capacity of 350 individuals per day, and

(2) VS A is the closest vaccination site to Community 1 compared

to the remaining 3 vaccination sites.

In contrast, while Community 7 is located close to VS C, only

a small percentage of its residents are assigned to be vaccinated

on the first day. This is the case because VS C only has a daily

capacity of 800, and the 495 target individuals of Community 6 and

the remaining 115 individuals of Community 5 were given higher

priority than the target individuals of Community 7. As a result, the

remaining residents of Community 7 who were not vaccinated on

the first day are scheduled on the second day instead.

The Vaccination DSS was able to limit the number of people

assigned at vaccine sites so that it does not exceed capacity by

forwarding target individuals of less prioritized communities to the

second day of vaccination. These results tell us that the Vaccination

DSS proposed in this study was able to optimally schedule the

vaccine rollout of a municipality by assigning individuals to

vaccination sites without violating constraints, while also taking

into account prioritization of communities as determined by

the LGU.

It is also interesting to look into the results of the model when

there are alterations to the initial values of some parameters. This is

in view of the fact that in reality, a municipality may have multiple

vaccination rollouts over the course of a pandemic. The LGU may

opt to start and end a vaccination campaign depending on the

extent of the COVID-19 pandemic in their area, the availability of

the facility that will serve as their vaccination site, and the number

of vaccines allocated by national authority to their municipality,

Most of the time, the number of target individuals, the capacities

of vaccination sites, and the number of available vaccine doses

varies per vaccination rollout. Thus, the behavior of the model in

response to changes to one of these parameters is covered in the

following subsections.
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FIGURE 7

Visual representations of the sensitivity of the model to changes in the number of target individuals, with a table showing the parameters used per

run. (A) The number of individuals vaccinated per community, per percent change in the number of target individuals. (B) The number of individuals

assigned for vaccination per vaccine station, per percent change in the number of target individuals (left to right: Day 1, Day 2).

3.1. E�ects of changes in amount of target
individuals

We first inspect the sensitivity of the distribution of xij per

community, and then per vaccination site to the percent changes

in the number of target individuals. In summary, when the

total number of target individuals is greater than the combined

capacities of the vaccination sites, the model focuses on vaccinating

communities with higher priorities. For example, after Ti = −40%

change in Figure 7A, the number of individuals scheduled for

the first day of vaccination from community 9 decreases. This is

because the total capacity of the vaccination sites is not enough

to accommodate all the target individuals on the first day. This

forces the model to impose prioritization, and determine which

communities to vaccinate first according to the prioritization scores

set by the AHP.

However, Day 1 results show that the number of

individuals vaccinated in community i is directly proportional

to Ti when target individuals are lesser than or equal to

the capacity. This is expected since when all the target

individuals can be catered to within a single day, the model

does not have to enforce prioritization on the residents of

the communities.

From Figure 7B, we notice that when the closest vaccination

sites’ capacities are exhausted, the model forwards the remaining

target individuals to the closest available vaccination site. This

explains the sudden increase in the number of assigned individuals

for vaccination in VS C. When the capacities of VS D and VS B are

completely occupied, some of the individuals that VS D and VS B

can no longer cater to are forwarded to VS C.

3.2. E�ects of changes in vaccination site
capacity

In reality, vaccine station capacities may vary on a day-to-

day basis depending on the availability of human resource and

storage equipment, among others. It may be beneficial for decision-

makers to understand how the target individuals are distributed

when the capacity of the vaccination sites increase and decrease.

When vaccination sites have low capacities, Figure 8A suggests that

individuals of communities with low prioritization scores may not
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FIGURE 8

Visual representations of the sensitivity of the model to changes in the capacity of vaccine stations, with a table showing the parameters used per

run. (A) The number of individuals vaccinated per community, per percent change in the capacities of vaccine stations. (B) The number of individuals

assigned for vaccination per vaccine station, per percent change the capacities of vaccine stations (left to right: Day 1, Day 2).

be vaccinated on the first day of the rollout, as indicated by the trend

in the number of individuals for vaccination from communities 3,

7, 9, and 10.

In addition, decision-makers may also wish to accelerate the

vaccination of persons from these low-priority communities at

times. In Figure 8A, we notice that when a non-highly prioritized

community’s closest vaccination sites’ capacities are exhausted,

the model forwards its target individuals to the closest available

vaccination site. This explains the sudden increase in the number of

assigned individuals for vaccination in VS C. When the capacities

of VS D and VS B are completely occupied, Figure 8B suggests that

some of the individuals that VS D and VS B can no longer cater to

are forwarded to VS C.

This shows that while the vaccination of individuals from

highly-prioritized communities are not sensitive to changes in

the capacities of the of the vaccination sites, the communities

with lower priorities are only vaccinated on the first day of the

rollout when highly prioritized communities are already catered

to. For the vaccine rollout to reach low priority communities

fast, we suggest that they either identify more vaccination

sites that are close to these communities, or increase the

capacity of the existing sites by increasing human resources and

seating capacities.

3.3. E�ects of changes in amount of
vaccine doses available

When the total number of available vaccine doses surpasses the

combined capacity of the vaccination sites, it is noteworthy that

both the number of individuals vaccinated from each community

and at the vaccination sites reaches a plateau, as demonstrated

in Figures 9A, B, respectively. This means that if the decision-

maker wishes to expedite vaccination of the target individuals

in this rollout, increasing the vaccine supply is not enough to

speed up the distribution. The LGU must also increase the total

capacity of vaccine stations, either by increasing the capacity of

already existing vaccine stations or by constructing or identifying

additional vaccine stations.

The closer the values
∑

Ti,
∑

Cj and V are to each other, the

more likely it is to have a speedy and a more efficient vaccination

rollout. While an excess in vaccine doses does not affect the
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FIGURE 9

Visual representations of the sensitivity of the model to changes in the amount of available vaccine doses, with a table showing the parameters used

per run. (A) The number of individuals vaccinated per community, per percent change in the total number of vaccine doses available. (B) The number

of individuals assigned for vaccination per vaccine station, per percent change the total number of vaccine doses available (left to right: Day 1, Day 2).

speed of the vaccine rollout, this must be avoided so as to not

underutilize this resource. Should this event be unavoidable, it

is recommended that the decision-maker identify more target

individuals or forward the excess to neighboring municipalities

who are in need of additional vaccine doses for their own

vaccination rollout.

3.4. Validation results

There is no significant difference in the results produced by the

Vaccination DSS from those obtained through SuperDecisions and

Excel Solver. With reference to Supplementary Table 1, the daily

schedules of vaccination as well as allocation of target individuals

to vaccination sites are identical. Supplementary Table 2 also shows

that the difference between the prioritization scores computed by

the DSS and SuperDecisions is <0.0010%. This outcome confirms

the accuracy and reliability of the implemented AHP-IP model in

the Vaccination DSS.

4. Conclusion

Scheduling the COVID-19 vaccine rollout involves subjective

and objective information, as decision-makers must work with

limited resources while also taking into account the particular

COVID-19 scenario in their areas. In this paper, we presented

a location-allocation model using the Analytic Hierarchy Process

and Integer Programming that optimally schedules the COVID-19

vaccine rollout of a municipality. Through the domain expertise of

the decision-maker, the prioritization of target individuals in the

vaccine rollout are scored using AHP. These prioritization scores

are interpreted as weights, and are incorporated into the IP model’s

objective function.

The methodology is implemented in a website-based decision

support system that provides decision-makers of LGUs a

straightforward and easily accessible tool for scheduling the

COVID-19 vaccine rollout in their areas. It is also noteworthy

that the methodology undertaken in this study may be modified

to fit the vaccination rollout of other vaccine preventable and
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vaccine curable diseases. This DSS replaces conventional and time-

consuming manual decision-making processes with a model based

on operations research that is systematic and consistent even when

confronted with the unique COVID-19 situation of a municipality.

While this study provides valuable insights, it is important to

note that there are certain limitations that should be considered

when interpreting the results. For one, the decision for choosing

the criteria of the AHP model presented in this study came

from consultations with LGUs of the Philippines who mostly

oversee rural and urban areas in the Mindanao regions of

the Philippines. Implementing this model to highly-urbanized

areas may require consideration of other factors aside from

the existing criteria mentioned. Likewise, the authors of this

study recommend that future research endeavors in this area

consider including in the model a shortest-path algorithm for

determining the actual distance between the communities and

vaccination sites, particularly if actual roads and paths are taken

into account.

In addition, as this study only focuses on determining the

prioritization of communities, it might be interesting to extend

the AHP framework of the model to include individual-specific

prioritization. Lastly, this study addresses vaccine deployment from

vaccination sites. The overall success of the vaccination campaign is

still dependent on other epidemiological contexts.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

Conceptualization and methodology: RN, HC, NT, ZL, and

MM. Software, resources, data curation, and writing—original

draft preparation: HC and NT. Formal analysis: RN, HC, MM,

and ZL. Writing—review and editing: HC, NT, HL, RN, MM,

and ZL. Visualization: HC, NT, and ZL. Supervision, project

administration, and funding acquisition: RN, MM, and ZL.

All authors have read and agreed to the published version of

the manuscript.

Funding

This work is supported by the Department of Science

and Technology through the Predictive Modeling and Viral

Phylodynamic Analysis on the Spatial and Temporal Patterns of

Disease Outbreaks with considerations for Control and Logistics

(PPASTOL) applied in Mindanao region research project under

the Niche Center in the Regions for R&D (NICER) Program on

Decision Support Systems in Health based in the University of the

Philippines Mindanao and is monitored by Philippine Council for

Health Research and Development (DOST-PCHRD).

Acknowledgments

In this work, we honor the life and memory of our beloved

colleague, Raymond Pailagao, whose brilliant mind contributed to

the formulation of the proposed AHP-IP Model.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fams.2023.

1140434/full#supplementary-material

SUPPLEMENTARY TABLE 1

Results for the assignment of individuals for vaccination as obtained from

the COVID-19 Vaccination DSS versus the results from the Excel Solver.

SUPPLEMENTARY TABLE 2

Comparison of prioritization scores of communities per vaccination site as

generated by the COVID-19 vaccination DSS and the SuperDecisions (SD)

software.

SUPPLEMENTARY DATA SHEET 1

Target Individuals Masterlist of Municipality Z.

SUPPLEMENTARY DATA SHEET 2

Vaccine Stations Masterlist of Municipality Z.

References

1. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical
characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med. (2020)
35:1545–9. doi: 10.1007/s11606-020-05762-w

2. World Health Organization. COVID-19 Weekly Epidemiological Update. Geneva:
World Health Organization (2022). Available online at: https://www.who.int/docs/

default-source/coronaviruse/situation-reports/20220629_weekly_epi_update_98.pdf?
sfvrsn=158c6adc_4&download=true (accessed August 02, 2022).

3. Kantor BN, Kantor J. Non-pharmaceutical interventions for pandemic COVID-
19: a cross-sectional investigation of US general public beliefs, attitudes, and actions.
Front Med. (2020) 7:384. doi: 10.3389/fmed.2020.00384

Frontiers in AppliedMathematics and Statistics 15 frontiersin.org

https://doi.org/10.3389/fams.2023.1140434
https://www.frontiersin.org/articles/10.3389/fams.2023.1140434/full#supplementary-material
https://doi.org/10.1007/s11606-020-05762-w
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20220629_weekly_epi_update_98.pdf?sfvrsn=158c6adc_4&download=true
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20220629_weekly_epi_update_98.pdf?sfvrsn=158c6adc_4&download=true
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20220629_weekly_epi_update_98.pdf?sfvrsn=158c6adc_4&download=true
https://doi.org/10.3389/fmed.2020.00384
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Culaste et al. 10.3389/fams.2023.1140434

4. Kumar S, Viral R, Deep V, Sharma P, Kumar M, Mahmud M, et al.
Forecasting major impacts of COVID-19 pandemic on country-driven sectors:
challenges, lessons, and future roadmap. Person Ubiquit Comput. (2021) 26:1–
24. doi: 10.1007/s00779-021-01530-7

5. Yap PA, Lachica ZP, Paras AL, Panogalinog IG, Tubay JM, Mata MA. An
agent-based model of COVID-19 dynamics during enhanced community quarantine:
exploring the role of food relief system in the presence of two SARS-CoV-2 variants.
Front Appl Math Stat. (2023) 9:13. doi: 10.3389/fams.2023.1068180

6. Alzahrani SI, Aljamaan IA, Al-Fakih EA. Forecasting the spread of the COVID-19
pandemic in Saudi Arabia using ARIMA prediction model under current public health
interventions. J Infect Public Health. (2020) 13:914–9. doi: 10.1016/j.jiph.2020.06.001

7. Arcede JP, Caga-anan RL, Mammeri Y, Namoco RA, Gonzales IC, Lachica ZP, et
al. A modeling strategy for novel pandemics using monitoring data: The case of early
COVID-19 pandemic in Northern Mindanao, Philippines. Sci Engg J. (2021) 15:35–
46. Available online at: https://scienggj.org/2022/SciEnggJ%202022-vol15-no01-p35-
46-Arcede%20et%20al.pdf

8. KimMC, Park JH, Choi SH, Chung JW. Rhinovirus incidence rates indicate we are
tired of non-pharmacological interventions against coronavirus disease 2019. J Korean
Med Sci. (2022) 37:e15. doi: 10.3346/jkms.2022.37.e15

9. Davies NG, Kucharski AJ, Eggo RM, Gimma A, Edmunds WJ, Jombart T, et al.
Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand
for hospital services in the UK: a modelling study. Lancet Public Health. (2020)
5:e375–85. doi: 10.1101/2020.04.01.20049908

10. Love J, Keegan LT, Angulo FJ, McLaughlin JM, Shea KM, Swerdlow DL, et al.
Continued need for non-pharmaceutical interventions after COVID-19 vaccination in
long-term-care facilities. Sci Rep. (2021) 11:1–5. doi: 10.1038/s41598-021-97612-w

11. Espeland EM, Tsai CW, Larsen J, Disbrow GL. Safeguarding against Ebola:
vaccines and therapeutics to be stockpiled for future outbreaks. PLoS Negl Trop Dis.
(2018) 12:e0006275. doi: 10.1371/journal.pntd.0006275

12. Zheng D, Yi Y, Chen Z. Development of live-attenuated influenza
vaccines against outbreaks of H5N1 influenza. Viruses. (2012) 4:3589–
605. doi: 10.3390/v4123589

13. International Federation of Pharmaceuticals Manufacturers and Associations.
As COVID-19 Vaccine Output Estimated to Reach Over 12 Billion by Year End and 24
Billion by Mid-2022, Innovative Vaccine Manufacturers Renew Commitment to Support
G20 Efforts to Address Remaining Barriers to Equitable Access. Geneva: International
Federation of Pharmaceuticals Manufacturers and Associations (2021). Available
online at: https://www.ifpma.org/resource-centre/as-covid-19-vaccine-output-
estimated-to-reach-over-12-billion-by-year-end-and-24-billion-by-mid-2022-
innovative-vaccine-manufacturers-renew-commitment-to-support-g20-efforts-to-
address-remaining-barr/ (accessed April 13, 2022).

14. World Health Organization. Vaccine Equity. Geneva: World Health
Organization (2022). Available online at: https://www.who.int/campaigns/vaccine-
equity (accessed September 26, 2022).

15. United Nations. UN Analysis Shows Link Between Lack of Vaccine Equity and
Widening Poverty Gap. Washington, DC: United Nations (2022). Available online at:
https://news.un.org/en/story/2022/03/1114762 (accessed April 13, 2022).

16. UNICEF. Immunization. New York, NY: UNICEF (2022). Available online at:
https://data.unicef.org/topic/child-health/immunization/ (accessed August 02, 2022).

17. Department of Health. DOH, NTF Grateful To Hospitals And Vaccinees As Ph
Inoculates 756 On First Day Of Covid-19 Vaccine Rollout. Lessburg: Department of
Health (2021). Available online at: https://doh.gov.ph/doh-press-release/DOH-NTF-
GRATEFUL-TO-HOSPITALS-AND-VACCINEES-AS-PH-INOCULATES-756-
ON-FIRST-DAY-OF-COVID-19-VACCINE-ROLLOUT (accessed April 13, 2022).

18. Business World. 70M Filipinos Fully Vaccinated Against the
Coronavirus. Little Rock: Business World (2022). Available online
at: https://www.bworldonline.com/the-nation/2022/06/19/455995/
70m-filipinos-fully-vaccinated-against-the-coronavirus/ (accessed July
29, 2022).

19. Department of Health. The Philippine National Deployment and Vaccination
Plan for COVID-19 Vaccines. Lessburg: Department of Health (2021). Available online
at: https://doh.gov.ph/sites/default/files/basic-page/The%20Philippine%20National
%20COVID-19%20Vaccination%20Deployment%20Plan.pdf (accessed July 29, 2022).

20. Asian Development Bank. Country National Vaccination
Prioritization and Allocation Plan. Washington, DC: Asian
Development Bank (2021). Available online at: https://www.adb.org/
sites/default/files/linked-documents/54171-004-ld-03.pdf (accessed July
29, 2022).

21. Naguryen A. COVID-19 Vaccine Delays Reveal a Shortage of Healthcare Workers.
New York, NY: Quartz (2021). Available online at: https://qz.com/1954675/covid-19-
vaccine-delays-reveal-a-shortage-of-healthcare-workers/ (accessed July 29, 2022).

22. Zhang C, Li Y, Cao J, Wen X. On the mass COVID-19 vaccination scheduling
problem. Comput Oper Res. (2022) 141:105704. doi: 10.1016/j.cor.2022.105704

23. Sprengholz P, Korn L, Eitze S, Betsch C. Allocation of COVID-19 vaccination:
when public prioritisation preferences differ from official regulations. J Med Ethics.
(2021) 47:452–5. doi: 10.1136/medethics-2021-107339

24. Rahman SU, Smith DK. Use of location-allocation models in health service
development planning in developing nations. Euro J Operat Res. (2000) 123:437–52.
doi: 10.1016/S0377-2217(99)00289-1

25. Namoco RA, Lago EM, Pailagao RO, Vallar JB. An integer programming
approach for patrol police allocation in an Urban City in the Philippines. Indian J Sci
Technol. (2017) 10:1–8. doi: 10.17485/ijst/2017/v10i40/119147

26. Mapa SM, da Silva Lima R. Combining geographic information systems for
transportation and mixed integer linear programming in facility location-allocation
problems. J Softw Eng Appl. (2014) 7:844. doi: 10.4236/jsea.2014.710076

27. Panjaitan DJ, Suwilo S, Opim SS. Optimization model for a location-
allocation-routing in a periodic distribution network. J Phys Conf Ser. (2019)
1255:012050. doi: 10.1088/1742-6596/1255/1/012050

28. Saaty RW. The analytic hierarchy process—what it is and how it is used. Math
Model. (1987) 9:161–76. doi: 10.1016/0270-0255(87)90473-8

29. Taskin E, Sarioglu S. The linguistic analysis of brand names with the analytic
hierarchy process and an application in Turkish biscuit market. Innov Market. (2021)
7:108–14.

30. Eom SB. Decision support systems research: current state and trends. Ind Manag
Data Syst. (1999) 99:213–21. doi: 10.1108/02635579910253751

31. Kendall SH. The barangay as community in the Philippines. Ekistics. (1976)
1:15–9.

32. World Health Organization. WHO sage roadmap for prioritizing uses of
COVID-19 vaccines. In: The Context of Limited Supply an Approach to Inform
Planning and Subsequent Recommendations Based Upon Epidemiologic Setting and
Vaccine Supply Scenarios. Geneva: World Health Organization (2020). Available
online at: https://www.who.int/docs/default-source/immunization/sage/covid/sage-
prioritization-roadmap-covid19-vaccines.pdf (accessed August 02, 2022).

33. Leithäuser N, Schneider J, Johann S, Krumke SO, Schmidt E, Streicher M, et al.
Quantifying COVID-19-vaccine location strategies for Germany. BMCHealth Serv Res.
(2021) 21:1–8. doi: 10.1186/s12913-021-06587-x
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