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Testing the forecasting skills of
aftershock models using a
Bayesian framework
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2Department of Earth Sciences, Western University, London, ON, Canada, 3Department of Physics and
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The Epidemic Type Aftershock Sequence (ETAS) model and the modified Omori

law (MOL) are two aftershock rate models that are used for operational

earthquake/aftershock forecasting. Previous studies have investigated the relative

performance of the two models for specific case studies. However, a rigorous

comparative evaluation of the forecasting performance of the basic aftershock

rate models for several di�erent earthquake sequences has not been done before.

In this study, forecasts of five prominent aftershock sequences from multiple

catalogs are computed using the Bayesian predictive distribution, which fully

accounts for the uncertainties in themodel parameters. This is done by theMarkov

Chain Monte Carlo (MCMC) sampling of the model parameters and forward

simulation of the ETAS or MOL models to compute the aftershock forecasts. The

forecasting results are evaluated using five di�erent statistical tests, including two

comparison tests. The forecasting skill tests indicate that the ETAS model tends

to perform consistently well on the first three tests. The MOL fails the same

tests for certain forecasting time intervals. However, in the comparison tests,

it is not definite whether the ETAS model is the better performing model. This

work demonstrates the use of forecast testing for di�erent catalogs, which is also

applicable to catalogs with a higher magnitude of completeness.

KEYWORDS

earthquake forecasting, forecast performance testing, Bayesian predictive distribution,

ETAS model, modified Omori law

1. Introduction

Ground shaking due to moderate to large earthquakes can disrupt activities and cause

infrastructure damage. Aftershocks can also contribute to secondary effects of earthquakes,

all of which may lead to the loss of lives and damages to buildings and structures [1, 2]. A

significant increase in the rate of aftershocks right after the mainshock in some cases can

result in the occurrence of the largest event that is, on average, one magnitude smaller than

the mainshock. This average empirical difference between the magnitude of the mainshock

and its largest aftershock is known as Båth’s law [3–5]. In some cases, the subsequent

largest event can exceed the magnitude of the preceding largest event and become the

new mainshock. Given the potential damage and impact on society and infrastructure,

improvements to the response time and general preparatory steps for large earthquakes

during aftershock sequences can be made. Much attention has been given to the forecasting

of large earthquakes and the behavior of aftershocks during their sequences [6–12].
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Short-term forecasting provides the ability to respond to

ongoing earthquake events. This information helps with issuing

recommendations for return to affected buildings. For example,

the United States Geological Survey and the Japan Meteorological

Agency currently make use of the modified Omori Law (MOL)

as the primary earthquake aftershock model and issue forecasts

based on the probability of exceeding a certainmagnitude threshold

[12, 13]. The MOL describes a hyperbolically decreasing rate of

aftershock occurrence following a mainshock. The use of the MOL

is common and has been applied for decades.

More recently, there has been a shift toward implementing

the Epidemic Type Aftershock Sequence (ETAS) model as the

main forecasting method or as an additional option in future

operational methods [13–15]. The ETAS model is stochastic in

nature and is an extension of the MOL where each aftershock can

potentially produce its own aftershock sequence [16–18]. Thus, the

ETAS model better accounts for variability in sequence behavior.

This aligns more closely with observed aftershock clustering in

sequences. Then, it may be natural to expect that the ETAS model

is better suited for forecasting the aftershock sequences [19–23].

For real-time forecasting, choosing a suitable model is based

on the model’s ability to describe the ongoing seismicity. The

forecast should align closely with the observed events for features

of interest. The two common aftershock rate models that are

evaluated in this study include the ETAS model and the MOL

used in conjunction with the Gutenberg-Richter (GR) law [6, 24].

Other models may include region-specific models, rate-and-state,

stick-slip, Every Earthquake a Precursor According to Scale, and

the compound Omori law models [25–33]. Forecasts presented in

terms of probabilities can be tested statistically [34]. To evaluate the

forecasts produced by the forward simulation of a parameterized

model relative likelihood scores can be compared [35]. By applying

statistical tests which result in numerical scores and reviewing the

information gain of competing models for several sequences, one

can identify which model tends to perform better.

This study provides quantitative analyses of the forecasts

produced using two competing temporal aftershock rate models

(i.e., MOL and ETAS) with a series of statistical tests. Five statistical

tests are applied to the forecasts produced by the two models for

increasing training time intervals. The tests compare the forecasted

events to the observed events during the forecasting time period

for specific characteristics. The tests used in this study include

the N-test, M-test, R-test, T-test, and Bayesian p-test, which are

presented in [35], [9], and [36]. In addition, the model parameter

uncertainty is accounted for by using Markov Chain Monte Carlo

(MCMC) sampling [36, 37]. Unlike previous studies which have

been regionally restricted, this work considers multiple sequences

in different geologic settings with sequences selected across several

countries, including the United States of America, New Zealand,

Italy, and Japan. These sequences were selected based on data

availability and diversity in sequence behavior with respect to

presence of foreshocks and conformity to Omori-like behavior.

Another important factor was the availability of high-quality

seismic catalogs.

The paper is structured as follows. Section 2 includes an

overview of the aftershock rate models, statistical tests, and the

data selection. The test performance is provided for the MOL and

ETAS models in Section 3. Section 4 provides interpretation for

the relative performance of the aftershock models on different

the statistical tests and addresses the limitations of this work.

The paper ends with the Conclusion summarizing the implication

of the results.

2. Materials and methods

This section provides the background on the forecasting

of earthquakes and methods used for the estimation of the

aftershock model parameters, formulation of the methodology

of the Bayesian predictive framework for forecasting the largest

expected aftershocks, and statistical tests applied.

2.1. Aftershock rate models

A collection of related earthquake events is referred to as an

earthquake sequence. When considering the temporal occurrence

of the earthquakes, the sequence can be treated as a stochastic

marked point process in time. The event times ti and magnitudes

mi are organized in a set S = (ti,mi), i = 1, 2, . . . , n [38, 39].

If an assumption is made that the magnitudes are not correlated

and that ti can be fully described by the time-dependent rate λ(t),

earthquake occurrences can be modeled as a non-homogeneous

Poisson process in time [27, 40, 41]. The model parameters

describing the aftershock rate can be estimated.

The empirical MOL describes a decay in seismicity rate

following a large mainshock [6, 24]. The functional form of the rate

model is

λω(t) =
Ko

(t + co)po
, (1)

where t is the time since the occurrence of the mainshock. The

model parameters for the MOL are ω = {Ko, co, po}. Ko describes

the aftershock productivity rate of the sequence with respect to the

mainshock. The seismicity rate decays inversely as controlled by

the decay parameter po. co is a characteristic time indicating the

transition from the constant to decaying rate.

The ETAS model represents seismicity by means of a trigger

model, where each parent event in the sequence can produce its

ownOmori-like aftershocks as in Equation (1). The functional form

of the ETAS model is given by [17]:

λω(t|Ht) = µ + K

Nt
∑

i : ti<t

eα(mi−m0)

( t−ti
c + 1

)p , (2)

where the parameters for the ETAS model are ω = {µ,K, c, p,α}

and the rate is dependent on the history Ht of events during

the time interval [T0, t]. µ is a constant background rate during

the sequence that can be modeled using a homogeneous Poisson

process, and is associated with seismicity from tectonic loading

[42]. The model parameters {K, c, p,α} describe the aftershock

decay for short-term triggering effects in the ETAS model [43]. c

is the time delay for each parent event triggering in an Omori-

like aftershock sequence, and p describes the rate of decay for each

local subsequence. K and α are productivity parameters associated

with each individual event in the sequence. The model parameters
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describing the aftershock rate can be estimated using a maximum

likelihood optimization method [44].

The earthquake rates, Equations (1) and (2), of the two models

differ significantly. The MOL model, defined by the deterministic

rate (1), constitutes a non-homogeneous Poisson process. Hence,

the events occur independently with a decreasing rate. However,

the ETAS rate (2) is stochastic in nature with increments for every

random event that occur during the evolution of the sequence.

This constitutes the self-exciting nature of this doubly stochastic

contagious process with probability generating function as in [21].

The ETASmodel is not a simple non-homogeneous Poisson process

compared to the rate given by Equation (1).

2.2. Magnitude distribution model

The Gutenberg-Richter law can be represented by the left-

truncated exponential distribution, where N is the number of

events with magnitudem0 or larger [45]:

log10 N = a− b(m−m0). (3)

The distribution of magnitudes follows the exponential

distribution with the following probability density and cumulative

distribution functions

fθ (m) = β exp[−β(m−m0)], (4)

and

Fθ (m) = 1− exp[−β(m−m0)], (5)

respectively [46]. The model parameter for the GR law is described

by θ = {β}, where β is related to the b-value by β = ln(10)b.

2.3. Model parameter estimation

The model parameters are estimated during the training time

period as in [36]. The training time period [T0,Ts] consists of two

components, the preparatory time interval [T0,Ts] and the target

time interval [Ts,Te]. For the MOL, the preparatory time interval

is a short time interval such that the mainshock is not included in

the model parameter fitting procedure. For the ETAS model, the

preparatory time interval is used to condition the model parameter

estimates and allows for the inclusion of foreshocks as additional

information. To perform real-time forecasting, the training time

interval length is defined relative to the time of the mainshock. The

end of the training time interval Te can be aligned with the number

of days following the mainshock, 1Tm (Figure 1).

The two competing aftershock models can be fitted to the

aftershock sequence with increasing 1Tm using the maximum

likelihood estimate (MLE) method to estimate the aftershock rate

model parameters ω, for both the ETAS model and MOL, and the

GR law parameter θ [47–49]. The MLE produces point parameter

estimates based on the training time interval by maximizing

the log-likelihood function. The likelihood is the probability of

observing the aftershocks within the training time period given

the model [44]. For any time dependent point process model with

a well-defined intensity function (e.g., Equations 1 and 2), the

likelihood function is

L (S|θ ,ω) = e−3ω(T)
Ne
∏

i=1

λω(ti|Hti )

Ne
∏

i=1

fθ (mi) , (6)

where fθ (m) = dFθ (m)
dm

is the probability density function and

3ω(T) =
∫ Te
Ts

λω(t|Ht) dt is the productivity of the process during

the time interval [Ts, Te] having Ne number of events above a

specified magnitude. Its derivation can be found in [44, 50].

The log-likelihood is maximized using all events within the

target time interval above m0 and above the maximum depth for

the sequence. For binnedmagnitudes, as is the case with earthquake

catalog data, θ can be solved using theMLEmethod for magnitudes

exceedingm0 [47–49].

Using the parameter point estimates from the MLE as prior

information, MCMC sampling is applied to the same training

time intervals to produce model parameter distributions. The

sampling procedure accounts for the uncertainty in the model

parameter estimates and uses Bayesian methods to incorporate

prior knowledge from the MLE estimates [36, 37, 51].

The MCMC method in this study uses the Metropolis-

Hastings algorithm for the MOL and Metropolis-within-Gibbs

sampling algorithm for the ETAS model to sample the posterior

distributions of the model parameters. The detailed description

of the implemented algorithms are given in [37]. The posterior

distribution is described by

p(θ ,ω|S) ∝ L(S|θ ,ω)π(θ ,ω), (7)

p(θ ,ω|S) provides constraints on the model parameter variability

by using prior information π(θ ,ω) and information obtained from

the training data via the likelihood function L (S|θ ,ω).

In this study, we use the Gamma distribution as the prior

distribution for the model parameters [37]. This choice of the

priors is dictated by the well-defined functional form of the

Gamma distribution that allows to limit the parameter values in

certain ranges which are inferred from past studies. The Gamma

distribution is described by its mean and variance, where θ and ω

from the MLE are used as the mean for the Gamma priors. Use of

other priors was discussed in [37]. The proposal distributions used

in the MCMC sampling are set so that the parameters are chosen

to approximate the posterior distribution [37]. These are the multi-

variate lognormal distribution for both models. The first 100,000

steps are discarded for “burn-in” and 100,000 steps are sampled

for the parameter estimates so the distribution only represents the

latter 100,000 steps. Each of the resulting 100,000 model parameter

estimates are then used for the forward simulations. The full details

of the implementation of the Metropolis-within-Gibbs algorithm

can be found in [37].

2.4. Magnitude of completeness

To properly estimate the aftershock rate and model parameters,

the impacts of early aftershock incompleteness need to be

considered [17, 52–56]. If many of these smaller events are missing

from the catalog when training, this may result in bias during the
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FIGURE 1

Illustration of the temporal structure of an earthquake sequence progressing from left to right. The relative heights of the lines indicate the

magnitude of the events. The training time interval ranges from [T0,Te]. For ease of interpretation for increasing training time interval durations, Te
aligns with the number of days following the mainshock, 1Tm. The training time interval is further divided into the preparatory time interval, [T0,Ts],

and target time interval, [Ts,Te]. The mainshock is indicated by the golden star. Forecasting takes place during a 1T = 7 days period immediately

following the training time interval.

subsequent aftershock rate analysis. We identify the magnitude

completeness of the sequence by plotting the first 3 days of the

sequence on a log-log plot using visual inspection. We then select

a magnitude cutoff, m0, where all events ≥ m0 are included in

the analyses. It is also important not to select too high a value for

m0 as doing so reduces the amount of data available for training.

In particular, the ETAS model tends to underestimate the number

of events during a forecast when selecting higher m0 and the

productivity from small events is not accounted for [57].

2.5. Forecasting with the Bayesian
predictive distribution

The forecasting time interval, [Te, Te + 1T], immediately

follows the training time interval. The parameter estimates from

the training time interval are used to simulate and forecast events

during the forecasting time interval. In this work, the length of

the forecasting time interval was set to 7 days, 1T = 7 days

(Figure 1). The simulation of the MOL and ETAS models during

the forecasting time interval is performed using the thinning

algorithm [58]. For the ETAS model all observed earthquakes prior

to the forecasting time intervals are used to properly define the rate

during the forecasting time interval.

The point parameter estimates for the MOL and the GR law

model parameter from the MLE can be directly used to calculate

the probability of the largest events during the forecasting time

period by means of the extreme value theory (EVD method) [37].

The probability of a large aftershock during 1T is PEV. This

method is equivalent to the Reasenberg-Jones method [59]. For the

productivity 3ω(1T) =
∫ Te+1T
Te

λω(t) dt, PEV can be calculated as

[37]:

PEV(mex > m|θ ,ω,1T) = 1− exp{−3ω(1T)}[1− Fθ (m)], (8)

wheremex is themagnitude of the events that we are forecasting for.
To incorporate the uncertainty in the model parameter estimates,
we use the Bayesian predictive distribution (BPD) [36, 37, 60]:

PB(mex > m|S,1T) =

∫

�

∫

2

PEV(mex > m|θ ,ω,1T)p(θ ,ω|S) dθdω.

(9)

To compute the BPD, MCMC sampling of the posterior

distribution p(θ ,ω|S) of themodel parameters are generated during

the training time interval and are used to forward simulate the

sequence in time as an ensemble during the forecasting time

interval, 1T. The simulations are used to compute the probability

of large aftershocks during 1T.

2.6. Forecast performance testing

The forecast generates earthquake rates in bins for a range

of magnitudes and time intervals [35]. The number of predicted

events in each bin is calculated from the rate. The expectations can

then be produced by assuming the probability of observing events

in each bin follows the Poisson model. The joint log-likelihood

is the sum of all the logs of the likelihoods in each bin when

comparing the expectation to the observed events in each bin as

formulated by [9]. This forms the basis of the likelihood tests.

In this work, the forecasts tests are consider the number test

(N-test) and magnitude test (M-test) to evaluate these aspects

individually. Two comparative tests, the ratio test (R-test) and T-

test are applied to assess the relative performance of the forecasts

[10, 34]. These tests are based on the assumption that the events

are Poisson distributed and use a simple Poisson based likelihood

function. This differs from the definition of the likelihood used in

the formulation of the ETAS model, Equation (6) [19]. As a result,

this may introduce confounding effects when applied to forecasts

produced by the ETAS model. In addition, the Bayesian p-test is

used to evaluate the performance of the BPD [36]. The first four

were adapted from tests used by the Collaboratory for the Study of

Earthquake Predictability (CSEP) and follow the same assumptions

where the magnitudes are binned and the number of earthquakes

in each forecast bin are Poisson-distributed and independent of

each other [9, 35, 61]. The effective significance level of 5% for

all the tests are used following [62]. Quantile scores exceeding

the significance level are considered a passing score on the test.

However, the applicability of the CSEP framework to the ETAS

model can be considered approximate, because the ETAS model

deviates from the Poisson assumption placed on the occurrence of

events in the CSEP framework [19–23].

The N-test compares the number of events simulated during

the forecasted time period to the number of observed events during
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the same time period [9]. There is an associated quantile score

considered for the N-test, δ. The quantile score indicates if the

generated sequences produced forecasted event numbers Ni, i =

1, ...,Nsim, above or below the observed values Nobs. In this work,

the estimation of the quantile is performed through simulations of

the respective point processes [9, 35]

δ =
1

Nsim

Nsim
∑

i=1

I(Ni ≤ Nobs) , (10)

where Nsim is the total number of simulations and I(x) is the

indicator function. A value of δ close to 1 indicates that the

forecast underpredicts the observed number of events, and a small

δ indicates that the forecast overpredicts the observed number of

events. Thus, if the probability of δ is smaller than the half of the

significance level αq/2 or larger than 1 − αq/2, the forecast can be

rejected [9]. The significance level for the respectiveN-tests is set to

5% (αq = 0.05) [9].

The M-test evaluates the distribution of the magnitudes of the

forecasted events during the forecasting time period compared to

the true magnitude distribution of the observed events [9, 35].

For this test, the magnitude distribution is conditioned on the

number of forecasted events by considering the forecasts such

that the number of simulated events Ni = Nobs. The testing is

done by computing the joint log-likelihood score of the simulated

magnitude events. The M-test statistic is indicated by the κ as

shown in

κ =
1

Nsim

Nsim
∑

i=1

I(Mi ≤ Mobs) , (11)

where Mobs is the joint log-likelihood of the observed events and

Miis the joint log-likelihood computed for every simulation i =

1, ...,Nsim [9].

The R-test compares two different forecasting models relative

to each other by assuming one of the models is true and stands in as

the null hypothesis, which is referred to as the reference hypothesis

H2. The competing model hypothesis isH1. Each of the models has

a likelihood score from the L-test based on the modified observed

events assuming the null hypothesis is true (H2 corresponds with

likelihood score L2 and H1 corresponds with likelihood score L1).

The L-test formulation and details can be found in [35, 36]. The

R-test provides the ratio of the likelihoods for two models R21,

where R21 = L2 − L1 [35]. If R21 > 0, then the reference model

H2 performs better. Similarly, a larger quantile score for the R-

test, the quantile score α, indicates that H2 performs better than

H1. The definition of the quantile score α is given in [10]. This

test is reversible, and the null hypotheses can be set as the other

model. If both models when set as the reference hypotheses result

in a quantile score α larger than the effective significance level, then

neither model can be rejected using the R-test [10].

To provide additional context for the R-test and to reduce

computational time, the T-test, inspired by Student’s t-test, was

introduced as a proxy for the R-test [10]. The results of the T-

test indicate whether a competing hypothesis has performed better

than or is inconsistent with the reference hypothesis by evaluating

the significance of the information gain. The T-test score results in

the sample information gain of one model over another, where the

sample information gain from the reference hypothesis (H2) over

the alternate hypothesis (H1) is shown as IG(H2,H1) for Nobs, the

number of observed events during the forecasting time interval1T

[10]:

IG(H2,H1) =
R21

Nobs
. (12)

Positive values demonstrate information gain, where information

gain IG > 1 can be considered significant. Negative values on the

T-test indicate that the alternative hypothesis performs better than

the reference hypothesis. As with the R-test, the T-test can also be

reversed by changing the reference and alternative hypotheses to

investigate the information gain in the other direction.

For forecasts that use the BPDmethod to generate probabilities,

the Bayesian p-test (herein p-test) can be conducted. The value pB
gives the probability that the largest event in the simulations for the

forecasted sequence will be more extreme than the observed largest

event during the forecasting time interval. pB is described as [36]:

pB = Pr[max (ŷ, θ ,ω) ≥ max (t, θ ,ω)]. (13)

The p-test has a test quantity (t, θ ,ω) for the observed variable y

and the simulated quantity ŷ. In this case, max y is the largest event

in the simulation, and pB is the proportion of the test quantities

from the simulated maximum events that are greater than or equal

to the observed largest event during the forecasting time interval.

Extreme values of pB ≈ 0 indicate that the features are not well

demonstrated by the model [36].

2.7. Aftershock sequences

The evaluated sequences include the 2009 L’Aquila (LAQ),

Italy; 2010 Darfield (DFL), New Zealand; 2016 Amatrice-Norcia

(AMA), Italy; 2016 Kumamoto (KUM), Japan; and 2020 Monte

Cristo Range (MCR), United States of America. The mainshock

magnitudes and dates are presented in Table 1. The spatial

distributions of the epicenters of earthquakes for each sequence

are given in Supplementary Figures 1–5 as indicated by the dashed

ellipses. A brief description of the sequence conditions are as

follows. The 2009 L’Aquila (LAQ) sequence began in the central

Apennines next to large and normal faults [64]. In the months

leading up to the LAQ sequence, there was increased background

seismicity [65]. The 2016 Amatrice-Norcia (AMA) sequence took

place in central Italy, which activated a 60 km normal fault system

[66]. This sequence was evaluated independently of the LAQ

sequence, though it is worth noting the aftershocks from the LAQ

sequence appeared to migrate toward the AMA sequence region.

The catalogs for the LAQ and AMA sequence were retrieved from

the Italian Seismological Instrumental and Parametric Database.

The 2016 Kumamoto (KUM) sequence began with a foreshock

sequence before the mainshock of Mw 7.3. The events of the

sequence indicated a right lateral strike-slip fault along the

Futagawa fault segment [67]. The catalog for this sequence was

retrieved from the Japan Meteorological Agency catalog. The

Monte-Cristo (MCR) sequence took place along a previously

unmapped, steeply dipping fault near Walker Lane, Nevada. The

aftershocks took place with a mix of left-lateral, right-lateral, and
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TABLE 1 List of analyzed sequences including the date of the initiating

event for the sequence in UTC and the magnitude of the largest event.

Sequence Largest
events

Date m0 MOL/ETAS

(Mw) Ts (days)

4.0 March 30, 2009 2.5 0.001/0.05

L’Aquila 6.3 April 6, 2009 2.5 0.001/0.05

Amatrice 6.0 August 24, 2016 2.8 0.001/0.05

5.4 October 26, 2016 2.8 0.001/0.05

Norcia 6.5 October 30, 2016 2.8 0.001/0.05

6.5 April 14, 2016 3.1 0.001/0.05

Kumamoto 7.3 April 16, 2016 3.1 0.001/0.05

Monte-Cristo 6.5 May 15, 2020 2.5 0.001/0.02

Darfield 7.1 September 4, 2010 3.3* 0.001/0.03

The magnitude cutoff m0 for the analysis is given. *Note that the Darfield sequence was

evaluated in a separate work for higher m0 to evaluate the impact of catalog completeness

and can be found in [63].

normal fault motions [68]. The catalog for the MCR sequence

was retrieved from the United States Geological Survey Advanced

National Seismic System Comprehensive Earthquake Catalog. The

2010 Darfield (DFL) sequence took place on previously unmapped

faults, in association with strike-slip movement with a reverse

component for the mainshock [69, 70]. The catalog for the DFL

sequence was retrieved from GeoNet.

3. Results

Results of the forecasting test performance for the five selected

sequences for their respective training time intervals are presented

in this section. We first show the forecasts that are generated

using the BPD and provide general interpretations without the

performance metrics. Then the N- andM-test results are presented

together as part of the classic likelihood L-test. We also use the

Bayesian p-test that demonstrates the performance of the BPD

forecasting method. The comparative R- and T-tests are then

presented together to evaluate the relative performance of the

forecasts. For further details, the performance of the individual

sequences is provided in Section 3.4.

3.1. Maximum likelihood estimates and
forecasts

The forecasts that are being evaluated are generated using

the BPD method after an initial model parameter estimation

using the MLE, which are used as prior distributions for the

model parameters. Here we use the LAQ sequence as an example.

The model parameter estimates using the MLE are provided

in Supplementary Figures 10–14 for all of the five sequences

and training time intervals. Reviewing the MLE estimates, it

can be observed that the model parameters tend to stabilize

and converge with increased 1Tm, generally stabilizing after

1Tm = 3 days for all of the sequences and aftershock models

(Supplementary Figures 10–14).

The forecast can be produced for both models using the BPD

method by MCMC sampling of the posterior distributions and

forward simulating the models during the forecasting time interval.

Plots indicating the probability of the largest expected event ≥ mex

during the forecasting time interval 1T = 7 days are shown

for each training time interval in Figure 2 for the 2009 L’Aquila

sequence and in Supplementary Figures 6–9 for the rest of the

sequences. The end of each training time interval Te corresponds

with the number of days following the mainshock 1Tm. We

considered 1Tm = [1, 2, 3, 4, 5, 6, 7, 10, 14, 21, 30] days for the

training time intervals. Overall, the probability for the largest

expected events decreases as the training time interval increases.

Slight increases in probability are aligned with changes in themodel

parameter estimates for rate and decay parameters. For example,

in the LAQ sequence, the model parameter K for the ETAS model

jumps from 0.74 to 16.05 and p decreases from 3.2 to 2.2. There

is a clear increase in probability for this training time interval and

the increased rate outweighs the decrease in productivity α. The

probability for an event with magnitude ≥ mex increases following

1Tm = 3 days. This increase is accompanied by a decrease in decay

rate (increase in p) and increase in productivity parameter α. The

observed seismicity rate can be seen in the density of the black open

diamonds in Figure 2. The spike in the MOL forecast for the LAQ

sequence follows a slight delay that is reflected in the adjustment of

the decay rate po.

It can be observed that the increased probability in the ETAS

model aligns well with the local cluster of high density observed

events following1Tm = 3 days, whereas theMOL peak probability

for large events occurs after this cluster. This is expected, as MOL

does not account for potential clustering during the forecast and

incorporates the increased seismicity only after it takes place. In

addition, when considering all of the sequences and their forecasts,

the probability of large aftershock increases more for the ETAS

model than the MOL following a large aftershock that is associated

with an increase in the seismicity rate during the training time

interval. The probability of large aftershocks decreases following

the mainshock in general.

3.2. Likelihood tests and Bayesian pB-value

The N-test applied to the sequences indicates that the number

of events is typically overestimated for all training time intervals

for the ETAS model as indicated by the low δ scores for the

DFL and AMA, and MCR sequences (Figure 3). The number

of events for the MOL forecasts alternates between over- and

underestimation of the observed number of events. The plots of

the forecasted and observed number of events for all five sequences

are given in Supplementary Figures 15–19. From the N-test plots,

the effective significance score is not consistently passed on both

sides for most training time intervals for both aftershock rate

models. The overestimation of the MOL can be directly related

with the model parameter Ko, which is larger when the rate is

overestimated, or with the po estimate, when it is small and the

rate of aftershock decay is slow (Supplementary Figures 10–14).

The ETAS model overestimation cannot be directly related to a
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FIGURE 2

Forecasted probabilities for the occurrence of the largest expected aftershocks to be above mex ≥ [4.0, 4.5, 5.0, 5.5, 6.1] during the forecasting time

interval 1T = 7 days for the 2009 L’Aquila sequence. Time 1Tm indicates the number of days from the April 6, 2009 mainshock. (A) Indicates the

forecasting probability when using the MOL model; (B) Indicates the forecasting probability when using the ETAS model. Additional data prior to the

mainshock is also shown, as these events were used as part of the ETAS model.
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single model parameter. For most of the sequences, the background

seismicity was very low and could not be the primary contributor

to the overestimation from the ETAS model with the exception

of the KUM sequence which had relatively high background

seismicity estimates.

The MOL aftershock rate is not affected by the GR law.

However, for the ETAS model, it is important to consider whether

the events are impacted by the magnitude distribution from which

the model draws from. For theM-test, it can be observed that when

the number of events forecasted is scaled to the observed events,

the magnitude distribution of the forecast closely represents the

observed magnitude distribution (Figure 4). This is not surprising

as this is isolated from the aftershock rate models. The impact of

the GR law can be interpreted to be minimal on the number of

forecasted events for the ETAS model. The MOL aftershock rate

and number of events during the forecast are not impacted by the

GR law. From theM-test scores, the ETAS model performance can

be considered reliable and independent of the impact of the GR

law fitting.

It can be observed that the performance of the MOL on the

M-test typically results in a larger quantile score than the ETAS

model. However, it does mimic the same trends as observed for

the ETAS model. For the MOL, the training time interval is slightly

longer. This suggests that the magnitude distribution immediately

following the mainshock strongly influences the performance of

the M-test and does not represent the magnitude distribution of

events well. It follows that the b-value may be better estimated

when the effect of themainshock and in the immediate surrounding

are minimized.

Both models perform well on the Bayesian p-test, except for the

DFL sequence, suggesting that both models sufficiently captured

the probability of the largest observed event in the forecast, so

neither was rejected (Figure 5). This confirms the procedure is

suitable for providing a forecast.

3.3. Model forecast comparison tests

When comparing the performance of the two aftershock

models directly, the R-test demonstrates that it is possible for both

sides of the test to be passed or failed regardless of the reference

model [10]. However, we find that the MOL is more likely to

be rejected as an alternative hypothesis when the ETAS model is

considered the reference model (Figure 6). This suggests that the

MOL model tends to perform better than the ETAS model for the

selected training time intervals and sequences. This is supported by

the results of the T-test. The information gain of theMOLwhen the

ETAS model is the reference model is typically negative, indicating

a loss of information (Figure 7).

3.4. Performance on statistical tests for
specific sequences

The 2009 L’Aquila sequence had a large aftershock of M =

5.4 2 days following the mainshock. The ETAS model reflected

the increase in seismicity and corresponding large aftershock

probability before the occurrence of the large aftershock (Figure 2).

The ETAS model starts to overestimate the number of events

after 1Tm = 7 days (Supplementary Figure 15B). The MOL

underestimates the number of forecasted events earlier in the

sequence (Supplementary Figure 15A). This corresponds with a

decline on theM-test performance for both aftershock rate models,

which suggests that the ETAS underestimation was influenced

by the magnitude distribution, while the MOL independently

underestimated the number of forecasted events. In contrast to

[71], the ETAS model performed comparably to the MOL based on

the T-test for most of the training time intervals.

The 2010 Darfield sequence was less seismically active than

would be expected based on the New Zealand aftershock decay

model [72]. Previous work has shown that the ETAS model

performs better than the regional models using the 3 month and

1 day forecast of the sequence [73]. On the N-test, the number

of events forecasted during the simulations is overestimated

by the ETAS model for the various training time intervals

(Supplementary Figure 16B). The MOL fluctuates between over-

and underestimation of the observed events during the forecast

simulations, though the number of forecasted events is closer to

the observed events for longer training time intervals 1Tm ≥ 10

days (Supplementary Figure 16A). The performance on this test

also impacts the results of the p-test. For extremely high values

on the p-test, where pB ≈ 1, we can observe that the number

of events on the N-test was overestimated at these time intervals.

On the M-test, the magnitude distributions of the two aftershock

models paralleled each other and performed well, with quantile

scores above the effective significance level (Figure 4).

The 2016 Kumamoto sequence is an example of a foreshock

sequence with a typical aftershock sequence following the

mainshock. The ETAS model was fitted in such a way to include

the foreshock sequence during the model parameter estimations.

The MOL was limited to data following the mainshock. Both

models stabilized around the same training time interval length.

However, the MOL underestimated the number of forecasted

events during the first four training time intervals following the

mainshock (Supplementary Figure 17A). This is unsurprising as

decay of the foreshock sequence may have continued to contribute

to the seismicity and could not be explicitly accounted for using the

MOL. The ETAS model tended to slightly overestimate the number

of events, which partly corresponds to the high background

seismicity estimates (Supplementary Figure 17B). The M-test was

passed by both models for all training time intervals. Comparison

of the two models on the T-test indicate that the MOL model

consistently demonstrates small information gain over the ETAS.

We note that the model parameters for the KUM sequence

show a distinct shift in the estimated background seismicity

around 1Tm = 7 days, which may contribute to the observed

features (Supplementary Figure 12). Despite the estimation of a

high background rate, the performance on theN-test indicated that

the ETAS model alternated between over- and under-estimation of

the number of events during the forecasting time interval. When

evaluating the forecasting scores for1Tm ≥ 10 days, then the ETAS

model performs slightly better than the MOL.

The 2016 Norcia sequence is an example of a classic foreshock–

aftershock sequence. The background seismicity of the sequence

was considered elevated due to the occurrence of the Mw 6.0

Amatrice mainshock on August 24, 2016, and set to µ = 1.0.

It can be observed that the MOL model parameters are stable
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FIGURE 3

Quantile score δ for the N-test for all of the evaluated sequences. Horizontal lines are drawn for quantile scores of 0.025 and 0.975. The score is

plotted to correspond with the end of each forecasting time interval. Plot (A) shows the MOL performance while plot (B) shows the ETAS quantile

scores. The corresponding forecasted numbers of events are given in Supplementary Figures 15–19.

and estimated consistently during all of the training time intervals

(Supplementary Figure 13A). The ETASmodel parameters stabilize

following 1Tm = 4 days (Supplementary Figure 13B). The

ETAS model forecast tended to overestimate the number of

events in the forecasting time interval, though not greatly

(Supplementary Figure 18B). The MOL tended to underestimate

the number of events during the forecasting time interval

(Supplementary Figure 18A). In the comparison tests, the MOL

model consistently demonstrated information gain over the ETAS

and the R-test was failed by the MOL in several instances which

agrees with [66].

The 2020 Monte Cristo Range sequence demonstrates an

example of multiple ETAS model parameters being constrained

to produce consistent estimates. The MOL parameters converged

after 1Tm = 3 days, with the Ko parameter remaining

consistent (Supplementary Figure 14). The performance on the
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FIGURE 4

Quantile scores κ of the M-test for the (A) MOL and (B) ETAS model. Horizontal lines are drawn for quantile scores of 0.025 and 0.975. The score is

plotted at the end of each forecasting interval. Overall, the M-test performance is similar for both aftershock models.

N- and M-test are similar, though the MOL performs better on

the N-test by more frequently scoring a pass on both sides of

the test. The ETAS model typically overestimates the number of

forecasted events (Supplementary Figure 19B). The MOL model

demonstrates marginal information gain over the ETAS model. For

this sequence, while the MOL model appears to perform better

than the ETAS model, it is not fully clear if the improvement

is significant.

4. Discussion

In this paper, we fitted the ETAS model and MOL to

different earthquake sequences and evaluated their forecasting

performance from the BPD method using five statistical tests.

From the tests, we evaluated the quantitative scores for the

likelihoods and relative performance of the forecasts. From

previous work in [63], we also found that an increase in
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FIGURE 5

Quantile scores for the Bayesian p-test are shown for the (A) MOL and (B) ETAS models. Horizontal lines are drawn for quantile scores of 0.025 and

0.975. The score is plotted at the end of the training time interval 1Tm and is evaluated for a forecasting time interval of 1T = 7 days. Most training

time intervals for both models typically pass the p-test. The scores are similar for the respective aftershock models.

the magnitude cutoff used for analysis did not change the

general interpretation of the forecast tests, implying that

the tests can be applied to catalogs with higher magnitude

of completeness.

We observed that for most of the sequences, the early

performance on the T-test was indicative of the performance on

the T-test for longer training time intervals. When the T-test

score is either positive or negative during the first few training

time intervals, it appears likely that the score remains positive

or negative.

We found that the forecast produced by the ETAS model

does typically perform well on most of the tests. However, the

information gain of the ETAS model over the MOL was not

consistent for all sequences and the choice of the ETAS model for

operational forecasting should be done with caution. One possible

explanation is related to the fact that the fitting of the ETAS

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2023.1126511
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Dong et al. 10.3389/fams.2023.1126511

FIGURE 6

Quantile scores α for the R-test when the MOL is set as the hypothesis H1 and the ETAS model is set as the hypothesis H2. Horizontal lines are drawn

for quantile scores of 0.025 and 0.975. The score is plotted at the end of the training time interval 1Tm and is evaluated for a forecasting time interval

of 1T = 7 days.

FIGURE 7

Information gain IG(H2,H1) for the respective sequences when the MOL is set as the hypothesis H1 and the ETAS model is set as the hypothesis H2. A

horizontal line is drawn at IG = 0. The score is plotted at the end of the training time interval 1Tm and is evaluated for a forecasting time interval of

1T = 7 days.

model typically requires more data points to achieve reasonable

convergence compared to the MOL model. However, due to the

early incompleteness of the aftershock sequences one has to use

higher magnitude cutoffs to ensure that the sequence is complete.

This reduces the number of events and results in large uncertainties

in the estimated parameters of the ETAS model.

With respect to the information gain, it can be observed that

the N-test does not appear to be a good predictor of the T-test
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(Figures 3, 7). Instead, the quantile scores for the N-test tend to

swing to one extreme or another (over/underestimation). Thus,

the N-test is not sufficient to determine which model provides a

better forecast. The quantile scores of the N-test are more useful to

determine the overall behavior of the forecast and aftershock model

based on the forecasting time interval than for direct comparison of

different aftershock models for these sequences.

The performance on the R-test in Figure 6 was generally

consistent for all of the sequences that were evaluated in this study

and was not found to be a useful test when choosing a better

performing aftershock model. The performance of the MOL and

ETAS model for theM-and p-tests in Figures 4, 5 was unsurprising,

as the results are more reflective of the estimated b-values rather

than the model rate parameters ω. To better isolate the impact of

the aftershock models, a generic b-value with a wider distribution

rather than Gamma prior based on the MLE estimate and user

selected variance can be used. In addition, high quantile scores

on the N-test for the δ score were also reflected in the p-test. As

the p-test is not scaled to the number of observed events, it is

easy to perform well on the p-test if the number of aftershocks

is overestimated.

We highlighted the importance of conducting multiple tests

and noted the specific impacts of model parameter estimates on

the performance scores. We also demonstrated the necessity of

conducting the comparative tests in addition to the likelihood

tests, as the interpretation from the N-test results would have

suggested that the MOL typically performs better than the ETAS

model. The most practical outcome of this study is the implication

that information gains when evaluating competing aftershock rate

models for longer training time intervals can be inferred by early

training time intervals. Specific constraints on this generalization

can be further evaluated for practical applications.

The results of this work suggest a caution when using the

ETAS model as the preferred model for forecasting. As the ETAS

model forecast is computationally expensive and time consuming

to produce in real-time, it is recommended that the MOL forecast

is used as the baseline probability. While the ETAS appears to

perform better on the comparative tests, the information gain is

not sufficiently large enough to discount the MOL as a suitable

model for forecasting. In addition, the tests based on the Poisson

assumption are not fully applicable to the ETASmodel as it deviates

from the Poisson statistics [19–23].

Several additional assumptions were made with this work.

The first is that the aftershock magnitudes can be represented

by the b-value estimated from the training time intervals. The

second is that there is no evolution in the background seismicity

during the sequence. These assumptions impact the ETAS model

disproportionately as the rate is dependent on both of these

model parameters, whereas the MOL rate during the observation

is independent of these parameters.

An additional limitation addressed in a previous work by [37],

is the forecasting time intervals. The forecasting in this work was

limited to using 7 days as the forecasting time interval, which is

a reasonable representation of the forecasting time interval that

would be considered for real-time forecasting. On the other hand,

longer time intervals may favor the ETAS model as it takes into

account the occurrence of secondary aftershock sequences.
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