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Data-driven reduced order modeling methods that aim at extracting physically

meaningful governing equations directly from measurement data are facing a

growing interest in recent years. The HAVOK-algorithm is a Koopman-based

method that distills a forced, low-dimensional state-space model for a given

dynamical system from a univariate measurement time series. This article

studies the potential of HAVOK for application to mechanical oscillators by

investigating which information of the underlying system can be extracted from

the state-space model generated by HAVOK. Extensive parameter studies are

performed to point out the strengths and pitfalls of the algorithm and ultimately

yield recommendations for choosing tuning parameters. The application of the

algorithm to real-world friction brake systemmeasurements concludes this study.
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1. Introduction

The growing availability and quality of data in many fields of science throughout the

last decades [1, 2] causes the emergence of data-driven techniques for understanding and

analyzing dynamical systems [1–3]. In order to facilitate accurate and fast predictions of

system dynamics, efficient reduced order models (ROM) are required [4]. Currently, many

system identification methods that aim at generating ROM are limited to linear models

or require prior information on the model structure [5, 6]. While neural network-based

techniques are very popular, they are limited in their applicability to dynamical tasks [2]

and often lack interpretability [7, 8]. Several deep-learning based reduced order modeling

methods have evolved, such as deep learning based reduced order model (DL-ROM) [9],

where autoencoders are applied for generating ROM of non-linear parameter-dependent

partial differential equations, or its expansion using proper orthogonal decomposition

(POD) to avoid an expansive training stage, called POD-DL-ROM [10]. However, these

methods might also lack interpretability and have limited generalization capability beyond

the time and parametric domain contained in the training data set [4]. In the pursuit

of generating data-based models that generalize well, data-based reduced order modeling

techniques which try to extract governing equations or laws of physics from measurement

data gain popularity [6]. For example, an adaptive approach for inference of dynamics from

time series data is presented in [11], amethod for quantification of the reliability of themodel

learned from data is given in [12], and an algorithm for identifying non-linear dynamical
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system from data is proposed in [13]. Methods such as symbolic

regression [14], which can be applied to determine the structure

of the underlying dynamics from data remain computationally

expensive [6]. Other equation-free or data-based reduced order

modeling methods include dynamic mode decomposition (DMD)

[15, 16] for periodic or quasi-periodic systems, its extension EDMD

to non-periodic systems [17], or the Hankel-DMD algorithm

[18]. The sparse identification of non-linear dynamics (SINDy)

algorithm [6] used sparse regression for the identification of

governing equations from data, exploiting the fact that most

dynamical systems can be described by only a few non-linear terms

[6]. This method has been widely applied for identifying linear,

non-linear, and chaotic oscillators as well as fluid flows [6]. As

the initial version of SINDy requires measurements of the full

state space of a dynamical system, several extensions for sparse

measurements have evolved. Here, sparsity is meant as a limitation

in system observability, i.e., measuring only a fraction of all degrees

of freedom is possible. A version using higher order derivatives

is developed in [19]. Other variations deploy autoencoders to

learn suitable coordinate transformations in combination with the

SINDy method to obtain a low-dimensional model that generalizes

well [4, 8, 20]. The HAVOK (Hankel Alternative View of Koopman)

algorithm [1] can also be interpreted as an extension of the SINDy

algorithm for sparse data. The relation to Koopman operator

theory [2, 21] has also been made for DMD and EDMD [16,

22], and autoencoders have previously been applied for learning

Koopman eigenfunctions [23]. From one univariate measurement

time series of a dynamical system, the HAVOK-algorithm retrieves

a low-order model in the form of a forced state-space system

by combining time-delay embedding, Koopman analysis, and

sparse regression. The resulting state-space model is not a black-

box system, but a system of equations comparable to classical

analytical descriptions for dynamical systems. In the original study

by Brunton et al. [1], the algorithm was applied to chaotic systems

such as the Lorenz and Rössler system, the double pendulum,

and real-world measurements such as electroencephalogram and

electrocardiogram data, just to name a few.

In this study, the potential of HAVOK for identifying low-

rank models for mechanical oscillators is investigated, starting

from small analytical systems to measurement data from a

real-world friction brake system. The main focus lies in the

interpretation of the resulting state-space models, and how

these relate to those models that one would achieve through a

physics-based modeling approach using first principles. Extensive

studies of the effects of tuning parameters of the algorithm and

changes in model parameters on the resulting HAVOK models

are performed. These yield insights as to the information of

the underlying dynamical system that can be gathered from a

HAVOK model, as well as the conditions under which those

can be obtained. Chances and pitfalls of the application of the

HAVOK-algorithm to mechanical oscillators are pointed out,

along with recommendations concerning the optimal choice of

tuning parameters.

2. Methods

The HAVOK-algorithm presented by Brunton et al. in [1]

combines Koopman operator theory, embedding techniques, and

FIGURE 1

Illustration of Koopman operator theory. A finite, non-linear system

described by states z ∈ R
n and a non-linear function F :R

n → R
n

can be transformed into an often infinite-dimensional, linear system

described by observables s ∈ R
K and Koopman operator

K :R
K → R

K. The measurement functions g :Rn → R
K and their

inverse counterparts g−1
:R

K → R
n link between the two spaces.

sparse regression into a data-driven system identification approach

that facilitates the recovery of a low-order state-space system from

a given measurement time series. This study is concerned with

dynamical systems in the form

d

dt
x(t) = F(x(t)), ∀t ∈ I, I ∈ (0, τ ), τ > 0 (1)

where I defines a time interval and F :R
n → R

n is a time-invariant

flow map. In the following, a multi-variate time series is denoted as

x(t) ∈ R
n, ∀t ∈ I and uni-variate time series as x(t) ∈ R, ∀t ∈ I.

This section is dedicated to presenting the HAVOK-algorithm and

its parameters. Where possible, ways to compute optimal values

of the parameters are pointed out. To illustrate the relation of the

algorithm with Koopman operator theory, a short introduction to

said theory will be given first.

2.1. Koopman operator theory

First introduced in 1931 by Koopman in [24], the Koopman

operator faces a growing interest in recent years [2] as a method

for learning dynamical systems from data [2, 25]. A detailed

description of the Koopman operator and its history can be found

in [2, 21]. The basic idea of Koopman analysis is illustrated in

Figure 1. Koopman analysis is the transformation of a non-linear

system described by a discrete, time-invariant, non-linear flowmap

F :R
n → R

n and states z ∈ R
n into a linear system by considering

observables s ∈ R
K defined by measurement functions of the states

g(z) :Rn → R
K instead of the states z themselves. In the space

of observables, the dynamics propagate in time through the linear

Koopman operator K :R
K → R

K. The measurement functions g

which link the space of states z with the space of observables s can

be any functions from the Hilbert space of functions of the state [1].

In specific cases, inverse measurement functions g−1
:R

K → R
n

may exist, which allows for a transform from the Koopman space

R
K back into the space of states R

n. The relationship between
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the Koopman operator K and the functions F can be described

by

Kg(z(ti)) = g(F(z(ti)) = g(z(ti1)) = s(ti+1), (2)

where z(ti) and s(ti) denote the system state or

respective observables at a discrete point ti in

time.

For most systems, the Koopman operator is infinite-

dimensional, as illustrated in [21], but in some cases, a

finite-dimensional representation can be found, as an example in

[6] shows. Essentially, the Koopman operator exists, if one can find

a transformation of the non-linear system F into a linear one using

the measurement functions g. The main challenge in Koopman

operator theory is, thus, identifying a set of functions g for which

the Koopman operator is finite [1, 21]. Many approaches to this

challenge have been developed [2, 26], such as (Empirical) Dynamic

Mode Decomposition (DMD) [17], Hankel-DMD [18], and the

HAVOK-algorithm [1], which is the object of this study. If a finite-

dimensional representation of the dynamical system at hand can

be found, Koopman operator theory facilitates the identification of

a global linear representation of the given non-linear system [1]. As

the toolset and theoretical basis for linear system analysis are much

larger and more robust, one would in many cases prefer a linear

system description over a non-linear one. Even if an exact and

finite-dimensional representation may not exist for a given system,

the approximation of a finite-dimensional Koopman operator can

still yield accurate system state-space models.

2.2. Time series similarity measures

Throughout this study, it is often necessary to estimate the

accuracy of a model or an algorithm by comparing a ground truth

time series xtrue, typically the one measured, to the approximated

time series xapprox, typically the one generated by HAVOK. To do

so, the normalized mean absolute error is used, which is defined as

nMAE =
1

l

l
∑

ti=1

∣
∣
∣
∣

xtrue(ti)− xapprox(ti)

max(|xtrue|)

∣
∣
∣
∣
, (3)

where x(ti) ∈ R
n is one uni-variate measurement within a

time series x at time ti. Each time series contains l different

measurements at l different points ti in time. This equation results

in an error measure that is normalized to both the number of

sampling points, i.e., the time series length, and the maximum

amplitude of a time series. This choice is beneficial for measuring

similarity across oscillatory time series of different lengths.

2.3. HAVOK and its parameters

After the basics of Koopman operator theory and the error

measure have been explained, the HAVOK-algorithm [1] and its

parameters will be described in the following. Figure 2 shows a

flow chart of the HAVOK-algorithm, illustrating the six steps from

data generation via the setup of the Hankel matrix, singular value

decomposition, differentiation, sparse regression using the SINDy

algorithm [6], to the compilation of the state-space system. The

parameters of each individual step are marked on the left-hand side

of the diagram.

2.3.1. Data acquisition
The input to the HAVOK-algorithm is a one-dimensional time

series x(t) of length tl and sampled with frequency fs. In theory,

any measurement from a deterministic dynamical system could

be used, as long as the dynamics are observable through that

time series, as will be shown in detail later on. For the purpose

of understanding the inner workings of the algorithm and its

parameters, this study uses synthetic data generated through the

integration of a known system of equations ẋ = f (x(t)) in the first

part, and measurement data from a real-world brake system in the

second part. An exemplary time series is shown in the top right of

Figure 2.

The data acquisition step has three parameters: the time series

length tl, the sampling frequency fs, and the choice of degree

of freedom from which the measurement is taken, although in

practice, the latter two might be fixed by the sensor location.

Naturally, those parameters will have an effect on the state-space

model that is identified in the final step of the algorithm.

2.3.2. Time embedding
In a second step, the time series data x(t) is stacked with q time-

shifted copies of itself into a Hankel matrix H ∈ R
q×p, where

the second dimension p is computed from the number of input

samples l minus the embedding dimension q, such that p = l − q.

Generally, the adaptive parameter of this step, i.e., the embedding

dimension q is chosen such that q << p. Figure 2 shows the

resulting time series segments x(q)(t) ∈ R, t ∈ [0, tq], tq > 0 and

x(p)(t) ∈ R, t ∈ [0, tp], tp > 0 which are contained in a column and

a row of the Hankel matrix, respectively.
The procedure of using time-delayed observable as

approximations of the Koopman operator was first introduced by
Mezić and Banaszuk in [27] and is based on Takens’ embedding
theorem [28], which states that the state-space of a deterministic
system can be uncovered from measurements in only one point.
The relation of the Hankel matrix to the Koopman operator
becomes apparent when rewriting the Hankel matrix H with the
Koopman operatorK to

H =









x(t1) x(t2) x(t3) ... x(tp)
x(t2) x(t3) x(t4) ... x(tp+1)

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
x(tq) x(tq+1) x(tq+2) ... x(tl)









=









x(t1) Kx(t1) K
2x(t1) ... K

p−1x(t1)
Kx(t1) K

2x(t1) K
3x(t1) ... K

px(t1)

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
K

q−1x(t1) K
qx(t1) K

q+1x(t1) ... K
l−1x(t1)









,

(4)

such that the states are propagated in time by the Koopman

operatorK. Reordering the resulting matrix to

H =






| | | |

x(q)(t) Kx(q)(t) . . . Kp−1x(q)(t)

| | | |




 , (5)

where x(q)(t) =











x(t1)

Kx(t1)

K
2x(t1)

...

Kxq−1x(t1)











=











x(t1)

x(t2)

x(t3)
...

x(tq)
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FIGURE 2

The six steps of the HAVOK algorithm, the parameters, and exemplary images of the data processed in each step. The vertical flow-chart illustrates

the six steps data-generation, setup of the Hankel matrix, singular value decomposition (SVD) of the Hankel matrix, di�erentiation, sparse regression

using the SINDy algorithm, and finally the setup of the state space system. On the left, the tuning parameters for each step are introduced. The

images on the right-hand side of the figure illustrate the data each step is concerned with. From top to bottom. (1) The time series x(t) generated is

the first step. (2) The time series sections x(q)(t) and x(p)(t) that form a column and a row of the Hankel matrix H, respectively. (3) The results of the

SVD, represented by columns uj and vj of the matrices U and V . The uj represents a coordinate system, while the vj represents the evolution of these

coordinates in time t. (4) The state space matrices AH and BH are setup by dividing up the matrix of sparse coe�cients 4. The bottom row of 4 is

dropped as it represents a poor fit. Each step is described in detail in the respective section of the methods part of this study.

shows that the matrix H consists of p time series sections

x(q)(t) ∈ R, which could be interpreted as q-dimensional snapshots

of the system. In the next step, a singular value decomposition

is performed on the Hankel matrix in order to determine a q-

dimensional function basis for these system snapshots.

2.3.3. Singular value decomposition
A singular value decomposition (SVD) is performed on the

Hankel matrix H in the third step, which yields both a function

basis for the snapshots x(q)(t) and a description of the observed

dynamics in the determined function space. The SVD decomposes

the Hankel matrixH ∈ R
q×p into three matrices

H = U6VT , (6)

where U ∈ R
q×q, 6 ∈ R

q×p, and V ∈ R
p×p. The orthonormal

columns of the unit matrices U and V form a basis for the column-

and row-space of the Hankel matrix H, respectively. The matrix

6 contains q so-called singular values σj on the main diagonal,
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which can be interpreted as representing the relative importance

of the respective columns in U and V for representing the data

in H. The singular values are ordered from largest to smallest,

and, accordingly, the columns of U and V are ordered by their

importance for representing the data in H. For a more detailed

description of the SVD, see for example [21].

In the context of the HAVOK-algorithm, the columns uj ∈

R
q×1 of the matrix U form a basis for the column space of H

and, thus, for the snapshots x(q)(t), representing the Koopman

observables s(ti) = g(x(q)(t)) as introduced in Figure 1. The

vectors uj provide a Koopman invariant subspace for the non-

linear dynamics in the Hankel matrix. The time evolution of each

uj is described by the respective column vj ∈ R
p×1 of the matrix

V . The vectors vj can thus be interpreted as time series in the

new coordinate system formed by the vectors uj. Note that the

transformation H = U6VT is unique up to simultaneously

switching the signs of a column in U and V . Some exemplary

observables uj and new dynamics vj are shown in Figure 2.

In [1], it was shown that only a small number of the columns of

U and V are necessary to describe the dynamics of the different

systems at hand. The model rank r, which also defines the size

of the final state-space model, is determined from the singular

values σj. Depending on the dynamical system at hand, the singular

values may form an elbow curve, clearly separating more important

columns from less important ones. In the original paper by

Brunton et al. [1], the optimal rank ropt,GD is computed by hard-

thresholding the singular values with a method proposed in [29],

where the threshold is computed as a function of the Hankel matrix

dimensionality ratio q/p as

σthresh =

(

0.56

(
q

p

)3

− 0.95

(
q

p

)2

+ 1.82

(
q

p

)

+1.43σthresh

)

·median(σj). (7)

However, it was found in the course of this study that this method

often fails to locate the elbow in the curve, which is usually easy

to determine visually. Figure 3 shows the singular values obtained

with data from the double mass oscillator presented in Section 3.1.

The rank ropt,GD = 51 is located far away from the elbow. For the

purpose of this study, the ropt = 7, which is located at the elbow or

kink of the curve, is used.

Implementing an elbow-finding algorithm such as the one

proposed in [30] would help the automation of the HAVOK-

algorithm at this point but is beyond the scope of this study. For the

course of this study, the rank r for each system is chosen manually.

Independent of which algorithm is chosen for the computation of

the model rank, we recommend analyzing the singular values to

confirm the choice of model rank for each new system.

With the obtained rank r, a matrix Vr = V[:, 1:r] is set

up using the first r columns of V . The matrix Vr ∈ R
p×r is a

representation of the dynamics in the space of observables ui and

can be interpreted as an approximation of the Koopman operator

in a Koopman-invariant subspace. In the remaining steps of the

algorithm, a state-space system representing the dynamics in Vr

is sought.

FIGURE 3

Determination of model rank r for the double mass oscillator system

introduced in Section 3.1. The absolute values of the σj form an

elbow curve. The method proposed in [1] yields the rank ropt,GD = 51

which is much higher than the suitable model rank ropt = 7

determined visually.

2.3.4. Time di�erentiation
In this step, the time derivative V̇r of the matrix Vr is

computed, which is required for the computation of the linear

system representation in the next step. As suggested in [1], a

fourth-order central difference method

ḟ (x(ti)) =
1

121t

(

f (x(ti − 21t))

−8f (x(ti −1t))+ 8f (x(ti +1t))− f (x(ti + 21t))
)

(8)

is implemented, where 1t = 1
fS

denotes the time step size. The

derivative ḟ (x(ti)) of a state x(ti) at time ti is computed using two

past and two future steps. The resulting matrix V̇r ∈ R
(p−4)×r is,

thus, slightly reduced in dimension.

2.3.5. Sparse identification of non-linear dynamics
A sparse linear system representing the system dynamics

contained in Vr is recovered using the matrix Vr and the matrix

of derivatives V̇r using the sparse identification of non-linear

dynamics (SINDy) algorithm, which was introduced by Brunton et

al. in [6]. Sparse denotes a system description that comprises only

a small number of terms compared to the space of ansatz functions

used in the regression, thus yielding a very compact and simple set

of differential equations. The SINDy algorithm is an equation-free

method for obtaining differential equations describing the observed

dynamics of a system from measurement data. First, a library of

candidate functions2(Vr) ∈ R
(p−4)×(r+1) is set up from thematrix

of measurementsVr , which for the HAVOK-algorithm is defined as

2(Vr) =
[

1 Vr

]

, (9)

where 1 ∈ R
(p−4)×1 represents a biasmatrix containing only entries

of 1. SINDy will then identify the linear combination of those

candidate functions that can represent the dynamics in Vr . As the

goal of the HAVOK-algorithm is identifying a linear system, only

linear terms are included here, even though the SINDy algorithm

would allow for including non-linear terms in the function library,
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such as
(

vr,j
)2
, where vr,j denotes a column of the matrix Vr . With

this function library and the state derivatives, a system of equations

V̇r = 2(Vr)4 (10)

is set up. The matrix 4 ∈ R
(r+1)×r contains sparse vectors of

coefficients ξ j which are computed using a thresholded sequential

least squares algorithm. The SINDy algorithm seeks to find a

solution to this system of equations that minimizes the L1-norm

of the coefficients, promoting sparsity. Only a few terms in the

coefficient vectors are non-zero for generating a sparse model V̇r =

2(Vr)4 with as less terms as possible. The sparsification knob µ,

which is another important parameter of the HAVOK-algorithm,

is introduced. After an initial least-squares guess 4 = 2(Vr)
+V̇r ,

all entries of 4 smaller than µ are set to zero. The regression is

performed again on the non-zero entries of 4, and once again,

the resulting entries in 4 are set to zero if their values are below

the sparsification threshold µ. This process is repeated until it

converges to a final sparse matrix4, i.e., until nomore small entries

are set to zero within one iteration. The matrix4 now contains the

few coefficients that govern the observed dynamics. With the final

coefficients4, it is possible to describe the system dynamics in the

form of

v̇r = 4T(2(vTr ))
T , (11)

where v̇r and vr are no longer matrices containing time

series measurement and their derivatives, but state vectors

vr = [v1, v2, ..., vr]
T forming the dynamical system described in

state-space form.

The challenge in this step is to identify a Pareto-optimal µ

that balances model accuracy, which is achieved with a smaller

µ (deleting fewer terms), and model sparsity, which is implied

by a larger µ (deleting more terms). In the original study, the

authors propose increasing the sparsification threshold for each

column, such that µj = jµ0 and µ0 = 0.02, while noting that

µ = 0 yields better results, even though sparsity is not ensured

in that case. In this study, an additional function is implemented to

identify optimal sparsification parameters µj. Each column of the

SINDy regression is considered separately. A set of 100 candidate

sparsification thresholds µ ∈ [0.0001, 1] is tested. The SINDy

algorithm is applied using each threshold, such that 100 different

versions of a vector or sparse coefficients ξ j are obtained. As a

measure for model accuracy, the approximated derivative

v̇lin,j = ξTj (2(VT
r ))

T (12)

is computed and compared to the original derivative vr,j

nMAEj(µ1) = nMAE
(

v̇r,j(µ1), v̇lin,j(µ1)
)

, (13)

using the normalized mean error. The result is a vector of

normalized mean errors

nMAEµ,j = [nMAEj(µ1) nMAEj(µ2) ...nMAEj(µ100)] ∈ R
1×100.

(14)

As a measure for sparsity, the number of non-zero elements (NZE)

in ξ j normalized to the length r + 1 of the vector is computed.

By comparing these measures, nMAE for accuracy and NZE for

sparsity, a suitable threshold value can be determined for each

column of the sparsification. This procedure is repeated for each

column separately, ultimately yielding a vector of threshold values

µopt. The process would be rendered more exact by comparing

the initial columns vr with the HAVOK trajectories yH instead

of comparing the derivatives v̇lin,j and v̇r,j for the error measure,

thus taking the interplay of the different columns into account.

However, this expansion drastically increases the number of

necessary computations and renders the numerical cost too high.

Both the evolution of nMAE and NZE for one exemplary column

are shown in Figure 4A. The smaller the sparsification parameter

µ, the more terms are included, and the better the fit. On the

other hand, if too few terms remain for large µ, the fit is not

satisfying anymore. An optimal selection of µ will balance both

competing quantities. For each column, an optimal sparsification

parameter µ is obtained as the largest µ to yield an nMAE below a

threshold value nMAEthresh. This hard-thresholding of the nMAE

results in an optimal µi for each column i that will satisfy that

heuristic goodness of fit, see Figure 4B. As the magnitude of the

nMAE is different for each dynamical system, it is necessary to

adjust the sparsification threshold µthresh for each new system. We

recommend studying the resulting nMAE for each column and

choosing a threshold nMAEthresh that is optimal for your individual

purpose. A higher nMAEthresh results in a largerµ and thus in a less

accurate, but more sparse result, and vice versa.

2.3.6. Construction of state-space representation
In the last step of the HAVOK-algorithm, a forced linear state-

space system describing the system dynamics is set up from the

matrix of sparse coefficients4 obtained through SINDy. To do so,

the matrix 4T is split into a state matrix AH ∈ R
(r−1)×(r−1) and

an input matrix BH ∈ R
(r−1)×2 as illustrated in Figure 2. Precisely,

the matrix BH is set up from two sections of 4T , BH,1 and BH,2,

each ∈ R
(r−1)×1, such that BH = [BH,1,BH,2]. The result is a forced

state-space system representation in the form of

d

dt
v(t) = AHv(t)+ BH

[

1

vr(t)

]

yH(t) = Cv(t),

(15)

with states v(t) ∈ R
(r−1)×1 and a square r− 1-dimensional identity

matrix C. The output of the system is given by yH ∈ R
(r−1)×1.

The forcing vr(t) is given by the last column of the matrix Vr .

The forcing term is necessary for the reconstruction of the system

dynamics when no closed-form representation of the Koopman

operator can be found, i.e., to compensate for the approximation

error. It was found by Champion et al. in [7], that a linear HAVOK

model without forcing is sufficient to reconstruct the dynamics

for quasi-periodic systems. For most cases, however, the forcing is

necessary and the main drawback of this modeling approach as it is

a priory only available for the time span tl measured initially. There

are different approaches to computing the forcing term beyond

merely inserting the last column of Vr , including learning a forcing

udisc from the prediction error [31] and modeling the forcing using

a second Hankel matrix [32].

The setup of the state-space system concludes the description of

theHAVOK-algorithm and its parameters, specifically the sampling
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FIGURE 4

(A) Determination of an optimal sparsification threshold µ. The

optimization is performed for each column of the sparse regression

separately, the image shows the process for the first column only.

The sparse regression is performed 100 times with di�erent values

of µ ∈ [0.0001, 1] to obtain 100 di�erent versions of a vector of

sparse coe�cients ξ j. As a measure for accuracy, the nMAE of the

resulting approximated derivative v̇lin,1 with its corresponding true

derivative v̇r,1 is computed for each variation of µ. The relative

number of non-zero elements (NZE) in the vector of sparse

coe�cients is a measure for model sparsity. By hard-threshold the

nMAE at a value nMAEthresh , a suitable µ for the given column is

chosen. (B) Results of the sparse regression. The approximated

derivative v̇lin,1 obtained with the indicated µopt,1 compared to the

corresponding true derivative v̇r,1.

frequency fs, measurement time span tl, and chosen degree of

freedom from the data acquisition step, the embedding dimension

q, which is chosen during the setup of the Hankel matrix, the

model rank r which has to be fixed after the SVD of the Hankel

matrix, and the sparsification knob µ, which impacts the results

of the sparse regression in the SINDy-step. Currently, the optimal

selection, and the impact of a specific selection on the resulting

model are unknown. In the previous paragraphs, possibilities for

the computation of suitable values for these parameters have been

introduced, sometimes beyond the original algorithm from [1]. In

the next section, a deep dive into those parameters and how they

influence each other will be taken.

2.4. Counter-intuitive action of embedding
parameters

To illustrate the inner workings of the algorithm, several

parameter studies have been performed that show how the

parameters interact with each other and the final reduced-order

model. In particular, some interrelations between parameters that

are not obvious right away are pointed out here. These studies help

to understand how the algorithm works and might thus help in

choosing parameters for new systems.

First, it is important to note that the time spans contained in

the rows and columns of the Hankel matrix, tq and tp, do not solely

depend on the choice of the embedding dimension q, but also on

the sampling frequency fs. Essentially, more modes of vibration

can be discovered if the sampling frequency is high. For a fixed

embedding dimension q, a smaller sampling rate leads to less time

series information in a column of the Hankel matrix H, while a

larger sampling rate leads to a larger time span x(q)(t). To cancel

out the effect of the sampling frequency fs on further results, it is

prudent to define the time span in a column of H, x(q)(t) instead

of the embedding dimension q. For periodic motions, it is not

necessary to use more than half a period of vibration in that column

time span.

Second, the optimal rank r, i.e., the number of relevant

modes ui that results from the SVD, depends on the amount of

information contained in x(q)(t). If little information is contained

in x(q)(t), only a small number of basis functions are necessary to

span the function space, but as the information in a column of H

grows, so does the size of the space of basis functions, and thus the

rank r. However, studies that were performed in the course of this

study indicate that there is a maximum model rank r for a given

system, which does not increase further even as x(q)(t) is increased.

These findings agree with assertions in the literature [31].

The combination of these two observations leads to the (at

first counter-intuitive) observation that decreasing the sampling

frequency fs yields a larger number of relevant basis functions

uj and a larger model. This is because a larger sampling

frequency fs, together with a fixed embedding dimension q,

results in a larger time span in x(q)(t) and thus is a larger

model rank r. If the time span x(q)(t) is kept constant instead

of the embedding dimension q when varying fs, the obtained

model rank r becomes independent of the sampling frequency

fs, up to a value when the sampling frequency becomes too

coarse to accurately represent the core dynamics of the system.

In realistic settings, the sampling frequency will be fixed,

and a limited time series measurement will be available. Our

recommendations for an optimal embedding process are given in

Section 4.2.2.

3. Results

In this section, the results of the application of the HAVOK-

algorithm to different mechanical oscillators are presented. Starting

with a linear double-mass oscillator, the analytical model and the

low-dimensional HAVOK model will be compared with a focus on

which information of the analytical model can be extracted from

the HAVOK model. Moving on, the dependence of the results on
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FIGURE 5

The HAVOK model (bottom) for a double mass oscillator compared to its analytical basis (top). The state matrix A and input matrices B are shown in

color code where red, white, and blue squares denote negative, zero, and positive entries of the matrices, respectively. To ensure that small values

don’t get lost in the color scale, all non-zero entries are marked with gray dots additionally. The eigenvalues of the two systems match. State-space

representations and the time series comparisons show that the reduced-order model reproduces the dynamics of the original system well, except

for a di�erence in amplitude, which is visible in the state space plots. For better visualization, the time series data of both xa(t) and yH,1(t) is normalized

to have zero mean and a standard derivation of one.

the algorithmic parameters is studied and the impact of varying

model parameters such as initial conditions, damping, forcing type,

and non-linearity is analyzed. These studies foster conclusions

about which information of the true underlying dynamical system

can be drawn from the data-driven reduced-order HAVOK model,

and under which conditions this is possible. The exemplary

application of HAVOK to real-world brake data, illustrating how

parameters can be chosen for an unknown system, concludes

this section.

3.1. Application to mechanical oscillators

The first step in the study of the application of HAVOK to

mechanical oscillators is the double mass oscillator (DMO), which

is shown in Figure 5. Two massesma andmb are connected to each

other and to the fixation points via spring-damper systems with

linear spring constants kj, j ∈ {1, 2, 3} and damping parameters

dj, j ∈ {1, 2, 3}. The displacement of the two masses in the

horizontal direction is denoted by xa and xb, respectively. A forcing

ψ , which in this first study is considered to be harmonic such that

ψ(t) = 9cos(�t) with amplitude9 and frequency�. Initially, the

parameters are considered to be homogeneous, i.e.,ma = mb = m,

k1 = k2 = k3 = k, and d1 = d2 = d3 = d. The equations of

motion for this system are given by

[

ma 0

0 ma

]

︸ ︷︷ ︸

MDMO

[

ẍa(t)

ẍb(t)

]

︸ ︷︷ ︸

ẍDMO(t)

+

[

2d −d

−d 2d

]

︸ ︷︷ ︸

DDMO

[

ẋ1(t)

ẋ2(t)

]

︸ ︷︷ ︸

ẋDMO(t)

+

[

2k −k

−k 2k

]

︸ ︷︷ ︸

KDMO

[

x1(t)

x2(t)

]

︸ ︷︷ ︸

xDMO(t)

=

[

ψ(t)

0

]

︸ ︷︷ ︸

ψDMO(t)

, (16)

where MDMO is the mass matrix, DDMO the damping matrix, and

KDMO the stiffness matrix. The states and their time derivatives

are given by the vectors xDMO, ẋDMO, and ẍDMO, respectively. The

forcing vector is denoted by ψDMO. The damping is assumed to

be in the form of Rayleigh damping, i.e., proportional to mass and

spring stiffness

DDMO = αMDMO + βKDMO (17)

with stiffness- and mass-proportional damping parameters α and

β . The system parameters are chosen such that the first damped

eigenfrequency ωd,1 = 1 rad/s and the mass m = 1 kg. The

Lehr damping factors Dj [33] of the two eigenmodes of the DMO

are 0 < Dj < 1, such that both modes are weakly damped.

The forcing frequency is chosen to lie in between the damped
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TABLE 1 Default parameters and resulting properties of the double mass

oscillator.

Parameter Symbol Value Unit

Mass m 1.0000 kg

Spring constant k 1.4337 N/m

Proportional damping factor α 0 1/s

Proportional damping factor β 0.9187 s

1st undamped eigenfrequency ω0,1 1.1894 rad/s

2nd undamped eigenfrequency ω0,2 2.0739 rad/s

1st damped eigenfrequency ωd,1 1.0000 rad/s

2nd damped eigenfrequency ωd,2 0.6308 rad/s

1st damping factor D1 0.5500

2nd damping factor D2 0.9526

Forcing amplitude F0 1 N

Forcing frequency � 0.8 rad/s

eigenfrequencies such that ωd,2 < � < ωd,1. The default

parameters used with the DMO, the undamped eigenfrequencies

ω0,j, damped eigenfrequencies ωd,j, and damping factors are listed

in Table 1.

The state-space model of the analytical DMO is set up as








ẋa(t)

ẋb(t)

ẍa(t)

ẍb(t)








︸ ︷︷ ︸

ẋDMO(t)

=








0 0 1 0

0 0 0 1

− 2k
m

k
m − 2d

m
d
m

k
m − 2k

m
d
m − 2d

m








︸ ︷︷ ︸

ADMO








xa(t)

xb(t)

ẋa(t)

ẋb(t)








︸ ︷︷ ︸

xDMO(t)

+








0

0
1
m

0








︸ ︷︷ ︸

bDMO

F0cos(�t)
︸ ︷︷ ︸

wDMO(t)

yDMO(t) = CDMOxDMO(t)

(18)

where CDMO is a 4 × 4 unitary matrix. Figure 5 shows a

representation of the state matrix ADMO and the input vector

bDMO in color-code: Red and blue squares mark negative and

positive entries in the matrices, respectively. White squares denote

zero entries, while gray dots mark all non-zero entries to ensure

that no small entries are lost in the color scale. A state-space

image of the dynamics of the system with x0 = [0, 0, 0, 0]T is

also shown.

For this first study, the input to the HAVOK model is

a time series of the x1-coordinate, with an input time span

tl = 5T which is five times the forcing period T = 2π
�

and the sampling frequency fs = 1 kHz. The parameters

of the algorithm are set to the embedding dimension q =

118, the model rank r = 7, and the sparsification threshold

nMAEthresh = 3.5 · 10−3, yielding a sparsification parameter µ =

[0.0044, 0.0196, 0.2915, 0.0236, 0.3854, 1.0723, 0]T . How changing

those parameters affects the results will be studied in the next

subsection. The resulting HAVOK model is shown in Figure 5,

where the HAVOK state-space matrices AH and BH are depicted

in the same color-code as previously, showing that the input

matrix BH is completely empty. The state matrix AH has an

almost block-diagonal shape, where the first two states are only

connected to the rest of the states via two very small entries.

The state-space formed by the first two states yH,1 and yH,2 of

the HAVOK model resembles the state-space of the analytical

model up to a scaling of the axes. The difference in scaling stems

from the orthonormalization of the modes vj during the SVD

in the third step of the HAVOK algorithm, see Figure 2. The

results from the SVD can be related to the input time series,

both in terms of amplitude and dynamics, as the projection of

the input time series onto a mode uj fits the respective mode

vj multiplied with the singular value σj. Unfortunately, it is not

as straightforward to regain this difference in amplitude for the

final HAVOK model time series. Integrating a correction for this

effect would be an interesting point for future research. The

HAVOK eigenvalues match the true eigenvalues of the analytical

model exactly, and an additional eigenvalue-pair on the imaginary

axis matches the forcing frequency, as illustrated in Figure 5. For

the linear DMO with harmonic forcing, the HAVOK-algorithm

yields an unforced state-space model whose eigenvalues match the

analytical eigenvalues exactly. This is an interesting finding, as we

only observed a single degree of freedom, and did not specify the

true dimensionality of the system, or any system parameters. Still,

HAVOK is able to correctly identify the dynamic properties of the

underlying system accurately (eigenvalues encodemodal properties

and stability).

3.1.1. Influence of HAVOK parameters
The results presented in the previous subsection are obtained

with specific settings of parameters. In the following, the influence

of the tuning parameters input time span tl, input degree of

freedom, model rank r, and sparsification parameter µ on the

resulting HAVOK model and the information which can be

extracted from it, are studied. These studies yield important

insights into how to choose those parameters in order to determine

a good low-rank representation of the dynamics. Figure 6A shows

the results of varying each of these tuning parameters separately,

which will be discussed in the following.

The measurement time length {tl ∈ ρ · T|ρ ∈ N, ρ ≤ 10}

is varied in integer multiples of the forcing period. It controls

the ratio of transient and steady state (periodic) motion that

is contained in the input time span. The shorter the input

time span, the larger the relative importance of the transient

motion in the time series. Figure 6A shows the resulting state

matrices AH, and the respective eigenvalues for this variation.

To visualize the variations of the matrix AH, each matrix is

represented as one column. For example, the left column in the

Figure shows the matrix AH for the first variant of tl row-by-

row. The evolution of each matrix entry for parameter variations

becomes clearly visible since the corresponding entries lie directly

next to each other. The input matrix BH is not depicted as it

remains all-zero over all variations. Only absolute values of the

matrix entries are shown. It can be seen that as the input time

span (and thus the relative importance of the periodic motion
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FIGURE 6

(A) HAVOK model results for variations of the algorithm parameters, studied by computing the model for a range of values. The state matrix AH and

HAVOK model eigenvalues for di�erent input time spans tl ∈ [T :10T]. In the figure, one column represents one matrix AH, with the rows stacked on

top of each other. This view allows for a direct comparison of the matrix entries. (B) HAVOK model results for variations of the algorithm parameters,

studied by computing the model for a range of values. The state matrix AH obtained when using di�erent input time series xa(t), xb(t) or xc(t) from the

3MO illustrated that the model rank can depend on the choice of input degree of freedom. (C) HAVOK model results for variations of the algorithm

parameters, studied by computing the model for a range of values. HAVOK model matrices AH and BH obtained when varying only the model rank

r ∈ [3 :7], while using the xa(t) time series of the DMO. It is shown that the magnitude of the matrix entries do not change when increasing rank. (D)

The sparsification parameter µ and NZE for each column of the sparse regression when using the xa(t) time series of the DMO and a model rank r = 7.
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in the input time span) increases, the resulting state matrix

becomes more sparse and for tl > 8T, HAVOK no longer

correctly identifies the system eigenvalues. The forcing-related

eigenvalues are identified correctly for all variations of the input

time span.

To visualize the impact of the chosen measurement degree

of freedom on the resulting system, a three-mass oscillator

(3MO) is considered. We study each state as input to HAVOK

separately. The three-mass oscillator model has the same structure

as the DMO seen before, but with one additional mass. This

dynamical system has three eigenmodes, where in the second

eigenmode, only the two exterior masses at the two sides move.

For the three depicted state matrices in Figure 6B, the input

time series was taken to be the displacement of each of the

masses xa(t), xb(t) and xc(t). The dynamical system obtained

with the two exterior measurements xa(t) and xc(t) has rank

r = 8, while the middle degree of freedom xb(t) results

in a smaller r = 6 dimensional system. Analysis of the

eigenvalues shows that while all models correctly contain the

forcing frequency and the eigenvalues associated with the first

and third eigenmodes, only the models obtained with xa(t) and

xc(t) also contain the eigenvalue pair related to the second

eigenmode, which is a physically consistent result with respect to

the mode shapes.

The effect of varying the embedding dimension q, or time

series section x(q)(t), has already been discussed in a previous

section, but the question of how to choose an optimal embedding

dimension for a given measurement time series remains. Here,

a large range of q was tested and the evolution of singular

values σj and coordinates uj was observed. Finally, an embedding

dimension was chosen such that the coordinates uj resemble

Legendre polynomials, and the singular values yield a suiting

rank value.

A study of the impact of the model rank of the system, where

the model rank is varied such that {r ∈ N|3 ≤ r ≤ 7} demonstrates

that the chosen rank does not affect the magnitude of the values

in the state-space matrix A or the input matrix. Instead, the non-

zero part of the state matrix remains constant when increasing the

rank, only adding values that were previously observed in the input

matrix, see Figure 6C. Concerning the eigenvalues, it was found

that the HAVOK model first contains the eigenvalue pair on the

imaginary axis, which is related to the forcing frequency, and then

adds the system-related, that is damped, eigenvalues.

The determination of the sparsification parameter has been

described in a previous section. Figure 6D shows the chosen

optimal sparsification parameterµopt for each column of the sparse

regression along with the relative number of non-zero elements

in the resulting matrix column. It shows that the sparsification

parameter has an increasing trend with increasing column number

and that its value is directly related to the sparsification process: For

the last column, whereµ7 = 0, the column appears fully populated,

as no sparsification takes place. Physically speaking, the dynamics

contained in the last column are too complex to be matched by the

simple linear ansatz space, even when fully populated. In the case of

the linear oscillator with monochromatic forcing, the last column

of the sparse regression does not contain physically meaningful

information, it is simply a relic of the algorithm. However, for more

general systems, e.g., when including non-linearities, this column

contains the more complex dynamics which cannot be matched by

the linear ansatz.

3.1.2. Dependence on physical model properties
After the dependence of the HAVOK results on the tuning

parameters of the algorithm has been established, this section

explores the evolution of the HAVOK model as the parameters of

the analytical model itself change. The aim is to explore the limits

of the HAVOK-algorithm as a method for obtaining low-order

models that correctly represent the properties of the underlying

system. The sensitivity of the HAVOK model for the double

mass oscillator to changes in initial conditions, damping, and

different forcing types is explored as well as the HAVOK model

for non-linear double mass oscillators. The results are shown in

Figures 7A, 9.

To study the dependency of the HAVOK model on the

initial conditions, five exemplary initial conditions along one

trajectory starting from x(t0,1) = [10, 10, 0, 0]T are chosen,

where the first x(t0,1) is quite far away from the steady-

state motion and the last x(t0,5) lies exactly on the steady-

state, as shown in Figure 7A. The measurement time span

tl is kept constant while varying the initial conditions, such

that the initial conditions further away yield an input time

series with a larger fraction of transient motion. The resulting

matrices and eigenvalues shown in Figure 7A illustrate that

the state matrix becomes more sparse as the initial conditions

approach the steady-state. While the forcing frequency and the

first eigenvalue pair are always identified correctly, the second

eigenvalue pair is not detected correctly for the time series

with large transients, which originate from the initial conditions

further away.

For the study of the damping parameter, the

proportional damping factor β is varied such that

β ∈ {0.5β0, 0.9β0,β0, 1.01β0, 1.1β0}. A variation of the damping

factor changes the damped eigenfrequencies of the system and

with it the damping factors for both eigenmodes. With increasing

β , the damped eigenfrequencies ωd decrease, while the respective

damping factor D increases. For β5, the damping factor D2 > 1,

indicates that this mode becomes strongly damped. The second

panel of Figure 7B shows the evolution of the state matrix AH and

the eigenvalues for the changes in the damping parameter. For all

values of β , BH is all-zero. The bottom rows of the state matrix

change slightly, but the overall structure of the matrix remains the

same. HAVOK correctly identifies all eigenvalues, except for the

second eigenvalue pair for the strongest damping factor, which has

been noted to correspond to a strongly damped mode.

Thus far, only harmonic monochromatic forcing has been

considered. To analyze the influence of the forcing on the HAVOK

model, two different cases are considered. First, a frequency-sweep

forcing with ψ1(t) = 9cos(�0
t
2 t), where �0 = 0.8 rad/s and

second, a harmonic forcing with three superimposed frequencies

given by ψ2(t) = 9(cos(�1t) + cos(�2t) + cos�3t)), with �1 =

8 rad/s, �2 = 0.8 rad/s and �3 = 0.4 rad/s. The respective forcing

and input time series are shown in Figures 7C, D along with the

resulting HAVOK model matrices and eigenvalues. The HAVOK
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FIGURE 7

(A) Dependence of the HAVOK model on changes in the physical parameters of the analytical model. For each study, the double mass oscillator is

used, varying one of the system parameters only. The HAVOK-DMO for di�erent initial conditions along one trajectory result in di�erent input time

series. The resulting HAVOK model state and input matrices are show following the convention introduced in Figure 5. The respective model

eigenvalues are compared to the forcing frequency and the eigenvalues of the underlying DMO system. (B) The HAVOK-DMO model for di�erent

damping values is illustrated by the state matrix. The all-zero input matrix is not represented. The eigenvalues for each model are shown in di�erent

colors, where circles represent the HAVOK model eigenvalues and crosses the true eigenvalues. One pair of HAVOK model eigenvalues lies on the

imaginary axis for every model variation. (C) The application of HAVOK to a DMO forcing with a frequency-sweep type forcing shows entries on the

sub-diagonal of the state matrix. In the representation of the eigenvalues, no forcing frequency is shown as it is varied continuously. (D)

HAVOK-DMO model for a system that is forced with three superimposed sinusoids, where the HAVOK model catches both the system eigenvalues

and the forcing frequency.
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FIGURE 8

HAVOK models a linear, weakly non-linear, and strongly non-linear double mass oscillator. The state matrices AH,lin, AH,wnl, and AH,snl are shown on

top, with the input matrices BH,lin, BH,wnl, and BH,snl below. The system eigenvalues λj of the true underlying DMO system, and the HAVOK model are

shown on the bottom, along with a frequency spectrum of the input time series P1|f(x(t))|, the forcing frequency 9 and its higher harmonics.

model for the system excited with three superimposed sinusoids

is an unforced model with rank r = 11, and three eigenvalue

pairs corresponding to the forcing frequencies on the imaginary

axis. As before, HAVOK correctly identifies the eigenfrequencies

of the system. The picture is very different for the frequency-

forcing sweep excited model. Here, the structure of the resulting—

now forced—state-space model of rank r = 10 is similar to the

structure of the model that was identified for the chaotic Lorenz63
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FIGURE 9

Case studies of the weakly non-linear double-mass-oscillator. (Top) The HAVOK model obtained when omitting all transient motion in the input time

series. (Bottom) The HAVOK model for a DMO when the non-linearity is moved to the other end of the oscillator chain, away from the excitation and

the input time series. For both systems, the state space resulting from the first two HAVOK trajectories yH,wnl,1 and yH,wnl,2 are shown, as well as the

state and input matrices. On the right, the HAVOK model eigenvalues are compared to the true DMO system eigenvalues, the frequency spectrum

P1|f(x)| of the input time series and the forcing frequency.

[34] system in the original [1] article. The HAVOK eigenvalues

do not correspond to the system eigenvalues but include unstable

eigenvalue pairs.

Non-linearity is introduced into the system by adding a cubic

spring stiffness knl to the first spring k1. The equations of motion

are now given by

mẍa(t)+ 2dẋa(t)− dẋb(t)+ 2kxa(t)− kxb(t)− knlx
3
a(t) = ψ(t)

mẍb(t)− dẋa(t)+ 2dẋb(t)− kxa(t)+ 2kxb(t) = 0

(19)

with a non-linearity knlx
3
a in the first line. Two versions, a weakly

non-linear model with knl,1 = 2k and a strongly non-linear model

with knl,2 = 20k, are considered. The resulting HAVOK models

are shown in Figure 8. Here, AH,lin, AH,wnl, and AH,snl denote

the system matrices of the linear, weakly non-linear, and strongly

non-linear system, respectively. With a stronger non-linearity, the

model rank increases, while the overall structure of the state matrix

remains the same. As soon as a non-linearity is introduced, the

HAVOK model becomes forced, i.e., BH is no longer all-zero. At

the same time, the non-linearity seems to keep the algorithm from

correctly identifying the eigenvalues of the system. Instead, the

HAVOK eigenvalues correspond to the forcing frequency and its

higher-order harmonics, marked in the Figure by dotted lines.

Two additional case studies with systems including non-

linearity, the first neglecting all transient motion and the second

moving the non-linearity to the spring k3 on the other end of the

oscillator chain, conclude the studies of parameter dependence.

The resulting HAVOK models and their eigenvalues are both

shown in Figure 9. The first two trajectories of the HAVOK

model are shown as yH,wnl,1(t) and yH,wnl,2(t). The HAVOK model

obtained from only the steady-state oscillation of the non-linear

oscillator has a dominant off-diagonal structure, where the states

as strongly coupled pair-wise. Its eigenvalues correspond to the

forcing frequency and its higher harmonics on the imaginary axis,

there is no signature of the linearized system’s eigenvalues. For

the model with the non-linearity away from the excitation and the

measurement time series, the structure of the statematrix resembles

the structure of previous state matrices, i.e., is less dominated by the

diagonal. The eigenvalues of this system correspond closely to the

eigenvalues of the analytical model, the forcing frequency, and one

higher-order harmonic. Both these HAVOK models are forced, the

same as the previous non-linear models.

3.2. Application to a real-world brake
system

Thus far, the low-order HAVOK models obtained from

synthetic data have been considered, which enabled the comparison

of the true analytical model (generating the data) and the HAVOK
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model. To round off this study, HAVOK is applied to real-

world measurement data obtained with a microphone during the

actuation of a friction disc brake system of a passenger car. For

details regarding the experimental setup, see [35] and [36]. Friction

brakes can exhibit squeal noises during braking, resulting from

complex self-excited machine dynamics whose mechanisms have

not yet been fully understood today [35]. There are two different

prominent theories as to the process that yields brake squeal. Both

of these theories are based on studying the silent (not squealing)

and the squealing section of a brake stop separately and agree on

a regime shift between the two dynamical states, which leads to

qualitatively different dynamics in the two regimes. One theory

states that the squealing, which is represented by a low-dimensional

attractor, originates from the equilibrium-point dynamics in the

non-squealing regime losing its stability [37], for example through

a Hopf bifurcation. The other theory identifies 8–12-dimensional

attractors in the silent regime, which transition toward a lower-

dimensional attractor of 3–6 dimensions in the squealing regime

[35, 38, 39]. These studies all agree on signs of chaotic dynamics

in both the silent and the squealing regimes. As the realistic brake

system is comprised of multiple components, actuation and a

complex friction interface, the identification of a reduced order

model using only measurement data is highly interesting, also to

study the aforementioned root causes of the vibrations.

The microphone data was sampled at 51.2 kHz and bandpass-

filtered with cutoff frequencies at 1 and 20 kHz. Two exemplary

samples are taken from a single brake stop that is not squealing

in the beginning and then exhibiting strong squeal events toward

the end. To obtain a sufficient quality of the numerical derivatives

during the application of HAVOK, it is necessary to upsample

the data to 5,120 kHz for the silent and 512 kHz for the squealing

region. The upsampling was performed using a Matlab spline

interpolation function. The entire microphone signal and the

two exemplary snippets are shown in Figure 10. Characteristic

differences are visible in both time series.

The tuning parameters of the HAVOK algorithm are chosen as

follows. For the input data, only the chosen time span tl remains

a flexible parameter, as the sampling frequency is fixed. Section

lengths of 150,000 samples and 15,000 samples are taken from the

silent and the squeal region, respectively, resulting in tl ≈ 0.03 s

for both regimes. This time length was shown to yield consistent

results with time delay embedding in [35]. As has been explained

in the previous sections, the embedding dimension q and the

model rank r are closely related, as the model rank is obtained

from the results of the SVD, which depend on the embedding

dimension q. To find an optimal embedding dimension and rank,

the embedding dimension is initially set to q = 100 and varied over

a large value range. The optimal values are determined based on

the ability of the final HAVOK model to represent the measured

dynamics, computed as the fit between the measurement data and

the trajectory of the first HAVOK state yH,1(t). For the silent section,

q = 100 and r = 9 are found, and q = 1, 000 and r = 4 for

the squealing section. Note that the time span x(q)(t) in a column

of the Hankel matrix H is very different between the two regimes

due to the different embedding dimensions. Figure 10 shows the

first 100 singular values for each section which lead to the choice

of model rank. For the squealing regime on the right, the choice of

rank is obvious through the elbow-like formed curve. For the silent

region, no clear kink in the curve is visible, making the choice of

rank more heuristic. The sparsification parameter µ is set to zero

for this initial study because the computational cost of obtaining an

optimal µ is very high and was beyond the scope of this study. Due

to this setting, no sparsification takes place in the SINDy regression,

but a dominant structure of the state matrices is still clearly visible,

see Figure 10. In the original study by Brunton et al. [1], where the

algorithm was first introduced, the sparsification parameter µ was

often kept at zero, too.

For both regimes, the HAVOKmodel reproduces the measured

dynamics well except for a difference in amplitude which has been

elaborated on in Section 3.1. Figure 10 shows the state matrix AH

and the input matrix BH of the low-order HAVOK model as well

as the attractors build from the first three states yH,1(t), yH,2(t)

and yH,3(t) for the silent and squealing region, respectively. Both

models are forced and a dominant structure with only a few large

coefficients is visible in the matrices. The state matrix AH,nosq of

the silent section exhibits a clear structure with dominant entries

on the two sub-diagonals. This matrix structure resembles that of

the HAVOK model for the chaotic Lorenz attractor presented in

[1]. The much smaller model of the squealing section shows two

states are strongly coupled, and a third is mainly driven by the

forcing term. The resulting attractors are shown as black lines,

where the forcing is small, and red lines, where the forcing is larger.

In the silent regime, no clear structure of the attractor or forcing

patterns is discernible. In the squealing regime, the dynamics form

concentric circles around the yH,3-axis, being tilted slightly with

respect to the (yH,1, yH,2)-plane. The forcing marks the transitions

of the system from one radius to another.

4. Discussion

The results presented in the previous section show that the

HAVOK algorithm can be used to obtain low-order state-space

models that are able to reproduce the dynamics of the measured

system well. The studies with the double mass oscillator reveal

that the amount of system properties that can be extracted from

the HAVOK state-space model depends on the type of underlying

dynamical process, as will be discussed in detail in Section 4.1.

Extensive studies of the effects of the HAVOK parameters on the

resulting HAVOK model and the inner workings of the algorithm

give rise to recommendations for choosing these parameters when

applying HAVOK to a new model, as will be elaborated on in

Section 4.2.

It has been shown how HAVOK can be applied to real-world

measurement data where the type of underlying dynamics are still

subject to discussion. Even for the complex dynamical system at

hand, HAVOK is able to generate a model that reproduced the

dynamics well. It becomes clear that the obtained model ranks for

the silent r = 9 and squealing r = 4 section agree well with the

theories presented in the literature. At the same time, the HAVOK

models do not allow for much further information, for example

on the damping properties of the system. Taking a step back and

considering the results of the studies of the double and three-mass

oscillators, these results are not surprising.
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FIGURE 10

Application of the HAVOK algorithm to real-world measurement data. The sound pressure level (SPL) obtained with a microphone during the

actuation of the friction brake of a passenger car is shown on the top. The dash-dotted lines indicate the sections from the silent and squealing

regime used as input to the HAVOK algorithm. The singular values for each regime are visible in the center panel. In the bottom panel, the HAVOK

model state matrices AH and the input matrices BH are shown, along with the resulting time series yH,1(t) compared to the input time series x(t). As

before, both time series are normalized to have zero mean and a standard derivation of 1.

4.1. Physical interpretability

The fundamental research question for the study at hand

is: how much information can one obtain from a fully

data-driven system identification process using HAVOK, and

how can the resulting system description be linked with

classical physics-based descriptions? For all of the considered

models, the HAVOK algorithm generates state-space systems

that are able to reproduce the observed dynamics well. The

reconstructed state space trajectories yH,j of the HAVOK model
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will most likely be distorted compared to the original one

due to the orthonormalization that takes place during the

SVD. Whether or not it is possible to accurately recover

the original amplitude from the process remains subject to

further studies.

HAVOK builds up a state-space system based on the

frequency components in the input time series. Therefore, a

closed-form representation of the Koopman operator, i.e., an

unforced state-space system, is found for a dynamical system

with a finite number of frequency components, such as the

linear double mass oscillator with harmonic forcing. For this

special type of system, the HAVOK model accurately captures

the true eigenvalues and thus some of the properties of the

original system. The dependency on the periodicity of the

input signal is also emphasized by the fact that periodic

dynamics can be represented by a more sparse model, as the

studies with different initial conditions and input time series

lengths illustrate. It has also been shown that the rank of the

HAVOK model depends directly on the number of frequency

components in the input data. Note that even though HAVOK

captures the dynamics and the eigenvalues for dynamics with

a finite number of frequency components, it cannot distinguish

between system-inherent and forcing-related contributions in

the data. Therefore, HAVOK yields an unforced state space

model whenever possible, as no distinction between the different

components is possible without additional information on the

underlying system.

For general systems that include non-linearities or non-

harmonic forcing, no closed-form representation of the Koopman

operator can be found and the resulting HAVOK model is forced,

as is to be expected. The forcing will collect all dynamics that

cannot be represented by the linear Koopman operator. In these

cases, a lot of information on the underlying dynamical system

is moved into the forcing term of the HAVOK model and is

not accessible for further analysis in the state matrix AH. Some

information on the dimensionality, stability, and main spectral

components of the underlying dynamical system can still be found,

but the extraction of principles, coupling between the states, or

generalizations, remains difficult.

As with any data-driven method, the system identification

potential of the HAVOK algorithm is limited by the fact that only

observable dynamics can be represented in the final model, as the

study with the three-mass oscillator showed. Measurements from

a degree of freedom that does not move with a specific mode

cannot be used to create a model that represents that mode. The

same is true for strongly damped modes that do not affect enough

oscillations to become visible in the measurement data and are thus

not present in the HAVOK model.

4.2. Recommendations for choosing
HAVOK parameters

From the numerous studies of the HAVOK algorithm

with different mechanical oscillator models, we derive some

recommendations for choosing suitable parameter settings in order

to obtain the most meaningful HAVOK model possible.

4.2.1. Input data
The input data forms the basis for the HAVOK model and

may be subject to several parameter choices during the first step of

the algorithm. First, if a choice of potential input data is available,

choose a time series x(t) that contains rich information on the

underlying dynamics and captures as many different modes as

possible in order to get a more complete picture of the dynamics at

hand. The sampling frequency fs has to be high enough to represent

the dynamics in the desired time scale. It is recommended to check

the accuracy of the derivatives V̇r in the fourth step of the algorithm

by reintegrating the obtained derivatives and comparing them to

the original modes Vr . If the differentiation error is larger than 1%

nMAE, the input signal x(t) should be upsampled using a suitable

algorithm, until sufficient differentiation accuracy can be assured.

The input time span tl chosen from the measurement data is an

important parameter that impacts the final HAVOK model. If the

possibility of capturing both transient and steady-state dynamics

is given, a mixture of both regimes was shown to yield robust

and consistent results. Omitting the transient part completely

prevents HAVOK from correctly capturing the system-related part

of the dynamics (particularly damping), while large transients with

strongly dissipative dynamics lead to an overestimation of the

damping factors by the HAVOK algorithm. On the other hand,

it seems that only transient motion, as in the case study with the

frequency sweep function or the self-excited friction brake system,

HAVOK cannot pick up the properties of the dynamical system

itself in a fashion that is directly extractable, though it still yields a

good reconstruction of the underlying dynamics and, in some cases,

of the dimensionality of the system.

4.2.2. Embedding dimension and model rank
The embedding dimension q defines the amount of information

that is contained in one column of the Hankel matrixH which is set

up in the second step of the algorithm. The model rank r, which is

chosen in the third step after the SVD of the Hankel matrix, marks

the number of columns of the matrix V which are taken along for

the sparse regression and ultimately defines the rank of the final

model. Because the model rank r is generally chosen as the number

of relevant components that are computed in the singular value

decomposition, these two tuning parameters are closely connected.

There are two approaches to deciding on an embedding dimension

and model rank.

If the information on the desired model rank is available, either

from prior knowledge of the system or from a fixed, desired output

model rank, then the embedding dimension q can simply be varied

until the singular value decomposition yields the desired number

of relevant components. A larger embedding dimension q or, more

accurately, a larger time span x(q)(t), yields more valid coordinates

and thus a higher model rank r, while a smaller value of q yields

a smaller rank r. A good initial guess for the model rank r is the

number of frequency components of the model and its forcing

times two.

If no specific model rank r can be expected or is desired, it

is recommended to vary the embedding dimension q over a wide

value range and observe how the resulting model rank evolves.

A model rank can then be chosen as a larger value, if a high
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model accuracy is desired, or a smaller value if a low-order model

is wanted.

For the models studied in the course of this study, a variation of

embedding dimension in the range of q ∈ [50 : 1, 000] was found to

be sufficient. For periodic or quasi-periodic systems, a good starting

point is an embedding dimension that yields a time span x(q)(t) =

(q−1)1t that matches one period of the system [7]. For any system,

the embedding dimension has to capture enough of the oscillation.

If q is too small, the Koopman observables or uj obtained from

the SVD are highly non-linear and do not form a good basis for

the HAVOK model [7]. According to Dylewsky et al. in [31], the

embedding dimension q can be too small, but not too large. Our

studies showed that there is an upper limit to the model rank r that

can be obtained for a given system through variation of embedding

dimension, above which no reasonable results are achieved.

4.2.3. Sparsification threshold
The sparsification threshold µ is set to define the cutoff

threshold for small coefficient entries in the sparse identification of

non-linear dynamics in the fifth step of the HAVOK algorithm. The

parameter does not impact the dominant structure of the resulting

state matrices but induces the final state and input matrices AH

and BH to be more sparse. Finding a Pareto-optimal µ between

model sparsity and model accuracy requires large computational

efforts when performed extensively. It is possible to compute the

vectors of sparse coefficients for a range of sparsification thresholds

and compare the resulting non-zero elements and model accuracy

for each individual state [3], as presented in Section 2.3.5. From

this, an optimal sparsification threshold for each state can be

found. However, since the dominant structure is not affected by

the sparsification, it may be sufficient to set the sparsification

threshold µ = 0.

5. Conclusion

In this study, the steps of the HAVOK algorithm, its parameters,

their interconnections, and the relation of the method to the

Koopman operator theory have been presented. The studies

were performed in Matlab. Several mechanical oscillator models,

ranging from linear to non-linear, weakly to strongly damped,

excited with different types of forces, and subjected to different

initial conditions, have been subjected to the HAVOK algorithm.

The resulting low-order HAVOK state-space models have been

compared to the analytical physics-based models to determine

which properties of the underlying dynamical systems can be

extracted from the data-driven approach and under which

conditions. For all of the considered systems, the obtained HAVOK

models reproduce the measured dynamics well. Information on

the underlying (i.e., the data-generating) system dimensionality,

stability, and dominant frequency components can be obtained

in most cases, but detailed information such as eigenvalues can

only be identified correctly for systems with a low number of

frequency components in our study. The HAVOK algorithm is,

thus, a good choice if a low-order model is required for future

state prediction or control purposes of a complex and unknown

dynamical process. However, the method is of limited use as a

system identification algorithm when system properties are to be

identified in the classical sense of modal properties. Extensive

studies of the effects of the algorithm’s parameters yield valuable

insights into the inner workings of the algorithm and give rise to

recommendations for choosing those parameters when applying

the method to new systems.
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