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Dynamics analysis of a
predator–prey fractional-order
model incorporating predator
cannibalism and refuge

Maya Rayungsari*†, Agus Suryanto,

Wuryansari Muharini Kusumawinahyu and Isnani Darti

Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Brawijaya,

Malang, Indonesia

In this article, we consider a predator–prey interaction incorporating cannibalism,

refuge, and memory e�ect. To involve the memory e�ect, we apply Caputo

fractional-order derivative operator. We verify the non-negativity, existence,

uniqueness, and boundedness of the model solution. We then analyze the

local and global stability of the equilibrium points. We also investigate the

existence of Hopf bifurcation. The model has four equilibrium points, i.e., the

origin point, prey extinction point, predator extinction point, and coexistence

point. The origin point is always unstable, while the other equilibrium points are

conditionally locally asymptotically stable. The stability of the coexistence point

depends on the order of the Caputo derivative, α. The prey extinction point,

predator extinction point, and coexistence point are conditionally globally and

asymptotically stable. There exists Hopf bifurcation of coexistence point with

parameter α. The analytic results of stability properties and Hopf bifurcations are

confirmed by numerical simulations.

KEYWORDS

predator-prey system, cannibalism, refuge, Caputo fractional-order derivative, local and

global stability analyzes, Hopf bifurcation (critical) value

1. Introduction

Predator–prey interaction, as the basis of the food chain, is among the most essential

ecological issues. In numerous published research, mathematical models have been

developed to explain the dynamics of Predator–prey interaction, such as by incorporating

social behavior [1, 2], age structure [3, 4], ratio-dependent functional response [5, 6],

harvesting [7, 8], and so on. The Predator–prey model is still being developed by considering

many factors that occur in nature. Cannibalism, the consuming of the same species in

whole or in part, is one of its most intriguing aspects since many animals in nature exhibit

cannibalistic behaviors, such as carnivore mammals [9–11], fish [12, 13], and spiders [14–

16]. Cannibalism may provide adaptive advantages such as exploiting conspecifics as a food

source or eliminating possible competitors [17].

Some researchers have investigated the mathematical model involving cannibalism [18–

21]. Kang et al. [18] studied a single-species cannibalism model with stage structure. The

model studied is a dynamic system of one population such an age structure that divides

the population into two classes, i.e., eggs and an adult class consisting of larvae, pupae,

queen insects, worker insects, and other types. Zhang et al. [19] analyzed predator–prey
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models with cannibalism and stage structure in predators so that

the model studied was a three-dimensional dynamical model.

In Zhang’s model, the predator population is divided into two

subpopulations, i.e., juvenile and adult predators. The birth rate of

juvenile predators is assumed to be proportional to the number of

adult predators and follows the Malthus growth model. Predation

of prey and juvenile predators by adult predators follows the type-I

Holling functional response. Meanwhile, Deng et al. [20] studied a

two-dimensional predator–prey model with predator cannibalism.

Aside from cannibalism, another interesting Predator–

prey phenomenon to investigate is prey hiding behavior

from predator captures and attacks. This is known as refuge

behavior in the context of ecology. The mathematical model

of Predator–prey interaction with prey refuge has also piqued

the interest of researchers [21–25]. Rayungsari et al. [21]

modified model proposed by Deng et al. [20] by adding the

assumption that there is a refuge in the cannibalized predator

population, as much as mP. Moreover, it is also assumed that

predators need time to catch and handle the prey, so that the

rate of prey predation follows the Holling type-II functional

response. The Predator–prey model incorporating predator

cannibalism and refuge proposed by Rayungsari et al. [21]

is as follows:

dN

dt
= rN

(

1−
N

K

)

−
b1NP

k1 + N
,

dP

dt
=

c1NP

k1 + N
+ c2P − eP −

b2(1−m)P2

k2 + (1−m)P
,

(1)

where N ≥ 0 and P ≥ 0 represent prey density and predator

density, respectively. The parameters of system (Equation 1) are

positive constants described in Table 1. Predator cannibalism is

represented by the last term of the second equation in system

(Equation 1). The model can be interpreted as follows: In the

absence of predator, prey grows logistically with the intrinsic

growth rate r and the environmental carrying capacity K. With

the presence of the predator, the prey population density decreases

by
b1NP

k1 + N
, where b1 is the maximum predation rate and

k1 is the half-saturation constant. The predation rate follows

Holling type-II functional response with the assumption that

predators need time to catch and handle the prey. With the prey

predation by predator, the predator population density increases

by
c1NP

k1 + N
, where c1 is the conversion rate of predation of

prey into predator births and c1 ≤ b1. Predators die naturally

with the death rate e. The term
b2(1−m)P2

k2 + (1−m)P
depicts the

decrease in predator population density caused by cannibalism

with saturated a cannibalism rate, which follows Holling type-II

functional response,

b2(1−m)P

k2 + (1−m)P
. (2)

The value of Equation (2) monotonically increases with

the supremum b2. (1 − m)P is the amount of the available

predator to be cannibalized, as m is the coefficient of refuge.

The conversion rate of cannibalism into predator birth (c2) is

TABLE 1 Description of parameters.

Parameter Description

r Intrinsic growth rate of prey

K Environmental carrying capacity for prey

b1 Maximum prey predation rate

k1 Half-saturation constant of predation

c1 Conversion rate of prey biomass into predator birth

c2 Conversion rate of cannibalism into predator birth

e Predator natural death rate

b2 Maximum predator cannibalism rate

m Coefficient of refuge

k2 Half-saturation constant of predator cannibalism

assumed to be less than the maximum predator cannibalism

rate (b2).

The model proposed by Rayungsari et al. [21] was constructed

in a system of nonlinear differential equations with the first-

order derivative, where the change of population density at any

time depends on the current population density instantaneously.

Whereas in reality, the current condition is also affected by the

history of all previous conditions, which is called the memory

effect [26]. The phenomenon or systems that have memory and

genetic characteristics can be described by a fractional differential

system [27]. The definition of fractional-order derivative was first

introduced by Liouville [28] motivated by L’Hôpital and Leibniz’s

critical thinking on derivatives of order 1
2 . Liouville’s definition

was modified by Riemann by applying a direct generalization

of the Cauchy formula and named Riemann–Liouville fractional

derivative operator [29]. The fractional-order derivative concept

by Liouville and Riemann utilizes Euler’s study of fractional

integration, which led him to construct the Gamma function as

generalization of the factorial concept for fractional numbers [30].

In 1967, Michele Caputo modified the Riemann–Liouville operator

so that when solving differential equations, no initial conditions

are required. The definition of the modified operator is named by

Caputo fractional-order derivative operator. Predator–prey models

using Caputo-type fractional derivatives have been widely studied

recently [24, 31–33]. Hence, in this article, we modify and analyze

the Predator–prey model incorporating predator cannibalism and

refuge in Rayungsari et al. [21] by applying the Caputo fractional-

order derivative operator.

This article is organized as follows. In Section 2, model

development and basic properties are described. The basic

properties consist of verification of the non-negativity, existence,

uniqueness, and boundedness of solutions of the model. In

Section 3, the results of dynamical analysis are presented. The

results consist of the existence and stability of equilibrium

points. Both local and global stability are investigated, while

the analyzed bifurcation is the Hopf bifurcation. In Section 4,

the numerical simulations and intrepretations are carried out to

confirm the analytical results. Finally, in Section 5, we draw some

concluding remarks.
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2. Model development and basic
properties

By applying the Caputo fractional-order derivative operator to

the left-hand side of system (Equation 1), the model becomes

Dα
∗N = rN

(

1−
N

K

)

−
b1NP

k1 + N

Dα
∗P =

c1NP

k1 + N
+ c2P − eP −

b2(1−m)P2

k2 + (1−m)P

, (3)

with α ∈ R, 0 < α ≤ 1, and Dα
∗ is the α-order of Caputo fractional

derivative operator defined by Dα
∗x(t) = 1

Ŵ(1−α)

∫ t
0 (t − s)−αx(s) ds.

Since the variables in the system (Equation 3) represent the

population densities, the solution of the system must be non-

negative. The solution of system (Equation 3) is guaranteed to be

non-negative by the following theorem.

THEOREM 1. All solutions of Equation (3) are non-negative for

any initial values (N(0), P(0)) ∈ R
2
+.

Proof. Since Dα
∗ = N

(

r

(

1−
N

K

)

−
b1P

k1 + N

)

, then Dα
∗N(0) = 0

if N(0) = 0. Dα
∗N = 0 means there is no change of prey population

density. Consequently, N(t) = 0, ∀t > 0. Then, we prove that if

N(0) > 0 thenN(t) ≥ 0 for every t > 0. Suppose that the statement

is wrong, so there is t∗ > 0 such as

N(t) > 0, 0 ≤ t < t∗,

N(t) = 0, t = t∗,

N(t) < 0, t ≥ t∗,

(4)

From Equations (3), (4), we get that Dα
∗N = 0, t = t∗. Thus,

there is no change in the population density ofN when t = t∗. From

the prior statement, N(t) = 0, t = t∗, so that N(t) = 0, t > t∗.

This contradicts the statement that N(t) < 0 for t > t∗. Therefore,

N(t) ≥ 0 for all t > 0 is correct. In the same way, it can be proved

that P(t) ≥ 0 for every t > 0.

Next, we show the existence and uniqueness of solution of the

system (Equation 3) using Theorem 3.7 in Li et al. [34]. Consider a

region [0,∞) × �, where � = {X = (N, P) ∈ R
2
+ : c2 < e}. Then,

we denote a mapping F(X) = (F1(X), F2(X)), where

F1(X) = rN

(

1−
N

K

)

−
b1NP

k1 + N
,

F2(X) =
c1NP

k1 + N
+ c2P − eP −

b2(1−m)P2

k2 + (1−m)P
.

(5)

For all X = (N, P), X̄ = (N̄, P̄) ∈ �,

||F(X)− F(X̄)|| ≤
∣

∣F1(X)− F1(X̄)
∣

∣+
∣

∣F2(X)− F2(X̄)
∣

∣

=
∣

∣

∣

∣

[

rN

(

1−
N

K

)

−
b1NP

k1 + N

]

−
[

rN̄

(

1−
N̄

K

)

−
b1N̄P̄

k1 + N̄

]
∣

∣

∣

∣

+

∣

∣

∣

∣

∣

[

c1NP

k1 + N
+ c2P − eP −

b2(1−m)P2

k2 + (1−m)P

]

−
[

c1N̄P̄

k+ N̄
+ c2P̄ − eP̄ −

b2(1−m)P̄2

k2 + (1−m)P̄

]

∣

∣

∣

∣

∣

≤
∣

∣rN − N̄
∣

∣+
∣

∣

∣

∣

N2 − N̄2

K

∣

∣

∣

∣

+
∣

∣

∣

∣

b1NP(k1 + N̄)− b1N̄P̄(k1 + N)

(k1 + N)(k1 + N̄)

∣

∣

∣

∣

+
∣

∣

∣

∣

c1NP(k1 + N̄)− c1N̄P̄(k1 + N)

(k1 + N)(k1 + N̄)

∣

∣

∣

∣

+
∣

∣(c2 − e)(P − P̄)
∣

∣

+
∣

∣

∣

∣

b2(1−m)(P2(k2 + (1−m)P̄)− (P̄2(k2 + (1−m)P)

(k2 + (1−m)P)(k2 + (1−m)P̄)

∣

∣

∣

∣

≤
[

r +
r(N + N̄)

K
+

(b1 + c1)k1P

(k1 + N)(k1 + N̄)

]

∣

∣N − N̄
∣

∣

+
[

(b1 + c1)N̄

k1 + N̄
+ e− c2

+
b2(1−m)

[

k2(P + P̄)+ PP̄(1−m)
]

(k2 + (1−m)P)(k2 + (1−m)P̄)

]

∣

∣P − P̄
∣

∣ .

Since in the following discussion, it can be proved that the

system solution (Equation 3) is bounded in �, there is a positive

constantM = max{N, P}, ∀t ≥ 0. Hence, we have

||F(X)− F(X̄)|| ≤
[

r +
2M

K
+

(b1 + c1)k1M

k21

]

∣

∣N − N̄
∣

∣

+

[

(b1 + c1)M

k1
+ e− c2 +

b2(1−m)
[

2k2M + (1−m)M2
]

k22

]

∣

∣P − P̄
∣

∣

= L1
∣

∣N − N̄
∣

∣+ L2
∣

∣P − P̄
∣

∣ ,

with

L1 = r +
2M

K
+

(b1 + c1)k1M

k21
,

L2 =
(b1 + c1)M

k1
+ e− c2 +

b2(1−m)
[

2k2M + (1−m)M2
]

k22
.

By choosing a positive constant L = max {L1, L2}, we get

||F(X)− F(X̄)|| ≤ L||X − X̄||. (6)

Based on Equation (6), the function F(X) satisfies the Lipschitz

condition so that there exist a unique solution X(t) of the system

(Equation 3) with any initial value of X(0) = (N(0), P(0)). Thus, we

derive the following theorem.

THEOREM 2. For the system (Equation 3) with any non-negative

initial condition (N(0), P(0)) ∈ �, there exist a unique solution

X(t) ∈ �.

Next, due to the limited carrying capacity of the prey and

predator resources, the size of both populations in the system

(Equation 3) must be limited. Consider a function defined by

V(t) = N(t)+
b1

c1
P(t).
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The Caputo derivative α-order of V satisfies,

Dα
∗V ≤ Dα

∗N +
b1

c1
Dα
∗P

=
[

rN

(

1−
N

K

)

−
b1NP

k1 + N

]

+ b1
c1

[

c1NP
k1+N

+ c2P − eP − b2(1−m)P2

k2+(1−m)P

]

= rN −
r

K
N2 +

b1

c1

(

c2 − e−
b2(1−m)P

k2 + (1−m)P

)

P

≤ rN − r
KN

2 + b1
c1

(c2 − e) P.

For any positive constant ϕ,

Dα
∗V + ϕV ≤ rN −

r

K
N2 +

b1

c1
(c2 − e)P + ϕ

(

N +
b1

c1
P

)

= (r + ϕ)N −
r

K
N2 +

b1

c1
(c2 − e+ ϕ)P.

If c2 < e and by choosing 0 < ϕ < e− c2, we get

Dα
∗V + ϕV < (r + ϕ)N −

r

K
N2

= −
r

K

[

(

N −
(r + ϕ)K

2r

)2

−
(

(r + ϕ)K

2r

)2
]

≤
r

K

(

(r + ϕ)K

2r

)2

.

(7)

Based on Equation (7), Generalized Mean Value Theorem

in Odibat and Shawagfeh [35], and Lemma 6.1 (Fractional

Comparison Principle) in Li et al. [34], we get that,

V(t) ≤

(

V(0)−
r

ϕK

(

(r + ϕ)K

2r

)2
)

Eα[−ϕ(t)α]

+
r

ϕK

(

(r + ϕ)K

2r

)2

. (8)

Eα[−ϕ(t)α] → 0ast → +∞, so that,

V(t) →
r

ϕK

(

(r + ϕ)K

2r

)2

, t → +∞.

Hence, we establish the following theorem.

THEOREM 3. All solutions of Equation (2) with initial values

(N(0), P(0)) ∈ {(x, y) ∈ R2+ : c2 < e} are uniformly bounded

3. Dynamical analysis

3.1. Existence of equilibrium points

In the similar way as in Rayungsari et al. [21], the system

(Equation 3) has four equilibrium points, namely E0 = (0, 0),

E1 = (0, P1), E2 = (K, 0), and E3 = (N3, P3), where P1 =
k2(e− c2)

(c2 − e− b2)(1−m)
. If b2 + e 6= c1 + c2, then N3 and P3 in E3 is

obtained from the solution of a cubic equation using the Cardano’s

formula [36, 37], i.e.,

N3 =

3

√

q2 ±
√

q22 +
4
27q

3
1

3
√
2

−
q1

3
√
2

3
3

√

q2 ±
√

q22 +
4
27q

3
1

−
B

3A
,

P3 =
r

b1

(

1−
N3

K

)

(k1 + N3),

(9)

with

q1 =
3AC − B2

3A2
,

q2 =
9ABC − 2B3 − 27A2D

27A3
,

A =
r

b1K
(1−m)(b2 − c1 − c2 + e),

B =
r

b1
(1−m)

[

(c1 + c2 − e− b2)−
k1

K
(c1 + 2(c2 − e− b2))

]

,

C = (c1 + c2 − e)k2

+ rk1
b1
(1−m)

[

c1 + (2− k1)(c2 − e)− 2b2 + b2k1
K

]

,

D = k1

[

k2(c2 − e)+
rk1

b1
(1−m)(c2 − e− b2)

]

.

Whereas, if b2 + e = c1 + c2, we have the value of N3 and P3 as

follows:

N3 =
−R±

√

R2 − 4QS

2Q
, P3 =

r

b1

(

1−
N3

K

)

(k1 + N3),

with

Q =
c1rk1

b1K
(1−m),

R = b2k2 +
rk1

b1
(1−m)

(

k1(c1 − b2)− c1 +
b2k1

K

)

,

S = k1

[

k2(b2 − c1)−
rc1k1

b1
(1−m)

]

.

Two of the equilibrium points need existence conditions. E1
exists in R

2
+ if 0 < c2 − e < b2. The coexistence point E3 exists

in R
2
+ if q22 +

4
27q

3
1 ≥ 0 and 0 < N3 < K for b2 + e 6= c1 + c2.

Meanwhile, for b2 + e = c1 + c2, E3 exists in R
2
+ if R2 − 4QS ≥ 0

and 0 < N3 < K.

3.2. Local stability

Local stability of the equilibrium points of Equation (3) are

determined by the arguments of the eigenvalues of Jacobian

matrix and applying Matignon Local Stability Theorem in

Petras [38]. Suppose that E∗ is an equilibrium point of system

(Equation 3). Based on Matignon Local Stability Theorem, E∗

is local asymptotically stable if all of the eigenvalues λj of the

Jacobian matrix,

J(E∗) =















r

(

1−
2N

K

)

−
b1k1P

(k1 + N)2
−

b1N

k1 + N
c1k1P

(k1 + N)2
c1N

k1 + N
+ c2 − e

−
b2(1−m)P

[

2k2 + (1−m)P
]

(k2 + (1−m)P)2















(10)

that satisfies | arg(λj)| >
απ

2
.

THEOREM 4. The origin point E0(0, 0) is always unstable.

Proof. The Jacobian matrix for E0 = (0, 0) is

J(E0) =

[

r 0

0 c2 − e

]

, (11)
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so the eigenvalues are λ1 = r and λ2 = c2 − e. The argument

of the first eigenvalue is | arg(λ1)| = 0 <
απ

2
. If c2 > e then

| arg(λ2)| = 0 <
απ

2
(E0 is an unstable source), while if c2 > e

then | arg(λ2)| = π >
απ

2
(E0 is an unstable saddle node).

THEOREM 5. Prey extinction point E1 (0, P1) is local

asymptotically stable if r <
b1P1

k1
and unstable saddle node

if r >
b1P1

k1
.

Proof. By substituting E1 = (0, P1) to Equation (10), we get the

Jacobian matrix for E1,

J(E1) =







r −
b1P1

k1
0

c1P1

k1

(c2 − e)(c2 − e− b2)

b2






. (12)

The eigenvalues are λ1 = r −
b1P1

k1
and λ2 =

(c2 − e)(c2 − e− b2)

b2
. Based on the existence condition of E1, then

λ2 is the negative real number and | arg(λ2)| = π >
απ

2
. Hence,

the local stability of E1 depends on λ1. If r <
b1P1

k1
, λ1 < 0, and

| arg(λ1)| = π >
απ

2
so that E1 is local asymptotically stable.

Otherwise, if r >
b1P1

k1
then λ1 > 0, | arg(λ1)| = π >

απ

2
, and E1

is an unstable saddle node.

THEOREM 6. The predator extinction point E2(K, 0) is local

asymptotically stable if e >
c1K

k1 + K
+ c2 and unstable saddle node

if e <
c1K

k1 + K
+ c2.

Proof. With the same way, we get the Jacobian matrix for E2 as

follows:

J(E2) =







−r −
b1K

k1 + K

0
c1K

k1 + K
+ c2 − e






. (13)

The eigenvalues are λ1 = −r and λ2 =
c1K

k1 + K
+ c2 − e. It is

clear that | arg(λ1)| = π >
απ

2
. E2 is local asymptotically stable if

| arg(λ2)| >
απ

2
, i.e., for e >

c1K

k1 + K
+ c2. If e <

c1K

k1 + K
+ c2,

| arg(λ2)| = 0 <
απ

2
, and E2 is an unstable saddle node.

For existence point E3(N3, P3), the Jacobianmatrix is as follows:

J(E3) =

[

J11 J12
J21 J22

]

, (14)

where

J11 =
rN3

k1 + N3

(

1−
k1 + 2N3

K

)

,

J12 = −
b1N3

k1 + N3
,

J21 =
c1k1r

b1(k1 + N3)

(

1−
N3

K

)

,

J22 = −
b1b2k2r(1−m)

(

1− N3
K

)

(k1 + N3)
(

b1k2 + r(1−m)
(

1− N3
K

)

(k1 + N3)
)2

.

(15)

Thus, the eigenvalues are obtained from the following quadratic

equation.

λ2 − trace(J(E3))+ det(J(E3)) = 0, (16)

where

det(J(E3)) = J11J22 − J12J21

= −
r2b1b2k2(1−m)N3

(

1− N3
K

)

(

b1k2 + r(1−m)
(

1− N3
K

)

(k1 + N3)
)2

(

1−
k1 + 2N3

K

)

+
c1k1rN3

(k1 + N3)2

(

1−
N3

K

)

(17)

and

trace(J(E3)) = J11 + J22

=
rN3

k1 + N3

(

1−
k1 + 2N3

K

)

−
b1b2k2r(1−m)

(

1− N3
K

)

(k1 + N3)
(

b1k2 + r(1−m)
(

1− N3
K

)

(k1 + N3)
)2

.

(18)

Suppose that

a =
b1b2k2(1−m)

(

1− N3
K

)

(k1 + N3)
2

N3

(

b1k2 + r(1−m)
(

1− N3
K

)

(k1 + N3)
)2

> 0, (19)

then

trace(J(E3)) =
rN3

k1 + N3

(

1−
k1 + 2N3

K

)

−
arN3

k1 + N3

=
rN3

k1 + N3

(

1− a−
k1 + 2N3

K

)

=
rN3

k1 + N3

(

K − aK − k1 − 2N3

K

)

.

(20)

Suppose that d is the discriminant of Equation (16), i.e.,

d = trace(J(E3))
2 − 4 det(J(E3)). (21)

The cases are divided into two parts, those are for d ≥ 0 and for

d < 0.

1. Case 1 (d ≥ 0)

For this case, if k1 > K − 2N3, we have det(J) > 0 and

trace(J) < 0. Therefore, the eigenvalues (solutions of Equation

16) are real and negative. Consequently, | arg(λj)| = π >
απ

2
for j = 1, 2 and E3 is local asymptotically stable.
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2. Case 2 (d < 0)

In case (d < 0), the eigenvalues are complex number with

non-zero imaginary part λ =
trace(J(E3))+

√
d

2
and λ̄ =

trace(J(E3))−
√
d

2
. Suppose that

(a) If k1 > K−2N3−aK, then trace(J) < 0 so that Re(λ) < 0 and

E3 is local asymptotically stable since | arg(λ)| = | arg(λ̄)| =
π >

απ

2
.

(b) If k1 < K − 2N3 − aK, then trace(J) > 0 so that Re(λ) > 0

and E3 is local asymptotically stable if | arg(λ)| >
απ

2
.

Hence, we establish the following theorem.

THEOREM 7. Suppose that d = trace(J(E3))
2 − 4 det(J(E3)) with

trace(J(E3)) and det(J(E3)) are the trace and determinant of matrix

J(E3) in Equation (14). E3 = (N3, P3) is locally asymptotically stable

if one of the following conditions are satisfied.

1. d ≥ 0 and k1 > K − 2N3,

2. d < 0 and k1 > K − 2N3 − aK,

3. d < 0, k1 < K − 2N3 − aK, and | arg(λ)| =
∣

∣

∣

∣

Im(λ)

Re(λ)

∣

∣

∣

∣

=
∣

∣

∣

∣

λ − λ̄

λ + λ̄

∣

∣

∣

∣

>
απ

2
,

with a is as in Equation (19).

3.3. Global stability

Next, we investigate the global stability of E1, E2, and E3. For

this aim, we use the help of Lemma 3.1 in Vargas-De-Leon [39] and

Generalized Lasalle Invariance Principle in Huo et al. [40].

For prey extinction point E1(0, P1), we consider a

Lyapunov function,

V1(N, P) = N +
b1

c1

(

P − P1 − P1 ln
P

P1

)

.

The Caputo derivative α-order of V1 is as follows:

Dα
∗V1 ≤ Dα

∗N +
b1

c1

(

P − P1

P

)

Dα
∗P

= rN

(

1−
N

K

)

−
b1NP

k1 + N

+
b1

c1

(

P − P1

P

)(

c1NP

k1 + N
+ c2P − eP −

b2(1−m)P2

k2 + (1−m)P

)

= rN

(

1−
N

K

)

−
b1NP1

k1 + N

+
b1

c1P1
(P − P1)

(

k2(c2 − e)P1 + k2(e− c2)P

k2 + (1−m)P

)

= rN

(

1−
N

K

)

−
b1NP1

k1 + N

−
b1

c1P1
(P − P1)

2

(

k2(c2 − e)

k2 + (1−m)P

)

≤ rN

(

1−
N

K

)

−
b1NP1

k1 + N
.

If r <
b1P1

k1
, then we have,

Dα
∗V1 ≤ rN

(

1−
N

K

)

−
rk1N

k1 + N

=
rN

K(k1 + N)

(

KN − k1N − N2
)

.

Dα
∗V1 = 0 only if N = 0. For N > 0, if K ≤ k1, then Dα

∗V1 ≤ 0

and according to Generalized Lasalle Invariance Principle [40],

E1 is globally asymptotically stable. We write the global stability

conditions of E1 in the following theorem.

THEOREM 8. If E1 = (0, P1) exists, then E1 is globally

asymtotically stable if r <
b1P1

k1
and K ≤ k1.

Then, we construct a Lyapunov function as follows:

V2(N, P) =
c1

b1

(

N − K − K ln
N

K

)

+ P,

for E2(K, 0). We have,

Dα
∗V2 ≤

c1

b1

(

N − K

N

)

Dα
∗N + Dα

∗P

=
c1

b1

(

N − K

N

)(

rN

(

1−
N

K

)

−
b1NP

k1 + N

)

+
c1NP

k1 + N

+c2P − eP −
b2(1−m)P2

k2 + (1−m)P

= −
c1r

b1K
(N − K)2

+ P

(

c1K

k1 + N
+ c2 − e−

b2(1−m)P

k2 + (1−m)P

)

≤ P

(

c1K

k1 + N
+ c2 − e−

b2(1−m)P

k2 + (1−m)P

)

≤ P

(

c1K

k1 + N
+ c2 − e

)

.

Suppose that e >
c1K

k1
+ c2. Thus, we have,

Dα
∗V2 ≤ P

(

c1K

k1 + N
+ c2 −

(

c1K

k1
+ c2

))

= P
(

c1K
k1+N

− c1K
k1

)

≤ 0.

We get that Dα
∗V2 ≤ 0, ∀(N, P) ∈ R

2
+. Hence, E2 is

globally asymptotically stable with the condition as in the following

theorem.

THEOREM 9. E2 is globally asymtotically stable if e >
c1K

k1
+ c2.

To investigate the global stability of coexistence point, we

consider a Lyapunov function

V3(N, P) = N − N3 − N3 ln
N

N3
+

b1

c1

(

P − P3 − P3 ln
P

P3

)

,
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where N3 and P3 as in Equation (9). The α-order derivative of V3

satisfies

Dα
∗V3 ≤

(

1−
N3

N

)(

rN

(

1−
N

K

)

−
b1NP

k1 + N

)

+
b1

c1

(

1−
P3

P

)(

c1NP

k1 + N
+ c2P − eP −

b2(1−m)P2

k2 + (1−m)P

)

= (N − N3)

[

r

(

N3 − N

K

)

−
b1k1(P − P3)

(k1 + N)(k1 + N3)

]

+
b1

c1
(P − P3)

[

c1k1(N − N3)

(k1 + N)(k1 + N3)

−
b2k2(1−m)(P − P3)

(k2 + (1−m)P)(k2 + (1−m)P3)

]

= −
r

K
(N − N3)

2 −
b1(N − N3)(N3P − NP3)

(k1 + N)(k1 + N3)

−
b1b2k2(1−m)(P − P3)

2

c1(k2 + (1−m)P)(k2 + (1−m)P3)
.

Consider a domain �∗ =
{

(N, P)

∣

∣

∣

∣

P

P3
>

N

N3
> 1

}

. Then,

Dα
∗V3 < 0 and E3 is globally asymptotically stable in �∗. Hence,

we derive the following theorem.

THEOREM 10. E3 is globally asymptotically stable in the domain

�∗ =
{

(N, P)

∣

∣

∣

∣

P

P3
>

N

N3
> 1

}

.

3.4. Existence of Hopf bifurcation

THEOREM 11. If d < 0 and k1 < K− 2N3− aK with a is given in

Equation (19), then E3 undergoes Hopf bifurcation when the order

of Caputo derivative, α, pass α∗ with

α∗ = tan−1

∣

∣

∣

∣

Im(λ∗)

Re(λ∗)

∣

∣

∣

∣

(22)

and λ∗ is an eigenvalue of E3.

Proof. Suppose that d < 0 and k1 < K − 2N3 − aK. Then, the

eigenvalues of J(E3) are a pair of complex number λ1 = λ∗ and

λ2 = λ̄∗ with positive real part. Suppose that

f (α) =
απ

2
−min | arg(λi)i=1,2|.

For α = α∗ with

α∗ = tan−1

∣

∣

∣

∣

Im(λ∗)

Re(λ∗)

∣

∣

∣

∣

,

we have f (α∗) = 0 and
df (α)

dα

∣

∣

∣

∣

α=α∗

=
π

2
6= 0. According to

Theorem 3 in Li and Wu [41], E3 undergoes Hopf bifurcation at

α = α∗.

4. Numerical simulations

In this section, numerical simulations of themodel (Equation 3)

are carried out using Matlab software and the predictor–corrector

scheme, which is introduced by Diethelm et al. [42]. The purposes

TABLE 2 Parameter values.

Parameter Simulation
1

Simulation
2

Simulation
3

r 1 1 1

K 1 1 1

b1 0.5 0.5 0.3

k1 0.3 0.3 0.3

c1 0.2 0.1 0.2

c2 0.2 0.2 0.12

e 0.1 0.3 0.02

b2 0.3 0.3 0.35

m 0.3 0.3 0.3

k2 1 1 1

of the numerical simulations are to confirm the dynamics analysis

results and the existence of Hopf bifurcation. Since there are no

available data related to our proposed model yet, the parameter

values are chosen hypothetically in Table 2.

For parameter values in Simulation 1, E1 exists, i.e., E1 =
(0, 0.7143) and the local stability condition in Theorem 5 is

satisfied. We conduct numerical simulations with several values

of α. The results in Figure 1 show that the solutions tend to the

prey extinction point for all α values chosen. This is consistent

with the analytical results since the Jacobi matrix eigenvalues are

negative real numbers, which involve E1 always asymptotically

stable with the selected parameter values for any order derivative

of the α ∈ (0, 1]. However, we can see a difference in the solution’s

behavior for each α. The lower the α value, the slower the solution

reaches E1.

For the second simulation, we use the same parameter values

but c1 and e (see Table 2). As a result, the existence condition for

E1 is not satisfied, so the point does not exist. It means that the

prey can survive from extinction. For the predator extinction point

E2(1, 0), the stability condition in Theorem 6 is satisfied and E2 is

asymptotically stable for any fractional order of α ∈ (0, 1]. It fits

the numerial simulation results in Figure 2. Represented by some

values of α, we can see that the solutions with initial value close

to E2 go to E2. With a greater α value, the solution will reach the

predator extinction point faster.

Next, we demonstrate the effect of the derivative order on the

behavior of the solution, with 0.8 ≤ α ≤ 1. The parameter values

in the last column of Table 2 were chosen. With those parameter

values, the coexistence point exists, i.e., E3(0.1423, 1.2645), which

has the eigenvalues λ∗ = 0.0232 + 0.1589i and λ̄∗ = 0.0232 −
0.1589i. The parameter values satisfy k1 < K − 2N3 − aK and

the discriminant of the quadratic equation of the eigenvalues is

negative, i.e., d = −0.1010. Based on the Theorem 7, the stability

of E3 is determined by the argument of the order derivative α. The

threshold is α∗ = 0.9077, which satisfies α∗ <
2

π

∣

∣

∣

∣

λ∗ − λ̄∗

λ∗ + λ̄∗

∣

∣

∣

∣

.

From the bifurcation diagram in Figure 3, we can see that for

α < α∗, the solutions tend to E3. Meanwhile, for α > α∗, the
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A B

FIGURE 1

Graphic solutions of Simulation 1. (A) Solutions of N with respect to time t. (B) Solutions of P with respect to time t.

A B

FIGURE 2

Graphic solutions of Simulation 2. (A) Solutions of N with respect to time t. (B) Solutions of P with respect to time t.

FIGURE 3

Bifurcation diagram with α as bifurcation parameter. (A) Value of N* with respect to derivative order α. (B) Value of P* with respect to

derivative order α.

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2023.1122330
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Rayungsari et al. 10.3389/fams.2023.1122330

A

B

C

FIGURE 4

Graphic solutions of Simulation 3. (A) Solutions of N with respect to time t. (B) Solutions of P with respect to time t. (C) Phase portraits.

solutions tend to limit cycle around E3. As confirmation of the

bifurcation diagram, two α values satisfying α < α∗, i.e., α = 0.8

and α = 0.89, and two α values satisfying α.α∗, i.e., α = 0.91

and α = 1, are selected to simulate the solutions of N and P with

respect to time. For α = 0.8 and α = 0.89, the solutions tend to E3.

The solution with α = 0.89 oscillates longer than α = 0.8 before
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A B

FIGURE 5

Bifurcation diagram with b2 as bifurcation parameter. (A) The value of N* for 0.2 ≤ b2 ≤ 0.4. (B) The value of P* for 0.2 ≤ b2 ≤ 0.4.

A B

FIGURE 6

Bifurcation diagram with m as bifurcation parameter. (A) The value of N* for 0.1 ≤ m ≤ 0.5. (B) The value of P* for 0.1 ≤ m ≤ 0.5.

finally convergent to E3. Meanwhile, for α = 0.91 and α = 1, each

solution convergent to a limit cycle. The amplitude of the limit cycle

solution with α = 1 is greater than α = 0.91.

Numerical simulations in Figures 3, 4 show the existence of

Hopf bifurcation in system (3) with α as bifurcation parameter.

In addition, the system also undergoes one-parameter Hopf

bifurcation with other bifurcation parameters such as cannibalism

rate (b2) and refuge coefficient (m). The bifurcation diagrams are

shown in Figures 5, 6, respectively.

For bifurcation diagram with parameter b2, we have three

bifurcation points, i.e., b∗2 = 0.2429, b∗∗2 = 0.306, and b∗∗∗2 = 0.372.

For b2 < b∗2 , the solutions convergent to prey extinction point

E1. It is in accordance with the analytical result since the stability

condition of E1 is satisfied. When the predator cannibalism rate

is increased pass b∗2 , E1 is unstable, and the solutions convergent

to the coexistence point, which means the predator survive from

extinction. The solutions tend to limit cycle when b∗∗2 < b2 < b∗∗∗2 .

For bifurcation diagramwith parameterm, we have two bifurcation

points, i.e., m∗, m∗∗. For m < m∗, the solutions convergent to

coexistence point. The solutions tend to limit cycle in the refuge

coefficient rangem∗ < m < m∗∗.

5. Conclusion

A first-order system of Predator–prey interaction incorporating

predator cannibalism and refuge is modified by applying Caputo

fractional-order derivative operator. We verify the non-negativity,

existence, uniqueness, and boundedness of the model solution. The

local and global stability of equilibrium points are then examined.

In addition, the existence of Hopf bifurcation is investigated.

There are four equilibrium points in the model: the origin point,

the prey extinction point, the predator extinction point, and

the coexistence point. Since the eigenvalues are real numbers,

the first three equilibrium points have the same local stability

as the first-order system. However, the local stability of the

coexistence point differs from that of the first-order system. The

coexistence point with positive real-part eigenvalues is locally
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asymptotically stable in the modified system as long as the absolute

of the eigenvalue arguments are bigger than απ
2 . Even though

it is based on different theories, the global stability properties

of all equilibrium points are identical to those in the first-

order system. Under certain conditions, the Hopf bifurcation

exists for the coexistence point. Numerical simulations confirmed

the analytical results of stability properties and the existence of

Hopf bifurcation.
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