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prey-predator systems involving
Holling type-IV functional
response
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Nilayam, India

In this study we consider an additional food provided prey-predator model

exhibiting Holling type-IV functional response incorporating the combined e�ects

of both the continuous white noise and discontinuous Lévy noise. We prove the

existence and uniqueness of global positive solutions for the proposed model. We

perform the stochastic sensitivity analysis for each of the parameters in a chosen

range. Later we do the time optimal control studies with respect quality and

quantity of additional food as control variables. Making use of the arrow condition

of the su�cient stochasticmaximumprinciple, we characterize the optimal quality

of additional food and optimal quantity of additional food. We then perform the

sensitivity of these control variables with respect to each of themodel parameters.

Numerical results are given to illustrate the theoretical findings with applications

in biological conservation and pest management. At the end we briefly study the

influence of the noise on the dynamics of the model.
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1. Introduction

The complex natural ecosystems present around us kindled great attention of many

ecologists and mathematicians to the mathematical modeling of ecological systems in the

last few decades. The interaction among species in these ecosystems can be of several forms

like competition, mutual interference, prey-predator interactions and so on. The very first

ecological models are framed from the pioneering works of Lotka [1] and Volterra [2] in

1925. Various complex models are framed and studied ever since.

The basic component of these prey-predator systems is a functional response, which

is defined as the rate at which each predator captures prey [3]. These functional response

can be majorly classified into two types the first being Density-dependent and the second

Ratio-dependent. Density-dependent functional responses are usually preferred as they

capture the saturation effect, incorporate handling time, and exhibit an asymptotic approach,

which are limited in the case of ratio-dependent responses. Some of the functional responses

include Holling functional responses [4], Beddington-DeAngelis functional responses [5],

Arditi-Ginzburg functional responses [6], Hassell-Varley functional responses [7], and

Crowley and Martin functional response [8].
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Among the density-dependent functional responses, the

Holling type functional responses are the first ones to be proposed.

Among the Holling responses, Holling type-IV response is best

suited to capture the group defense mechanism of prey especially

in high densities. This is also called as inhibitory effect of the

prey. Some examples in real life include, Musk ox are more

successful at fending off wolves when in herds than when alone

[9] and some other organisms that display this kind of response

in nature can be found in [10, 11]. The Holling type-IV functional

response also exhibits a saturation effect, meaning that the rate of

prey consumption by predators increases at a decreasing rate as

prey density increases. This saturation effect aligns with empirical

observations that predators have limited capacity and cannot

consume an unlimited number of prey items. The Holling type-IV

functional response contributes to stable equilibrium or oscillations

in predator-prey dynamics, which is consistent with observed

patterns in many predator-prey systems. This stability is essential

for maintaining ecological balance and preventing population

crashes or outbreaks.

In recent decades, many pioneering dynamical modeling works

[12–17] reveal that the provision of additional food to predators

both in the complimentary and supplementary sense, plays a

vital role in controlling the dynamics of the system. Additional

food can be provided by establishing artificial feeding stations,

organizing supplementary feeding programs or by the provision

of nest boxes or artificial structures. By providing the specific

conceptual information about the system to be studied and also

the empirical data, one should be able to define the sense of the

provided additional food for a particular mathematical model.

The availability of these additional food resources can play

a significant role in predator populations and their ecological

dynamics. Some of the significant findings of these works include

the following:

• In some instances it is observed that the additional food can

dampen predator-prey cycles by reducing the intensity of

predation on natural prey during periods of prey scarcity.

• Access to additional food can increase the chances of survival

for predator individuals, especially during periods of food

scarcity or low prey availability.

• By having access to a variety of food sources, predators

may be able to exploit niche opportunities and develop

specialized feeding strategies. This specialization can lead to a

more efficient utilization of resources and reduce competition

among predators within a community.

The authors in Srinivasu et al. and Srinivasu and Prasad

[12, 13] studied the prey-predator systems involving Holling

type-II functional response and the authors in Srinivasu et al.

[15] studied the prey-predator systems involving Holling type-III

functional response. Also, the authors in Sabelis and Van Rijn [18]

explicitly studied the impact of the additional food provided to

predator, both in supplementary and complementary sense. The

authors in Srinivasu et al. [14] have studied an additional food

provided deterministic prey-predator systems involving Holling

type-IV functional response. In Ananth and Vamsi and May

[17, 19], the authors studied the optimal control problems of

deterministic prey-predator systems involving Holling type-IV

functional response with the quality of additional food and the

quantity of additional food as the control parameters respectively.

As in earlier mentioned works the authors in the works [15, 17, 19]

also considered the provision of additional food to predators both

in the complimentary and supplementary sense.

Specifically in the context of Holling type-IV prey-predator

models, additional food can have several influences on the

dynamics of the system. The Holling type-IV functional response

is characterized by a saturating feeding rate that increases with

prey density but eventually levels off. When additional food

is introduced into the model, it can enhance predator fitness,

buffer the prey population against high predation pressures,

and potentially reduce the predation pressure on primary prey.

Also, the provision of additional food can cascade down the

food web, affecting lower trophic levels. For example, reduced

predation pressure on natural prey can lead to increased herbivore

populations, which may then impact plant communities and

ecosystem structure. The availability of additional food can

contribute to the stability and resilience of predator-prey systems

and aid as a tool for the conservation and management of the

ecosystem. The authors in Srinivasu et al. [14] have studied

an additional food provided deterministic prey-predator systems

involving Holling type-IV functional response. In Ananth and

Vamsi and May [17, 19], the authors studied the optimal control

problems of deterministic prey-predator systems involving Holling

type-IV functional response with the quality of additional food

and the quantity of additional food as the control parameters

respectively. It is important to note that the specific influence

of additional food in a Holling type-IV prey-predator model

depends on various factors, including the parameters of the

model, the relative availability of primary prey and additional

food, and the ecological context. The dynamics and outcomes

can vary depending on the specific assumptions and interactions

incorporated into the model.

Often it is observed that the parameters in an ecosystem

are effected by the environmental fluctuations [20]. For instance,

authors in Elton [21] observed that the main cause of animal

number fluctuations is the instability of the environment. In recent

years, many researchers have drawn their attention to stochastic

models which captures these fluctuations. Most stochastic prey-

predator models are driven by the Brownian motion, which

captures the continuous noise.

White noise is a type of random signal that has equal

intensity at all frequencies. White noise reflects the inherent

unpredictability and stochasticity of ecological systems. White

noise can represent natural environmental fluctuations such as

temperature changes, wind patterns, or random disturbances in

resource availability that are experienced by organisms [20]. It

can also describe the random variation observed in biological

processes. For example, individual behaviors, reproductive events,

or physiological responses may exhibit stochastic fluctuations

resembling white noise. In mathematical and computational

models, white noise is often used as a simplifying assumption to

capture the inherent randomness in ecological processes. It can

be employed to simulate the unpredictable nature of ecological

phenomena or to represent random perturbations in system
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dynamics. Authors in Li and Zhao and Xu et al. [22, 23] studied

the deterministic and stochastic dynamics of a modified Leslie-

Gower prey-predator system with simplified Holling type-IV

functional response.

However, the sudden changes in environment like toxic

pollutants, floods, earthquakes and so on, cannot be captured by

the Brownian motion as it is a continuous noise. Hence, addition of

a discontinuous noise, like Lévy noise, to the prey-predator system

with Brownian motion makes the models more realistic [24].

Discontinuous Lévy noise refers to a type of stochastic

process characterized by intermittent and unpredictable jumps

or bursts of activity. It is based on the Lévy distribution,

which describes the probability of large, rare events occurring.

In a biological and ecological context, discontinuous Lévy noise

captures the occurrence of rare events that can have significant

ecological consequences. These events can include extreme weather

events, catastrophic disturbances, or sudden changes in resource

availability. Discontinuous Lévy noise reflects the non-Gaussian

and heavy-tailed nature of these rare events [24]. The use of

discontinuous Lévy noise in ecological modeling allows for the

incorporation of rare events, abrupt shifts, long-range correlations,

and non-Markovian dynamics. It provides a way to capture

the non-linearity, complexity, and unpredictability observed in

ecological systems and can help elucidate the role of rare events in

shaping ecosystem dynamics.

Jia et al. [25] uses the stochastic averaging method to analyze

the modified stochastic Lotka-Volterra models under combined

Gaussian and Poisson noise. Ma et al. [24] studies the dynamics

and dynamics of a Stochastic One-Predator-Two-Prey time delay

system with jumps. Recently, authors in Prakash and Vamsi [26]

studied the optimal and time-optimal control studies for additional

food provided prey-predator systems involving Holling type-III

functional response in the presence of the continuous white noise.

To the best of our knowledge, there is no study of additional

food provided stochastic prey-predator system with jumps.

Secondly, the optimal control studies of Stochastic Differential

Equations with Jumps (SDEJ) were not performed on prey-

predator systems. Lastly, very few works involved Holling type-IV

response which incorporates the most important group defense

property. Motivated by these observations, in this work, we

study the optimal control problems for additional food provided

stochastic Holling type-IV prey-predator systems under combined

Gaussian and Lévy noise. We consider the provision of additional

food to predators both in the complimentary and substitutable

sense to the prey and also assume that the predators are generalists

in nature.

The article is structured as follows: In Section 2 we present

the basic analysis of the stochastic prey-predator model with

Holling type-IV functional response and additional food with

intra-specific competition among predators. In Subsection 2.1 we

introduce the stochastic prey-predator model followed by the

existence of global positive solution for this model in Subsection

2.2. We perform the stochastic sensitivity analysis in Subsection

2.3. The time-optimal control problem is formulated and the

optimal quality and quantity of additional food is characterized in

Subsections 3.1–3.3. Sensitivity of stochastic controls are discussed

in Subsection 3.5. Section 3.4 illustrates the key findings of the

analysis through numerical simulations in the context of both

biological conservation and pest management. Section 4 studies the

effect of noise on the dynamics of the model. Finally, we present the

discussions and conclusions in Section 5.

2. Stochastic analysis

2.1. The stochastic model formulation

Let N and P denote the biomass of prey and predator

population densities respectively. In the absence of predator,

the prey growth is modeled using logistic equation. Further, we

assume that the prey species exhibit Holling type-IV functional

response toward predators. We also assume that the predators

are supplemented with an additional food of biomass A, which

is uniformly distributed in the habitat. Incorporating these

assumptions, the prey-predator dynamics with Holling type-IV

functional response along with additional food for predators can

be described as:

dN(t)

dt
= rN(t)

(
1−

N(t)

K

)

−

(
cN(t)

(Aηα + a)(bN2(t)+ 1)+ N(t)

)
P(t)

dP(t)

dt
= e

(
N(t)+ ηA(bN2(t)+ 1)

(Aηα + a)(bN2(t)+ 1)+ N(t)

)
P(t)−m1P(t)

(1)

In addition, we also assume that the predators exhibit intra-

specific competition. We capture this competition in similar lines

with [27, 28]. Accordingly, the system (1) gets transformed to the

following system.

dN(t)

dt
= rN(t)

(
1−

N(t)

K

)

−

(
cN(t)

(Aηα + a)(bN2(t)+ 1)+ N(t)

)
P(t)

dP(t)

dt
= e

(
N(t)+ ηA(bN2(t)+ 1)

(Aηα + a)(bN2(t)+ 1)+ N(t)

)
P(t)

−m1P(t)− δP(t)2

(2)

Here the term η represents the ratio between the search rate of

the predator for additional food and prey respectively. The term

−δP2(t) accounts for the intra-specific competition among the

predators in order to avoid their unbounded growth in the absence

of target prey [14, 15]. Here the term α denotes the ratio between

the maximum growth rates of the predator when it consumes the

prey and additional food respectively. This term can be seen to be

an equivalent of quality of additional food. For a complete analysis

of model (1), the reader is referred to Vamsi et al. [16].

The biological descriptions of the various parameters involved

in the systems (1) and (2) are described in Table 1.

In order to reduce the complexity of the model, we

non-dimensionalize the system (2) using the following

non-dimensional parameters.

N = ax, P =
ay

c
, γ =

K

a
, ξ =

ηA

a
, ω = ba2, m2 =

c

aδ
.
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TABLE 1 Description of variables and parameters present in the systems

(1), (2).

Parameter Definition Dimension

T Time time

N Prey density biomass

P Predator density biomass

A Additional food biomass

r Prey intrinsic growth rate time−1

K Prey carrying capacity biomass

c Maximum rate of predation time−1

e Maximum growth rate of predator time−1

m1 Predator mortality rate time−1

δ Death rate of predators due to

intra-specific competition

biomass−1 time−1

α Quality of additional food for

predators

Dimensionless

b Group defense in prey biomass−2

Accordingly, system (2) gets reduced to the following system.

dx

dt
= rx

(
1−

x

γ

)
−

(
xy

(1+ αξ )(ωx2 + 1)+ x

)

dy

dt
= e

(
x+ ξ (ωx2 + 1)

(αξ + 1)(ωx2 + 1)+ x

)
y−m1y−m2y

2

(3)

Here the term ηA2

N denotes the quantity of additional food

perceptible to the predator with respect to the prey relative to the

nutritional value of prey to the additional food. Hence the term ξ =
ηA
a can be seen to be an equivalent of quantity of additional food.

In real world scenarios, environmental fluctuations affect the

dynamics of the system. In order to capture these fluctuations,

we introduce the multiplicative white noise terms into (3). As in

Sengupta et al., Bodine and Yust, and Srinivasu et al. [27, 29, 30],

we now suppose that the intrinsic growth rate of prey and the

death rate of predator are mainly affected by environmental noise

such that

r → r + σ1dW1(t), m1 → m1 + σ2dW2(t)

where Wi(t) (i = 1, 2) are the mutually independent

standard Brownian motions with Wi(0) = 0 and σ1 and σ2 are

positive constants and they represent the intensities of the white

noise.

Also, the system can go through huge, occasionally

catastrophic disturbances. Since white noise is a continuous

noise, it cannot capture sudden environmental changes.

To cater to these, we also apply a discontinuous stochastic

process as Lévy jumps to model these abrupt natural

phenomenon as in Ma et al. and La Cognata et al.

[24, 31].

We now perturb r and m1 with discontinuous Lévy noise in

addition to the continuous white noise. So, we have

r → r + σ1dW1(t)+

∫

Y

γ1(v) Ñ(dt, dv), −m1

→ −m1 + σ2dW2(t)+

∫

Y

γ2(v) Ñ(dt, dv) (4)

According to the Lévy decomposition theorem [32], we have

Ñ(t, dv) = N(t, dv) − λ(dv)t, where Ñ(t, dv) is a compensated

Poisson process and N is a Poisson counting measure with

characteristic measure λ on a measurable subset Y of (0,+∞)

with λ(Y) < ∞. The distribution of Lévy jumps Li(t) can be

completely parameterized by (ai, σi, λ) and satisfies the property of

infinite divisibility.

Now, by incorporating noise induced parameters (4) into

the reduced deterministic system of Equation (3), we get the

following additional food provided stochastic prey-predator system

exhibiting Holling type-IV functional response along with the

environmental fluctuations captured using the white noise and

Lévy noise.

dx(t) = x(t)

[
r

(
1−

x(t)

γ

)
−

(
y(t)

(1+ αξ )(ωx2(t)+ 1)+ x(t)

)]
dt

+ σ1x(t)dW1(t)+ x(t)

∫

Y

γ1(v) Ñ(dt, dv)

dy(t) = y(t)

[
e

(
x(t)+ ξ (ωx2(t)+ 1)

(1+ αξ )(ωx2(t)+ 1)+ x(t)

)
−m1 −m2y(t)

]
dt

+ σ2y(t)dW2(t)+ y(t)

∫

Y

γ2(v) Ñ(dt, dv)

(5)

2.2. Existence of global positive solution

In order to do the stochastic time optimal control studies for

the system (5), we first prove that the system (5) has a unique global

positive solution.

Theorem 1. For any given initial value X(θ) = (x(θ), y(θ)) ∈

C([−τ0, 0],R
+2
), there exists a unique positive global solution

((x(t), y(t)) of system (5) on t ≥ 0.

Note: The above theorem for existence of solutions of (5) can

be proved in similar lines to the proof in Ma et al. [24] using the

Lyapunov method.

Proof. For any given initial value (x(θ), y(θ)) ∈ C([−τ0, 0],R
+2
),

there is a unique positive (x(t), y(t)) ∈ R
+2

for t ∈ [0, τe], where

τe is the explosion time. Subsequently, we will show that τe = ∞,

which yields that (x(t), y(t)) is the global solution.

Let m0 ≥ 0 be sufficiently large so x(t) and y(t) lie within the

interval [1/m0,m0]. For eachm ≥ m0, we define the stopping time:

τe = inf

{
t ∈ [−ω, τe) : x /∈ (

1

m0
,m0), y /∈ (

1

m0
,m0)

}
(6)
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Evidently, τe is strictly increasing when m −→ ∞. Let τ∞ =

limm−→∞τm; thus τ∞ ≤ τm a.s. Else there exist pairs of constants

T > 0,m1 ≥ m0 and 0 < ǫ < 1 such that P(τ∞ ≤ T) ≥ ǫ,m ≥ m1.

Let V(x, y) = x− 1− lnx+ y− 1− lny be a C2-function.

Using Itô’s formula, we get

dV = LVdt + σ1(x− 1)dW1 + σ2(y− 1)dW2

where

LV = (x− 1)

[
r

(
1−

x(t)

γ

)
−

(
y(t)

(1+ αξ )(ωx2(t)+ 1)+ x(t)

)]

+(y− 1)

[
e

(
x(t)+ ξ (ωx2(t)+ 1)

(1+ αξ )(ωx2(t)+ 1)+ x(t)

)

−m1 −m2y(t)

]
+

σ 2
1

2
+

σ 2
2

2

= rx− r −
r

γ
x2 +

r

γ
x−

xy

(1+ αξ )(ωx2 + 1)+ x

+
y

(1+ αξ )(ωx2 + 1)+ x
+

exy

(1+ αξ )(ωx2 + 1)+ x

+
eξωx2y

(1+ αξ )(ωx2 + 1)+ x
+

eξy

(1+ αξ )(ωx2 + 1)+ x

−
ex

(1+ αξ )(ωx2 + 1)+ x
−

eξωx2

(1+ αξ )(ωx2 + 1)+ x

−
eξ

(1+ αξ )(ωx2 + 1)+ x
−m1y+m1 −m2y

2 +m2y

+
σ 2
1

2
+

σ 2
2

2

≤ rx−
r

γ
x2 +

r

γ
x+ y

+ey+
ξeω

ω(1+ αξ )
y+ eξy

+m1 −m2y
2 +m2y+

σ 2
1

2
+

σ 2
2

2

=

[(
r +

r

γ

)
x−

r

γ
x2

]

+

[(
e+ eξ +m2 +

ξe

1+ αξ

)
y−m2y

2

]

+

(
m1 +

σ 2
1

2
+

σ 2
2

2

)
,

From derivative test, we can see that Ax − Bx2 ≤ A2

4B , where A and

B are constants. Therefore,

LV ≤
(r + r

γ
)2

4 r
γ

+
1

4m2

(
e+ eξ +m2 +

ξe

1+ αξ

)2

+

(
m1 +

σ 2
1

2
+

σ 2
2

2

)
≤ K,

where K is a positive constant.

Thus,

dV ≤ Kdt + σ1(x− a)dW1 + σ2(y− b)dW2

Taking expectation, yields

EV(x(τm ∧ T), y(τm ∧ T)) ≤ V(x(0), y(0))+ E

∫ τm∧T

0
Kdt.

Setting �m = {τm ∧ T,m ≥ m0}, we obtain P(�m) ≥ ǫ. For

eachω ∈ �m, there are x(τm,ω), y(τm,ω) equaling eitherm or 1/m

such that

V(x(0), y(0))+ KT ≥ E[1�k(ω)V(x(τm,ω), y(τm,ω))]

≥ ǫ[(
1

m
− 1− ln

1

m
) ∧ (m− 1− lnm)],

where 1�k(ω) denotes the indicator function of �k(ω).

Form −→ ∞, we have

∞ > V(x(0), y(0))+ KT = ∞

which is a contradiction. So, we have that τ∞ = ∞. This

completes the proof.

FIGURE 1

This figure depicts the mean and standard deviation of the predator, prey populations for the system (5) with respect to the parameter γ ∈ (10.1, 15.2).

The values for other parameters are chosen as r = 1.5, ω = 15, α = 10, ξ = 0.10, e = 0.4, m1 = 0.15, m2 = 0.01, σ1 = σ2 = 0.2, γ1 = γ2 = 0.1.
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FIGURE 2

This figure depicts the mean and standard deviation of the predator, prey populations for the system (5) with respect to the parameter ω ∈ (8.1, 15.2).

The values for other parameters are chosen as r = 1.5, γ = 12, α = 10, ξ = 0.10, e = 0.4, m1 = 0.15, m2 = 0.01, σ1 = σ2 = 0.2, γ1 = γ2 = 0.1.

2.3. Stochastic sensitivity analysis

In this subsection we briefly depict the sensitivity analysis for

the remaining parameters that are not perturbed by noise. This

can in turn help in understanding the sensitivity of the model with

respect to these unperturbed parameters.

Figures 1–3 depict the local sensitivity of the stochastic model

(5) w.r.t. the unperturbed parameters γ ,ω, and e in the model.

In this local sensitivity analysis, we simulated the system (5)

1, 000 times for each value in the chosen parameter range.

Each figure contains two sub plots where the first and

second plot depict the mean and standard deviation of

prey, predator populations for the range of chosen parameter

values respectively.

From the plots in Figures 1–3, it can be seen that the prey

population in the system (5) is more sensitive with respect to these

parameters than the predator population.

3. Stochastic time-optimal control
problems

In this section, we formulate and study the stochastic

time-optimal control problem for the prey-predator system

(5) with quality (α) and quantity (ξ ) of additional food as

control variables.

3.1. Quality of additional food as stochastic
time optimal control

In this subsection, we characterize the optimal quality of

additional food for driving the system (5) to a desired equilibrium

state in minimum time using the stochastic maximum principle.

We fix the quantity of additional food ξ > 0 to be a constant and

choose the objective functional to be minimized for this stochastic

time optimal control problem as follows.

J(α) = E

[∫ T

0
1dt

]
. (7)

From the Sufficient Stochastic Maximum Principle [33] for

the optimal control problems of jump diffusion, we characterize

the optimal solution of the stochastic time optimal control

problem with state space as the solutions of (5) and the objective

functional (7).

Let (p∗, q∗, r∗) be a solution of the adjoint equation in the

unknown processes p(t) ∈ R
2, q(t) ∈ R

2×2, r(t, z) ∈ R
2 satisfying

the backward differential equations

dp1(t) =

[(
−r +

2rx

γ
−

2ω(1+ αξ )x+ 1

((1+ αξ )(ωx2 + 1)+ x)2

)
p1(t)

−
(1− ωx2)(1+ (α − 1)ξ )

((1+ αξ )(ωx2 + 1)+ x)2
eyp2(t)− σ1q1

−

∫
γ1(v)r1v1(dz1)

]
dt

+ q1(t)dW1(t)+ q2(t)dW2(t)+

∫

Rn
r1Ñ(dt, dz)

dp2(t) = −

[
−x

(1+ αξ )(ωx2 + 1)+ x
p1(t)

+

(
e(x+ ξ (ωx2 + 1))

(1+ αξ )(ωx2 + 1)+ x
−m1 − 2m2y

)
p2(t)

+ σ2q4 +

∫
γ2(v)r2v2(dz2)

]
dt

+ q3(t)dW1(t)+ q4(t)dW2(t)+

∫

Rn
r2Ñ(dt, dz)

p1(T) = 0, p2(T) = 0

(8)
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FIGURE 3

This figure depicts the mean and standard deviation of the predator, prey populations for the system (5) with respect to the parameter e ∈ (0.1, 0.9).

The values for other parameters are chosen as r = 1.5, γ = 12, ω = 15, α = 10, ξ = 0.10, m1 = 0.15, m2 = 0.01, σ1 = σ2 = 0.2, γ1 = γ2 = 0.1.

The Hamiltonian associated with this control problem is

defined as follows.

H(t, x, y,α, p, q, r)

= 1+

[
r(1−

x

γ
)−

y

(1+ αξ )(1+ ωx2)+ x

]
xp1

+

[
e(x+ ξ (ωx2 + 1))

(1+ αξ )(1+ ωx2)+ x
−m1 −m2y

]
yp2

+ σ1xq1 + σ2yq4 + x

∫
γ1r1v1(dz1)+ y

∫
γ2(v)r2v2(dz2)

(9)

Let U = {α(t)|0 ≤ α(t) ≤ αmax∀t ∈ (0, tf ]}

where αmax ∈ R
+. Let α∗ ∈ U with the corresponding

solution (x∗, y∗) = [x(u∗), y(u∗)].

From the Arrow condition in the sufficient stochastic

maximum Principle [33], we have

∂H

∂α

∣∣∣
α∗

= 0

H⇒

[
− yxp1

−ξ (ωx2 + 1

((1+ αξ )(ωx2 + 1)+ x)2

−
eyp2(x+ ξ (ωx2 + 1))(ξ (ωx2 + 1))

((1+ αξ )(ωx2 + 1)+ x)2

]∣∣∣∣∣
∗

= 0

H⇒

[
yxp1 − eyp2(x+ ξ (ωx2 + 1))

]∣∣∣∣∣
∗

= 0

H⇒ x∗p∗1 = ep∗2(x
∗ + ξ (ωx∗

2
+ 1))

Hence the optimal control α∗ should satisfy the

following condition.

x∗p∗1 = ep∗2(x
∗ + ξ (ωx∗

2
+ 1)) (10)

Since the analytical solution of (8) is complex to solve, we

numerically simulate these results in Subsection 3.4.

3.2. Quantity of additional food as
stochastic time optimal control

In this subsection, we characterize the optimal quantity of

additional food for driving the system (5) to a desired equilibrium

state in minimum time using the stochastic maximum principle.

We fix the quality of additional food α > 0 to be a constant and

choose the objective functional to be minimized for this stochastic

time optimal control problem as follows.

J(ξ ) = E

[∫ T

0
1dt

]
. (11)

From the Sufficient Stochastic Maximum Principle [33] for

the optimal control problems of jump diffusion, we characterize

the optimal solution of the stochastic time optimal control

problem with state space as the solutions of (5) and the objective

functional (11).

Let (p∗, q∗, r∗) be a solution of the adjoint equation in the

unknown processes p(t) ∈ R
2, q(t) ∈ R

2×2, r(t, z) ∈ R
2 satisfying

the backward differential equations

dp1(t) =

[(
− r +

2rx

γ
−

2ω(1+ αξ )x+ 1

((1+ αξ )(ωx2 + 1)+ x)2

)
p1(t)

−
(1− ωx2)(1+ (α − 1)ξ )

((1+ αξ )(ωx2 + 1)+ x)2
eyp2(t)

− σ1q1 −

∫
γ1(v)r1v1(dz1)

]
dt

+ q1(t)dW1(t)+ q2(t)dW2(t)+

∫

Rn
r1Ñ(dt, dz)

(12)
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dp2(t) = −

[
−x

(1+ αξ )(ωx2 + 1)+ x
p1(t)

+

( e(x+ ξ (ωx2 + 1))

(1+ αξ )(ωx2 + 1)+ x
−m1 − 2m2y

)
p2(t)+ σ2q4

+

∫
γ2(v)r2v2(dz2)

]
dt + q3(t)dW1(t)

+ q4(t)dW2(t)+

∫

Rn
r2Ñ(dt, dz)

p1(T) = 0, p2(T) = 0

The Hamiltonian associated with this control problem is

defined as follows.

H(t, x, y, ξ , p, q, r)

= 1+

[
r(1−

x

γ
)−

y

(1+ αξ )(1+ ωx2)+ x

]
xp1

+

[
e(x+ ξ (ωx2 + 1))

(1+ αξ )(1+ ωx2)+ x
−m1 −m2y

]
yp2

+ σ1xq1 + σ2yq4 + x

∫
γ1r1v1(dz1)+ y

∫
γ2(v)r2v2(dz2)

(13)

Let U = {ξ (t)|0 ≤ ξ (t) ≤ ξmax∀t ∈ (0, tf ]}

where ξmax ∈ R
+. Let ξ∗ ∈ U with the corresponding

solution (x∗, y∗) = (x(ξ∗), y(ξ∗)).

From the Arrow condition in the sufficient

stochastic maximum Principle [33], we have

∂H

∂ξ

∣∣∣
ξ∗

= 0

H⇒

[
− yxp1

−α(ωx2 + 1

((1+ αξ )(ωx2 + 1)+ x)2
+

eyp2

(
((1+ αξ )(ωx2 + 1)+ x)(ωx2 + 1)− α(ωx2 + 1)(x+ ξ (ωx2 + 1))

((1+ αξ )(ωx2 + 1)+ x)2

)]∣∣∣∣∣
∗

= 0

H⇒

[
αxy(ωx2 + 1)p1 + eyp2(ωx

2 + 1)(x(1− α)(ωx2 + 1))

]∣∣∣∣∣
∗

= 0

H⇒

[
αxp1 + ep2(1+ ωx2 + x(1− α))

]∣∣∣∣∣
∗

= 0

H⇒ αx∗p∗1 + ep∗2(1+ ωx∗
2
+ x∗(1− α)) = 0

Hence the optimal control ξ∗ should satisfy the

following condition.

αx∗p∗1 + ep∗2(1+ ωx∗
2
+ x∗(1− α)) = 0 (14)

Since the analytical solution of (8) is complex to solve, we

numerically simulate these results in Subsection 3.4.

3.3. Existence and uniqueness of solutions
for the Forward Backward Stochastic
Di�erential Equations with Jumps (FBSDEJ)

We so far obtained the adjoint Equations 8, 12 for the

state Equation 5 and the objective functional (7), (11) using

the sufficient stochastic maximum principle respectively. Upon

simplifying the results obtained from the arrow condition (10), (14)

from earlier two subsections, we see that the optimal controls are

given by

α∗ =
ep∗2(1+ x∗ + ωx∗

2
)

ep∗2x
∗ − p∗1x

∗
, ξ∗ =

x∗p∗1 − ex∗p∗2

ep∗2(1+ ωx∗
2
)

(15)

In this section, we now prove the existence of optimal controls

by proving the existence of the solutions for the FBSDEJ [(5),

(8), (12)] which establishes the existence of (x∗, y∗, p∗1 , p
∗
2) for all

simulation purposes. Using the theorem in Al-Hussein and Gherbal

[34], we now prove the existence of the optimal controls (15) in the

following theorem.

Theorem 2. For any (x0, y0) ∈ R
+2
, the FBSDEJ [(5), (8), (12)]

admits an optimal stochastic control.

Proof. Let (Xt)t≥0 be the solution of the Stochastic Differential

Equation with Jumps (SDEJ)

dXt = b(Xt)dt + σ (Xt)dW(t)+

∫

R

Ŵ(v)Ñ(dt, dv)

Here the term b(Xt) denotes the drift coefficient, the term σ (Xt)

denotes the diffusion coefficient and the term Ŵ(v) denotes the

poisson term coefficient.

The theorem 1 in Section 3 guaranties the monotonicity and

Lipschitz continuity of the drift coefficient, the diffusion coefficient

and the poisson term coefficient of the state Equation 5.

Following the the existence and uniqueness theorem of

FBDSDEJ in Al-Hussein and Gherbal [34], we are only left to prove

the monotonicity and Lipschitz continuity of the drift and diffusion

terms of the adjoint system of Equation 8.

From (8), due to the positivity of state variables guaranteed

by theorem 1, the drift term and the diffusion terms are given
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as follows.

b(Xt) ≤

( (
2rx
γ

)
p1(t)+

(
ωex2y

)
p2(t)

(x)p1(t)+ (m1 + 2m2y)p2(t)

)
, σ (Xt) =

(
q1(t) q2(t)

q3(t) q4(t)

)

Since the drift coefficient is a linear combination of adjoint

terms (p1, p2), the monotonicity and Lipschitz continuity

are guaranteed.

In addition to this, the diffusion coefficient is independent

of the adjoint terms (p1, p2). Therefore, the monotonicity and

Lipschitz continuity are guaranteed for the diffusion coefficients.

Hence the existence of unique stochastic optimal controls are

proved for FBSDEJ [(5), (8), (12)].

3.4. Numerical simulations

In this section, we perform the extensive numerical simulations

using python by choosing the following parameters [24] for the

model (5). r = 1.5, γ = 12,ω = 15, e = 0.4,m1 =

0.15, m2 = 0.01, σ1 = σ2 = 0.02, γ1 = 1, γ2 = 1.

In these simulations, white noise is simulated using the Box-

Normal transformations and the poisson noise is simulated using

the poisson point processes [35]. The state Equation 5 and the

adjoint Equations 8, 12 are simulated using the Forward Backward

Doubly Stochastic Differential Equations with Jumps (FBDSDEJ)

method. The subplots in Figures 4, 5 depict the optimal state

trajectories, optimal co-state trajectories, phase diagram, optimal

quality of additional food and the optimal quantity of additional

food respectively.

3.4.1. Applications to biological conservation
The subplots (4a) and (4b) depicts the optimal state trajectory

of the system (5) from the initial state (2, 8) that stabilizes over

time around the state (16, 90). The subplot (4d) gives the phase

diagram which shows the trajectories are stabilized over high values

of prey and predator. The subplots (4e) and (4f) depicts the optimal

quality and quantity of additional food respectively. These plots

show that the high quality of additional food is required to achieve

biological conservation. Even if the quantity of additional food is

lower, still we will be able to achieve biological conservation with

higher quality of additional food.

3.4.2. Applications to pest management
The subplots (5a) and (5b) depicts the optimal state trajectory

of the system (5) from the initial state (7, 5). It can be seen that the

system can be driven to a low prey dominated state. The subplot

(5d) depicts this property more clearly through the phase diagram

where it reaches the lowest prey value over the time. The subplots

(5e) and (5f) depicts that a lesser quality of additional food and a

lower quantity of additional food is good enough to achieve pest

management where pest is viewed as prey.

3.5. Sensitivity of time optimal controls

In this subsection we perform the sensitivity analysis for the

optimal control variables α(t) and ξ (t) with respect to the different

values for the model parameters

In Figure 6, frames (6a) and (6b) depict the sensitivity of

the control variables with respect to the parameters r and

γ respectively. Frames (6c) and (6d) depict the sensitivity of

the control variables with respect to the parameters ω and e

respectively. In Figure 6, frames (6a) and (6b) depict the sensitivity

of the control variables with respect to the parameters m1 and

m2, respectively.

From the sensitivity analysis depicted in Figures 6, 7 we see that

the optimal quality control seems to be more sensitive with respect

to the parameter r in comparison to the other parameters.

4. E�ect of noise on the optimal
control problem

In this section, we briefly study the effects of discrete and

continuous noise on the system (3). We compared the dynamics

of the state trajectories and control variables with and without

these noises.

In Figure 8, frames (8a) and (8b) depict the optimal prey

and optimal predator populations respectively with no noise,

white noise and with both white noise and Lévy noise. Frame

(8c) depicts the corresponding trajectories of co-state variables.

Frame (8d) depicts the phase space of the state variables. Frames

(8e) and (8f) depict the optimal quality and quantity control

trajectories respectively.

From the plots in Figure 8 we see that both the discrete

and continuous noise can lead to fluctuations in prey dynamics

compared to that of predator. From the phase plots it can be seen

that the converging pattern to the final state more or less follow

a similar trend. Overall we find that the prey seems to be more

influenced by the noise than that of predator.

5. Discussions and conclusions

This paper studies a stochastic prey-predator system exhibiting

Holling type-IV functional response along with the combined

influence of white noise and Lévy noise. We do the time-

optimal control studies for this system, with the quality and the

quantity of additional food as control variables. To begin with,

we formulated a stochastic model by considering multiplicative

noise to both prey and predator. In theorem 1, we proved the

existence of a unique positive global solution of (5). Further, we

formulated the time-optimal control problem with the objective

to minimize the final time in which the system reaches the pre-

defined state. Using the sufficient stochasticmaximumprinciple, we

characterized the optimal control values. In theorem 2, we proved

that the existence and uniqueness of Forward Backward Doubly

Stochastic Differential Equations with Jumps (FBDSDEJ). We also

numerically simulated the theoretical findings and applied them in

the context of biological conservation and pest management.
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FIGURE 4

This figure depicts the simulations of time-optimal control problem with respect to the control variables in the context of biological conservation.

The subfigures (A–C) depict the optimal prey, predator and co-state vectors respectively. The subfigure (D) depicts the phase diagram between prey

and predator densities. The subfigures (E, F) depict the optimal quality and quantity control variables. The parameter values are chosen as

r = 1.5, γ = 12, ω = 15, e = 0.4, m1 = 0.15, m2 = 0.01.

To understand the sensitivity of this stochastic system, we firstly

performed the sensitivity analysis with respect to the individual

parameters and later did the sensitivity analysis for the optimal

control variables with respect to the parameters of the system. The

findings revealed that the stochastic system as such is minimally

sensitive with respect to the system parameters and the optimal
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FIGURE 5

This figure depicts the simulations of time-optimal control problem with respect to the control variables in the context of pest management. The

subfigures (A–C) depict the optimal prey, predator and co-state vectors respectively. The subfigure (D) depicts the phase diagram between prey and

predator densities. The subfigures (E, F) depict the optimal quality and quantity control variables. The parameter values are chosen as

r = 1.5, γ = 4, ω = 6, e = 0.6, m1 = 0.1, m2 = 0.01.

quality control variable seems to be more sensitive with respect to

the parameter, growth rate r relative to the other parameters.

Finally a brief study on the influence of different noises on this

stochastic system revealed that both the discrete and continuous

noise induced fluctuations in the prey dynamics and seem to have

minimal effect on the predator dynamics.

Some of the salient features of this work include the

following. Unlike the most traditional papers, here we
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FIGURE 6

The subfigures (A–D) in this figure depict the optimal quality and optimal quantity of additional food (15) with respect to the parameter values r, γ , ω

and e respectively. The other parameter values are chosen as r = 1.5, γ = 12, ω = 15, e = 0.4, m1 = 0.15, m2 = 0.01.

FIGURE 7

The subfigures (A, B) in this figure depict the optimal quality and optimal quantity of additional food (15) with respect to the parameter values m1 and

m2 respectively. The other parameter values are chosen as r = 1.5, γ = 12, ω = 15, e = 0.4.
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FIGURE 8

This figure depicts the simulations of time-optimal control problem with respect to the control variables. The subfigures (A–C) depict the optimal

prey, predator and co-state vectors respectively. The subfigure (D) depicts the phase diagram between prey and predator densities. The subfigures (E,

F) depict the optimal quality and quantity control variables. The three graphs in each subfigure corresponds to the dynamics of the system with no

noise, white noise and multiple noises. The parameter values are chosen as r = 1.5, γ = 12, ω = 15, e = 0.4, m1 = 0.15, m2 = 0.01.

considered a stochastic time-optimal control problem. As

Intra-specific competition among predators is ineluctable,

we also explicitly incorporated the intra-specific competition

into our model. This paper mainly deals with the novel

study of the time-optimal control problems where the state

equations involve both the discrete and continuous noise

which is challenging. We also performed the stochastic

sensitivity analysis.
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To sum up this work has been an initial attempt and a first of

its kind dealing with the Stochastic Time Optimal Control studies

for prey-predator systems involving group defense of the prey.

Since this is an initial exploratory research we didn’t include finer

specificalities such as mutual interference of the predators and also

did not elaborate much on the stochastic bifurcation aspect. In

future we wish to incorporate and study these aspects. We also

intend to extend these studies in the setting of Markov Chain and

Partial Differential Equations.
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