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Dynamic high-frequency
dependence structure of Chinese
agricultural commodity futures
based on the semi-parametric
copula

Renhong Xiao*

International Business School, Yunnan University of Finance and Economics, Kunming, Yunnan, China

This paper investigates the dynamic high-frequency dependence structure of

Chinese four major agricultural commodity futures by utilizing a semi-parametric

copula-based multivariate model with 5-minute high-frequency trading data.

The empirical results show that the daily dependence between the agricultural

commodity futures is time-varying and slightly asymmetric, and that this

dependence and its asymmetry are more pronounced during the world food crisis

(2007–2008) and the global financial crisis (2008–2011). Furthermore, the intraday

dependence structure exhibits a lopsided inverted U-shaped patternwith relatively

lower dependence level around the opening and closing time, and a peak around

the mid-trading day.
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1. Introduction

The diminishing stocks of agricultural products in recent years have raised concerns
about food security, particularly in the developing countries. This in turn has increased the
volatility in agricultural commodity prices as evidence in the unprecedented price spikes
during the world food crisis (2007–2008)1 and sharp increases during the period from 2010
to 2011. Moreover, the complexity of agricultural commodity futures markets has increased
significantly in recent years. It is known that there were sharp increases in dependence

1 During 2007–2008 food prices rose dramatically worldwide, creating a global food crisis and causing

political and economic instability and social unrest in both poor and developed countries. Between early

2006 and 2008, the averageworld price for rice rose by 217%,wheat by 136%,maize by 125% and soybeans

by 107% respectively. In late April 2008, rice prices hit 24 cents a pound, twice the price that it was seven

months earlier. See http://www.world-crisis.net/food-crisis.html, accessed on 16 January, 2016.
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between international equity markets around the world during
the global financial crisis (see e.g., [7–9]), more and more
investors include commodity futures as a part of their diversified
portfolios. Even though agricultural commodity futures seem
to provide investors and portfolio managers with additional
diversification benefits, if the agricultural commodity futures co-
move closely as the underlying agricultural commodities do2, the
effectiveness of the diversification strategies and hedging potential
among those agricultural commodity futures might be low and
even disappear. Therefore, given their economic significance
and growing importance in investment portfolios, it is vital to
investigate the dependence structure between the agricultural
commodity futures.

Previous studies mainly focus on the relationship between
the spot and the futures prices for agricultural commodities [2]
and the dependence between energy and agricultural commodities
markets or between the stock and the agricultural commodities
markets (e.g., [11–16]). The literature on the dependence between
agricultural commodities is limited and most studies use various
versions of multivariate GARCH models based on low-frequency
data, such as daily or monthly data. Von Ledebur et al. [3]
use a MGARCH model with daily price data to examine the
volatility linkages between the agricultural commodities during
the dramatic price changes in 2008, and find supporting evidence
for dependence. Le Pen and Sevi [17] employ a factor model
and a dynamic condition correlation (DCC) model with monthly
price data to study the interrelationship among eight agricultural
and none agricultural commodities and find weak evidence of
dependence in price and volatility. Zhao and Goodwin [18] reveal
important volatility linkages between the corn and soybean futures
by using a threshold and BEKK model with weekly price data.
Lahiani et al. [19] find strong evidence of dependence between
the four major agricultural commodities including sugar, wheat,
cotton, and corn by employing the VAR-GARCH model of Ling
and McAleer [20] with daily price data. Beckmann and Czudaj
[21] suggest the pairwise short-run volatility linkages between corn,
wheat, and cotton futures by employing a bivariate GARCH-in-
mean VAR models with daily price data. Using the standard full
BEEK and DCC model with daily price data, Hernandez et al. [22]
support the volatility linkages between corn, wheat and soybean
across different futures markets in the United States, Europe,
and Asia as well as an increase in their dependence in recent
years. Gardebroek et al. [1] utilize both a full T-BEKK model
and various T-DCC models with various data frequencies (daily,
weekly, and monthly) to study the market interrelationships and
volatility linkages among major agricultural commodities in the
United States and find little evidence of dependence in levels but
significant volatility linkage, particularly at weekly and monthly
frequencies. There are some copula based models proposed in
literatures to study dependence between commodities, such as the
time-varying copula with a switching dependence [23], wavelet-
based copula approach [24].

2 Gilbert [10] find that the prices of various agricultural commodities

regularly move together although there are many di�erent causes that give

rise to the increases (and fluctuations) of agricultural commodity prices.

Chinese agricultural commodity futures market is selected for
a few reasons. Agriculture is of special economic and political
importance to China due to its large population. Further, the
trading volume in Chinese agricultural commodity futures was
about 292 trillion Yuan at the end of 2014, and ten out of the top
20 agricultural contracts by volume were traded on the Chinese
exchanges according to the Futures Industry Association (FIA)
statistics in the USA3. These figures show that Chinese agricultural
commodity futures market has become the world’s biggest market
and has an increasing influence on the global pricing and the
decisions on portfolio diversification (e.g., [25]). Finally, it should
be noted that the futures trading in China is subject to some
unique regulations such as the time-dependent margin rate for
deposit, which may make Chinese futures market different from
other developed markets. Therefore, it is also of special interest
to study the dependence between Chinese agricultural commodity
futures and their changing pattern over time.

To Consider the two properties of an agricultural commodity
futures market, i.e., property of agricultural commodity due to the
underlying asset, and property of finance due to the futures trading,
we mainly aims to explore the dependence structure of futures
during the world food crisis (2007–2008) and the global financial
crisis (2008–2011). The 5-min and daily high frequency trading
dataset covers the period from January 2006 to November 2014 are
used. This sample period thus allows us to analyze the dynamics
of dependence structure between different agricultural commodity
futures during the two crisis periods.

This paper investigates the dynamic dependence structure
between four Chinese agricultural commodity futures. The main
contributions of this paper to reveal the typical characteristics
of high frequency dependence structure of Chinese agricultural
commodity futures, and to propose the semi-parametric copula-
based multivariate model with high-frequency trading data. In
contrast to the traditional GARCH approach, this approach has
the additional benefit of allowing the investigation of tail and
asymmetrical dependence. Further, the use of the high-frequency
data not only allows us to observe the evolution of the latent
conditional dependence, which is much less sensitive to structural
breaks, but also allows us to investigate the intraday dependence
patterns between each pair of agricultural commodity futures. To
our best knowledge, the copula approach with high frequency data
as employed in this paper has not been previously considered in
the literature.

The remainder of the paper is organized as follows. Section 2
discusses the models. Section 3 presents the data and descriptive
statistics. The empirical results are reported and analyzed in Section
4. The concluding remarks are given in Section 5.

2. Models

Due to the fact that the semi-parametric Copula-Based
Multivariate Dynamic (SCBMD) model [26] allows for the
conditional mean and conditional variance of the individual futures

3 See https://fimag.fia.org/articles/2014-fia-annual-global-futures-and-

options-volume-gains-north-america-and-europe-o�set, accessed on 16

January, 2016.
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return series to be modeled, and the dependence of the scale-free
residuals to be specified by a copula, we employ the high frequency
data in each trading day to estimate this model and then obtain
the daily copula dependence between the agricultural commodity
futures, which is named the intraday dependence estimators in this
paper, just as the daily realized correlation [27] is obtained from the
high frequency data.

2.1. The semi-parametric copula model

2.1.1. The copula function
We utilize the copula function to investigate the dependence

structure between the agricultural commodity futures in China as
it provides the information on the average dependence and tail
dependence between two agricultural commodity futures. Based
on Sklar [28], we can break down the joint distribution of two
continuous random variables X and Y, FXY (x,y) into the marginal
distribution functions FX(x) and FY (y) that describe the individual
behavior of each series. The copula function that fully captures the
dependence structure between them is given by:

F(x, y) = C(FX(x), FY (y)), (1)

where C(u, v), u = FX(x) and v = FY (y) is the copula function
that is solely relied on the ranges of FX(x) and FY (y) if the margins
are continuous. Thus, we can also represent the joint density of X
and Y variables as:

fXY (x, y) = c(u, v)fX(x)fY (y), (2)

where fX(x) and fY (y) are the marginal densities, and c(u, v) =
∂2C(u, v)/∂u∂v.

The copula function has several advantages for investigating
the dependence between the agricultural commodity futures.
First, by using the copula, we can model the marginal behavior
of agricultural commodity futures prices and the dependence
structures separately. Thus, the copula approach provides greater
flexibility in modeling and estimating the margins and dependence
than the parametric multivariate distributions. Second, the copula
approach provides the information on both the degree and
the structure of dependence, i.e., a more accurate measure of
dependence than the traditional dependence measures given
by the linear correlation, which only takes into account how
agricultural commodity futures prices move together on average
across marginal distributions with the assumption of multivariate
normality. Third, as the copula is a multivariate distribution
function with uniform (0,1) margins that associate the quantiles
of the distributions instead of the original variables, the
copula function is unaffected by the increasing and continuous
transformations of agricultural commodity futures prices while the
linear correlation is only invariant to linear transformations. This
is important as dependence is the same for agricultural commodity
futures prices as for the log returns of agricultural futures. Finally,
the copula function allows us to investigate the tail dependence,
whichmeasures the probability that agricultural commodity futures
go up or down together. The coefficient of upper (right) and lower
(left) tail dependence can be described in terms of copula as:

τU= lim
u→1

Pr[X ≥ F−1
X (u)|Y ≥ F−1

Y (u)] = lim
u→1

1− 2u+ C(u, u)

1− u
(3)

τL= lim
u→0

Pr[X ≤ F−1
X (u)|Y ≤ F−1

Y (u)] = lim
u→0

C(u, u)

u
(4)

Where F−1
X and F−1

Y are the marginal quantile functions, τU

and τL are always in [0,1]. When τU (τL) is 0, the two series
are upper (lower) tail independent. Otherwise the series are tail
dependent with higher values indicating more dependence in
extreme events.

Thus, in order to investigate the dependence structure between
the agricultural commodity futures through the copula approach,
we need to model the marginal distribution and the joint
distribution for each pair of agricultural commodity futures series.

2.1.2. The marginal distribution model
In order to capture the properties of intraday returns, such

as conditional heteroskedasticity and leverage effects, we use the
ARMA(p,q)–EGARCH(r,m) model as the marginal distribution
model for asset i on trading day t:

ri,t,j = ci,t +
p

∑

p1=1

φp1 ,i,tri,t,j−p1 + εi,t,j+

q
∑

q1=1

θq1 ,i,tεi,t,j−q1 , (5)

εi,t,j = σi,t,jzi,t,j, (6)

log(σ 2
i,t,j) = ωi,t +

r
∑

r1=1
βr1 ,i,t log(σ

2
i,t,j−r1

)+

m
∑

m1=1
αm1 ,i,t|

εi,t,j−m1
σi,t,j−m1

|+
m
∑

m1=1
λm1 ,i,t

εi,t,j−m1
σi,t,j−m1

(7)

where I = 1, . . .K, j = 1, . . . , n, n is the number of intraday returns
used in the desired sampled window. ci,t , φp1 ,i,t , θq1 ,i,t , ωi,t , βr1 ,i,t ,
αm1 ,i,t and λm1 ,i,t are different for each asset i, on each day t and are
a function of n.

In order to reduce the risk of mis-specifying the marginal
distributions of zi,t,j, following Chen and Fan [26], we adopt the
empirical marginal distributions for each day t to estimate Fi,t(zi,t,j):

F̂i,t(x) =
n

n+ 1

n
∑

j=1

I(ẑi,t,j ≤ x),−∞ < x < ∞ (8)

Where ẑi,t,j are the estimated standardized intraday residuals
from Eq. (6). The numbers of lag p and q in Eq. (5) are selected
for each series and each day according to the Bayesian Information
Criterion (BIC) up to (5, 5). We also use BIC to select the numbers
of lag r andm in Eq. (7) up to (2). Using other maximum lag values
for p, q, r and m in our empirical analysis, we find that the optimal
lag values for p and q are never larger than 5, and the optimal
lag values for r and m are never more than 2. In addition, Akaike
Information Criterion (AIC) is also used to select of the optimal lag
values for p, q, r, and m, and the results of selection are nearly the
same as BIC.
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2.1.3. The copula models
After modeling the time-varying dynamics in the conditional

mean and conditional variance of the individual return series, we
only need to deal with the standardized intraday residuals ẑi,t,j by
the copula function. As Chen and Fan [26] suggest that these scale-
free residuals obtained by passing returns through a GARCH type
filter in the SCBMD framework can retain returns’ dependence
structure with relative stability, and the asymptotic distribution of
the estimated dependence parameter is unaffected by the GARCH
type estimation, we consider the dependence structure of ARMA-
EGARCH residuals instead of returns itself. The copula function of
the standardized intraday residuals is specified as:

FAB(ẑA,t,j, ẑB,t,j) = C(F̂A(ẑA,t,j), F̂B(ẑB,t,j); θt), (9)

Where θt is the intraday dependence for trading day t, ẑA,t,j
and ẑB,t,j are the estimated standardized intraday residuals from
Eq. (6) on trading day t and in intraday period j for assets A and
B respectively. F̂A and F̂B are the empirical marginal distributions
of ẑA,t,j and ẑB,t,j, respectively.

Several papers, such as Longin and Solnik [29] and Delatte
and Lopez [30], find that there is extreme and asymmetrical
dependence dynamics in several financial markets. Therefore, it
appears to be realistic to investigate the presence of these effects
on the agricultural commodity futures markets. In order to capture
the different properties of the dependence structure between the
agricultural commodity futures in China, we employ seven different
copula specifications:

i. the Gaussian copula with tail independence;
ii. the Clayton copula with lower tail dependence and upper

tail independence;
iii. the Gumbel copula with upper tail dependence and lower

tail independence;
iv. the Plackett copula with tail independence;
v. the Frank copula with tail independence;
vi. the Student-t copula with symmetric tail dependence;
vii. the Symmetrized Joe-Clayton (SJC) with upper tail

dependence and lower tail dependence and symmetric
dependence as a special case.

Following Patton [31], the dependence parameters and
dependence structure for these seven copula specifications are
briefly summarized in Table 1.

2.2. Estimation methods

For themodeling strategy above, we focus on a semi-parametric
copula model for each trading day t that combines a nonparametric
model for marginal distribution with a parametric model for the
copula. Based on Chen and Fan [26], we employ the two-stage
maximum likelihood estimation (MLE) method to estimate this
semi-parametric copula model for each trading day.

First, the parameters of the ARMA-EGARCH model for
the individual return series on each trading day are estimated
separately by MLE, and the marginal distributions of the estimated

standardized intraday residuals are estimated by using the
empirical marginal distributions.

Second, the parameters of a parametric copula are estimated by
solving the following problem on every trading day t:

θ̂t = argmax
θt

n

1+ n

n
∑

j=1

log ct(F̂A(ẑA,t,j), F̂B(ẑB,t,j); θt) (10)

where ct is the copula density function.
As detailed in Chen and Fan [26], the asymptotic distribution of

the MLE of the copula parameter depend on the estimation error in
the empirical marginal distributions of ẑi,t,j, and is unaffected by the
estimated parameters in the ARMA-EGARCH model. Therefore,
we ignore the estimation error from ARMA-EGARCH model for
the copula estimation and inference. For the statistical inference on
the estimated copula parameters, we adopt the bootstrap method as
suggested by Chen and Fan [26] and Remillard [4] as follows:

i. Use i.i.d. bootstrap to generate a bootstrap sample of the
estimated standardized intraday residuals ẑi,t,j on each trading
day t.

ii. Transform each time series of bootstrap data using its
empirical marginal distribution.

iii. Estimate the copula model based on the transform data.
iv. Repeat steps 1–3 with S times.
v. Use the α/2 and quantiles of the distribution of estimated

parameters to obtain a 1 − α confidence interval for
these parameters.

3. Data and descriptive statistics

There are three commodity futures exchanges in China:
Zhenzhou Commodity Exchange (ZCE), Dalian Commodity
Exchange (DCE) and Shanghai Futures Exchange (SFE). SFE is
specialized inmetal, energy and chemical-related futures while ZCE
and DCE are specialized in agricultural commodity futures. We
employ the high frequency data fromWind Financial Terminal for
four agricultural commodity futures contracts in Chinese markets:
white sugar, soybean, cotton and corn. Soybean and corn are traded
in DCE while white sugar and cotton are traded in ZCE. The
sample period is from 9 January 2006 to 28 November 2014 for all
futures considered. The sample period allows us to analyze whether
there have been important changes in the dynamics of dependence
structure between agricultural commodity futures during the world
food crisis (2007–2008) and the global financial crisis. We eliminate
transactions executed during the weekends, public holidays and the
days with low trading activity that could lead to estimation bias.
After applying this elimination rule, we end up with 2,150 trading
days in this study. Following Yang et al. [32], each agricultural
commodity futures price series is constructed by rolling over the
most liquid and active nearby futures contracts on the first trading
day of the contract’s expiration month and the prices of all futures
are expressed in Chinese Yuan.

We follow the algorithm detailed in Barndorff-Nielsen et al.
[33] to clean the high frequency data, and include only the
observations for each trading day from 9:00 to 15:00 with a two-
hour break between 11:30 and 13:30 and omit the overnight
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TABLE 1 Copula models.

Parameter(s) Independence Pos. and neg. dep? τL τU

Normal ρ ∈ (−1, 1) 0 Yes 0 0

Clayton γ ∈ (0,∞) 0 No4 2−1/γ 0

Gumbel γ ∈ (1,∞) 1 No 0 2− 2−1/γ

Plackett γ ∈ (0,∞) 1 Yes 0 0

Frank γ ∈ (−∞,+∞) 0 Yes 0 0

Student-t ρ, υ ∈ (−1, 1)× (2,∞) (0, 0) Yes 2tυ+1(−
√

υ + 1
√
1− ρ/

√
1+ ρ)

SJC τ L , τU ∈ [0, 1)× [0, 1) (0,∞) No τ L τU

Parameter values that lead to the independence copula are given in the column entitled “Indep”; The column entitled “Pos. and neg. dep?” indicate whether the copulas allow for both negative

and positive dependences.

observations so as to reduce the effect of asynchronous trading.
In order to obtain regularly spaced observations, we adopt the
calendar time sampling and the last-tick interpolation method.
We use the 5-min sampling frequency in an attempt to strike
a reasonable balance between two potential effects: at very high
sampling frequency, we confront a positive bias as detailed
in Nelson [34], and at too low sampling frequency, we end
up with a small sample and face a positive in estimating the
intraday dependence.

Figure 1 shows the evolution of four agricultural commodity
futures prices at 5-min frequency. It follows that the prices in all
four futures appear to move in a similar fashion, with a big spike
in 2008 when the food price crisis occurred, and a sharp increase
between 2010 and 2011. Figure 2 further displays the 5-min and
daily log returns time series of the four agricultural futures. The jth

5-min intraday log returns for asset i on trading day t are obtained
as ri,t,j = 100×(pi,t,j−pi,t,j−1), where pi,t,j is the jth log price sampled
at 5-min frequency on trading day t for asset i. Our daily returns
are simply computed as a sum of 5-min intraday log returns, ri,t =
n
∑

j=1
ri,t,j. From Figure 2, we can see that the volatility of returns for

both daily and 5-min intraday data is time-varying, with significant
fluctuations during the period of 2007–2008 and 2010–2011.

Table 2 reports the descriptive statistics of the agricultural
commodity futures return series and the estimated standardized
residuals from ARMA-EGARCH model at daily and 5-min
sampling frequencies. The means of all returns series and residual
series at both daily and 5-min sampling frequencies are close to
zero and the corresponding standard deviations are greater in
an order of several magnitudes, implying no significant trend in
the data. The standard deviations of residual series at both daily
and 5-min sampling frequencies are greater than those of the
returns series. The return series for all agricultural commodity
futures at 5-min sampling frequencies tend to have smaller
standard deviations than the daily returns. However, the estimated
standardized residuals from the ARMA-EGARCH model display
the reverse characteristics. All series display high values for the
kurtosis statistics consistent with fat tails in their distributions,
and the estimated standardized residuals tend to have thinner tail

4 Although the Clayton copula allows for negative dependence for γ ∈
(−1, 0), the formof this dependence is di�erent from the positive dependence

case (γ > 0), and is not generally used in empirical works.

than the returns at both daily and 5-min sampling frequency. For all
series at both daily and 5-min sampling frequencies, both skewness
and kurtosis indicate that these series are not normally distributed,
and thus we need the copula approach.

4. Empirical results

4.1. Preliminary analysis

As discussed in Andersen and Bollerslev [35], it is important
to consider intraday seasonality before using standard volatility
models for the intraday returns. However, we find that the
seasonality correction removes the extreme tail observations
which are important for the copula estimation. In addition, the
marginal distribution model in this paper for the conditional
mean and variance is estimated by using intraday returns
on each trading day and this provides some forms of
adjustments for the intraday seasonality pattern. Therefore,
we decide not to make seasonal adjustment for the intraday
returns before passing through the ARMA-EGARCH filter in
our research.

Figure 3 displays the daily realized correlation as suggested in
Barndorff-Nielsen and Shephard [27] and the intraday dependence
estimator based on Gaussian copula for each pair of agricultural
commodity futures for a period from 9 January 2006 to 28
November 2014 by using 5-min sampling frequency. The red line
is the daily realized correlation while the blue line is the Gaussian
copula intraday dependence. The realized correlation between each
two agricultural commodity futures A and B for a given day t is
computed in the usual way:

RCorrt =

n
∑

j=1
rA,t,jrB,t,j

√

n
∑

j=1
r2A,t,j

n
∑

j=1
r2B,t,j

(11)

where n is the number of 5-min returns on a trade day,
√

n
∑

j=1
r2A,t,j is the daily realized volatility for futures A.

As we can see in Figure 3, for all pairs of agricultural commodity
futures, the Gaussian copula intraday dependence and the realized
correlation are closely following each other. This indicates that the
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FIGURE 1

White sugar (A), soybean (B), cotton (C), and corn (D) futures prices at 5 min frequency.

dependence between agricultural commodity futures is preserved
after the univariate ARMA-EGARCH filtration. The dependence of
each agricultural commodity futures pair varies significantly over
time, with an increase after the food price crisis of 2007–2008 and a
steady decrease during the period 2013–2014.

To illustrate the advantage of using the high-frequency data, we
use the pair of white sugar-soybean futures as an example. Figure 4
presents the scatter plots of the intraday residuals in three days (9
January 2006, 1 August 2007, and 9 October 2008) and the daily
residuals during period of 2006–2008 for the white sugar-soybean
pair. On 9 January 2006, the scatter plot is relatively elliptical and
shows little tail dependence. However, the plots on 1 August 2007
and 9 October 2008 show that the dependence between the white
sugar-soybean pair is evident. These variations in the dependence
over time cannot be captured based on daily data as shown in the
plot of the daily residuals in Figure 4.

4.2. Model selection

In order to investigate the dependence between the agricultural
commodity futures in China, we estimate the dependence
estimation (θ̂t) results of the SCBMD model based on the
high frequency data implemented on each trading day as
detailed in Section 2. Further, we examine the evolution
of daily dependence between agricultural commodity futures
by contrasting with the constant unconditional dependence
estimator (θ̂ cont ), the rolling window dependence estimator
(θ̂RWt ) and the autoregressive dependence estimator (θ̂ARt ). The

constant unconditional dependence estimator is obtained by
estimating the SCBMD model over the whole daily return
series. The rolling window estimator is calculated by estimating
the SCBMD model over a rolling window of 100 daily
return observations. The autoregressive estimator is based on
Patton [36].

For each pair of agricultural commodity futures, we estimate
seven copula models as discussed in Section 2, and select the two
copulas that give the two greatest average log likelihoods. Table 3
reports the average log likelihood estimates of the six agricultural
commodity futures pairs. We find that the Student’s-t copula and
the SJC copula significantly outperform all five other models for
all six pairs of agricultural commodity futures. Further, we use the
Student’s-t copula and the SJC copula to estimate θ̂t , θ̂ cont , θ̂RWt , and
θ̂ARt for each pair of agricultural futures. We use the dependence
estimators (ρ) from the Student’s-t copula and tail dependence
estimators (upper tail dependence τUand lower tail dependence
τL) from the SJC copula to investigate the dependence and tail
dependence between each pair of agricultural futures respectively.

As the effects of time aggregation of the ARMA-EGARCH
model is limited and can be ignored [see 5, 34, 37], the proposed
intraday dependence estimator is a good estimator for time-varying
dependence. In order to deal with the multiple sources of possible
biasness simultaneously in the intraday dependence estimator,
motivated by Martens et al. [38], we estimate the rescaling factor
af by using the mean of θ̂t/θ̂ cont estimated in the initial 100
trading days, i.e., between 9 January 2006 and 26 June 2006, and
assume that it remains constant throughout the remaining period
to adjust the intraday dependence estimator by θ̂∗t = θ̂t/af over the
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FIGURE 2

Return series of four agricultural commodity futures.

TABLE 2 Descriptive statistics.

White sugar Soybean Cotton Corn

Returns Residuals Returns Residuals Returns Residuals Returns Residuals

5-Min frequency

Mean 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.002

Std.Dev. 0.129 1.015 0.099 1.009 0.099 1.011 0.078 1.010

Min −0.359 −2.624 −0.267 −2.512 −0.271 −2.538 −0.193 −2.372

Max 0.349 2.560 0.264 2.498 0.271 2.566 0.202 2.423

Skew −0.047 −0.050 0.024 −0.018 0.055 0.020 0.077 0.030

Kurtosis 5.626 4.681 5.215 4.275 5.556 4.524 4.452 3.781

Daily frequency

Mean −0.027 −0.007 −0.011 −0.009 −0.016 −0.007 −0.011 −0.012

Std.Dev. 1.001 1.001 0.748 0.999 0.812 0.998 0.543 1.004

Min −4.563 −4.161 −4.818 −4.904 −5.821 −6.633 −3.458 −5.110

Max 5.023 3.750 4.120 6.241 4.864 5.435 3.436 7.960

Skew 0.129 0.128 −0.036 0.067 −0.010 −0.064 0.046 0.193

Kurtosis 5.165 4.218 6.724 5.420 10.021 6.744 7.937 7.309
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FIGURE 3

Realized correlation (red line) and the intraday dependence (blue line) of white sugar-soybean (A), white sugar-cotton (B), white sugar-corn (C),

soybean-cotton (D), soybean-corn (E), and cotton-corn (F).

period of 27 June 2006 through 28 November 2014 (totally 2050
trading days).

4.3. Daily dependence

Figure 5 shows the evolution of the estimated dependence
measure ρ for the Student’s-t copula and tail dependence measures
τU and τL for the SJC copula with the constant unconditional
dependence estimator (black dotted horizontal lines), intraday
dependence estimator (red dotted lines), rolling window estimator
(blue solid lines) and autoregressive estimator (black solid lines).
Some key points need to be highlighted. First, the dependence
between all pairs of agricultural commodity futures is dynamic, and
the time-varying copula parameters tend to trend together. Second,
the intraday dependence estimator for each pair of agricultural
commodity futures tends to be more volatile than other estimators.
Third, in general, the intraday dependence estimator for each
pair of agricultural commodity futures tends to be lower than
other estimators in most trading days, but increases dramatically
during the crisis periods (the world food crisis of 2007–2008 and
the global financial crisis of 2008–2011). This shows how the
intraday dependence estimator effectively reflects the increasingly

occurrence in risk quickly when agricultural commodity futures
have large negative dependence.

In order to observe the time-varying dependence structure
between each pair of agricultural commodity futures more clearly
and to assess the effects of crisis, Table 4 reports the mean of
all dependence measures (ρt , τUt , and τLt ) and its corresponding
standard deviations for whole sample period and four sub-periods:
(i) June 2006-December 2006, (ii) January 2007-August 2008
(the world food crisis), (iii) September 2008-December 2011
(global financial crisis), and (iv) January 2012-November 2014.
As suggested in Patton [36], Table 4 also reports the mean of
average tail dependence measure (defined as (τUt + τLt )/2) with its
corresponding standard deviations, and the mean of the difference
between the upper and lower tail dependence measures (defined
as τUt − τLt ), which describes the degree of asymmetry, with its
corresponding standard deviation for each periods.

Figures 5A–C illustrate the changes in the dependence and tail
dependence between white sugar future and other three agricultural
futures. Their overall pattern is quite similar as they show a sharp
increase in ρt during the two crisis periods (the world food crisis
period and the global financial crisis period) relative to the period
of June 2006-December 2006, and then a sharp decrease relative
to these two crisis periods during January 2012-November 2014.
More specifically, regarding the white sugar-soybean futures pair,
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FIGURE 4

Scatter plots of 5-min and daily residuals for white sugar-soybean pair.

the average dependence tends to strengthen in the middle of 2007
(ρ̄06 ∼= 0.12, ρ̄07−08 ∼= 0.25), which is still less than the average
dependence level for whole sample period, and clearly further
strengthens during the global financial crisis period (ρ̄08−11 ∼=
0.39), which is more than the average dependence level for whole
sample period, and then weakens to below the overall average
dependence level during the last period (ρ̄12−14 ∼= 0.19). The
average dependence results are quite similar for the white sugar-
corn futures pair (ρ̄06 ∼= 0.14, ρ̄07−08 ∼= 0.21, ρ̄08−11 ∼=
0.26, ρ̄12−14 ∼= 0.10). In contrast, the dependence strength (ρt)
between the white sugar-cotton futures pair goes from being almost

nonexistent during the first period (ρ̄06 ∼= 0.04) to relatively strong
and positive during the period of the world food crisis (ρ̄07−08 ∼=
0.13) and clearly further strengthen during the global financial
crisis period (ρ̄08−11 ∼= 0.34), and then sharply weakens during the
last period (ρ̄12−14 ∼= 0.10). From the results of the average tail
dependence ((τUt + τLt )/2) as reported in Table 4, we confirm that
the changing pattern of the dependence strength (ρt) between the
white sugar futures and other three agricultural commodity futures
also take place in tail dependence. More specifically, regarding the
white sugar-soybean futures pair, the average tail dependence goes
from being relatively weak during the first period (τ̄06 ∼= 0.08) to
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TABLE 3 Average log likelihood for the seven copulas.

Gaussian Clayton s.Gumbel Plackett Frank Student’s-t SJC

White sugar-soybean 2.543 2.493 2.419 2.620 2.496 2.983 3.013

White sugar-cotton 2.023 1.917 1.753 2.104 1.945 2.442 2.373

White sugar-corn 1.582 1.513 1.305 1.658 1.494 1.960 1.911

Soybean-cotton 1.827 1.698 1.628 1.802 1.723 2.210 2.168

Soybean-corn 3.116 2.933 2.969 3.067 2.958 3.536 3.685

Cotton-corn 1.308 1.135 0.958 1.281 1.171 1.643 1.521

The figures in bold represent the best two copula models based on the average log likelihood for each futures pair and are selected for further study.

relatively strong during the world food crisis period (τ̄07-08 ∼= 0.15),
and clearly further strengthen during the global financial crisis
period (τ̄08-11 ∼= 0.23), and then sharply weakens during the last
period (τ̄12-14 ∼= 0.11). The results of the average tail dependence
are quite similar for the white sugar-cotton future pair (τ̄06 ∼=
0.05,τ̄07-08 ∼= 0.08, τ̄08-11 ∼= 0.20, τ̄12-14 ∼= 0.10) and white sugar-
corn future pair (τ̄06 ∼= 0.09, τ̄07-08 ∼= 0.12,τ̄08-11 ∼= 0.15,τ̄12-14 ∼=
0.08). From the results of average asymmetric degree measured
by the mean of the difference between the upper and lower tail
dependence measures (τUt −τLt ) as reported in Table 4, we find that,
for white sugar-soybean, white sugar-cotton, and white sugar-corn
futures pairs, the upper tail dependence is less than the lower tail
dependence during all four periods, implying that the white sugar is
more dependent on the other three agricultural commodity futures
during the upward market condition than downward market
condition, and the degree of asymmetric strengthens during the two
crisis periods.

Figures 5D, E report the changes in the dependence and tail
dependence between the soybean and cotton futures, and the
soybean and corn futures. The overall pattern of the dependence
strength (ρt) between these two future pairs show a sharp increase
during the world food crisis period (ρ̄06 ∼= 0.06, 0.38 and ρ̄07−08 ∼=
0.14, 0.44 respectively) and further increase in the global financial
crisis period (ρ̄08−11 ∼= 0.32, 0.46 respectively), and then a clearly
decrease during the last period (ρ̄12−14 ∼= 0.15, 0.17 respectively).
Similarly to the dependence strength, the overall pattern of the
average tail dependence between these two futures pairs also tends
to strengthen during the two crisis periods, and clearly weakens
during the last period. The upper tail dependence between these
two futures pairs are less than the lower tail dependence during all
four periods, and the asymmetric degree also strengthen during the
two crisis periods. Figure 5F reports the changes in the dependence
and tail dependence between the cotton and corn futures. Similar
observations can be made for this pair of futures.

Comparing the average dependence measures for all pairs of
agricultural commodity futures, we find that both the average
dependence and the average tail dependence between the soybean
and corn futures display higher values than those between other
pairs for whole sample period and all four sub-periods. Moreover,
the average asymmetric degree between the white sugar and
soybean pair show a higher value than this between the other pairs
for whole sample period and all four sub-periods.

Finally, unlike the dependence strength (ρt) and the average
tail dependence ((τUt + τLt )/2) themselves, their volatility remain

quite stable for all future pairs considered over the four periods
while the standard deviations of the difference between the
upper and the lower tail dependence are quite heterogeneous
across different periods. However, the standard deviations of the
dependence strength and the average tail dependence are also quite
heterogeneous across different future pairs.

In summary, the above analysis uncovers several stylized
facts. First, each agricultural futures pair exhibits average positive
time-varying dependence for most of the time, indicating
that agricultural commodity futures dynamically co-move with
different intensity. In fact, the estimations in this paper show that
the dependence between these agricultural commodities futures
are best captured by a relationship that varies over time while
being slightly asymmetric in tail dependence. That is, we find
relative strong average tail dependence between each agricultural
commodity futures pair during all four periods considered,
especially during the two crisis periods, and the upper tail
dependence between each agricultural future pair is less than
the lower tail dependence for most of the time. In average, the
dependence between soybean-corn pair is the strongest in all six
pairs of agricultural futures.

Second, we find that the dependence between these agricultural
commodity futures has clearly increased during the world food
crisis in 2007–2008 and the global financial crisis in 2008–2011,
and this change also takes place in tail dependence with its
asymmetry. In an economic sense, the futures prices tend to co-
move more not only during the period of underlying asset crisis
i.e. food crisis, but also during the period of financial crisis. In
fact, we find that the intensity of the dependence differs relying
on the period considered. During the first period considered,
agricultural commodity futures tend to show on average almost
no relationship or relative weak relationship, with the exception of
the pair of soybean-corn futures that shows a strong dependence
during this period. Then, we discover a stronger dependence for
all agricultural future pairs during the world food crisis and the
global financial crisis period, and the average tail dependence
between these agricultural commodity futures with its asymmetry
also increases during these two crisis periods. The finding that
the dependence measure between all agricultural futures pairs
unambiguous increases indicate a growing integration between
these agricultural futures markets. These growing dependences
may be due to so called “financialization” of agricultural markets
and higher volume of agricultural commodity futures contracts
traded in China in 2008–2011. Following the global financial
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FIGURE 5

Evolution of the estimated dependence of white sugar-soybean (A), white sugar-cotton (B), white sugar-corn (C), soybean-cotton (D), soybean-corn

(E), and cotton-corn (F). Measure ρ for the Student’s-t copula and tail dependence measures τU and τ L for the SJC copula with the constant

unconditional dependence estimator (black dotted horizontal lines), intraday dependence estimator (red dotted lines), rolling window estimator (blue

solid lines) and autoregressive estimator (black solid lines).
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TABLE 4 Mean of dependence measures and its corresponding standard deviations for whole sample period and four sub-periods.

ρ τU τL (τU + τL)/2 τU − τL

Up to Dec 2006

White sugar-soybean 0.124 (0.19) 0.070 (0.11) 0.092 (0.12) 0.081 (0.08) −0.022 (0.16)

White sugar-cotton 0.039 (0.19) 0.050 (0.10) 0.052 (0.09) 0.051 (0.07) −0.001 (0.13)

White sugar-corn 0.139 (0.17) 0.083 (0.13) 0.091 (0.12) 0.087 (0.08) −0.008 (0.19)

Soybean- cotton 0.064 (0.20) 0.055 (0.10) 0.066 (0.11) 0.066 (0.11) −0.010 (0.16)

Soybean- corn 0.376 (0.21) 0.214 (0.19) 0.253 (0.20) 0.234 (0.14) −0.018 (0.22)

Cotton- corn 0.040 (0.20) 0.045 (0.09) 0.052 (0.09) 0.049 (0.07) −0.007 (0.13)

Jan 2007–Aug 2008

White sugar- soybean 0.247 (0.23) 0.115 (0.15) 0.175 (0.19) 0.145 (0.12) −0.060 (0.24)

White sugar-cotton 0.126 (0.20) 0.069 (0.11) 0.097 (0.14) 0.083 (0.09) −0.028 (0.18)

White sugar-corn 0.206 (0.21) 0.102 (0.14) 0.143 (0.17) 0.122 (0.11) −0.042 (0.22)

Soybean- cotton 0.143 (0.20) 0.086 (0.13) 0.099 (0.13) 0.092(0.09) −0.013 (0.19)

Soybean- corn 0.438 (0.18) 0.244(0.19) 0.272 (0.20) 0.258 (0.12) −0.028 (0.29)

Cotton- corn 0.136 (0.20) 0.080 (0.12) 0.090 (0.13) 0.085 (0.09) −0.009 (0.19)

Sep 2008–Dec 2011

White sugar- soybean 0.394 (0.19) 0.199 (0.19) 0.260 (0.19) 0.230 (0.13) −0.062 (0.28)

White sugar-cotton 0.341 (0.23) 0.186 (0.19) 0.219 (0.20) 0.202 (0.14) −0.032 (0.26)

White sugar-corn 0.264 (0.21) 0.145 (0.17) 0.157 (0.17) 0.151 (0.12) −0.012 (0.24)

Soybean- cotton 0.323 (0.20) 0.156 (0.17) 0.217 (0.19) 0.186 (0.12) −0.061 (0.26)

Soybean- corn 0.463 (0.21) 0.285 (0.20) 0.296 (0.22) 0.291 (0.14) −0.039 (0.27)

Cotton- corn 0.238 (0.20) 0.131 (0.16) 0.146 (0.16) 0.139 (0.11) −0.015 (0.22)

Jan 2012–End

White sugar- soybean 0.193 (0.20) 0.103 (0.14) 0.125 (0.15) 0.114 (0.11) −0.022 (0.21)

White sugar-cotton 0.148 (0.21) 0.092 (0.14) 0.101 (0.14) 0.096 (0.10) −0.009 (0.20)

White sugar-corn 0.099 (0.21) 0.073 (0.12) 0.079 (0.12) 0.076 (0.09) −0.006 (0.16)

Soybean- cotton 0.150 (0.21) 0.090 (0.13) 0.103 (0.14) 0.096 (0.10) −0.013 (0.19)

Soybean- corn 0.169 (0.22) 0.105 (0.15) 0.112 (0.15) 0.108 (0.11) −0.007 (0.19)

Cotton- corn 0.102 (0.20) 0.065 (0.12) 0.071 (0.12) 0.068 (0.08) −0.006 (0.17)

Whole sample period

White sugar- soybean 0.279 (0.22) 0.141 (0.17) 0.187 (0.19) 0.164 (0.13) −0.045 (0.24)

White sugar-cotton 0.213 (0.24) 0.122 (0.16) 0.144 (0.18) 0.133 (0.13) −0.022 (0.22)

White sugar-corn 0.188 (0.22) 0.108 (0.15) 0.124 (0.16) 0.116 (0.11) −0.116 (0.21)

Soybean- cotton 0.212 (0.22) 0.113 (0.15) 0.145 (0.17) 0.129 (0.12) −0.032 (0.22)

Soybean- corn 0.307 (0.23) 0.171 (0.18) 0.197 (0.19) 0.184 (0.14) −0.026 (0.25)

Cotton- corn 0.159 (0.21) 0.097 (0.14) 0.103 (0.14) 0.100 (0.10) −0.006 (0.19)

Standard deviation in parentheses.

crisis, many investors shifted frommortgage markets to agriculture
commodities. This higher activity in financial agricultural markets
in China may be further stimulating dependence in price returns
between agricultural futures.

Third, the intraday dependence estimator (red dotted lines in
Figure 5) tends to be more volatile than the constant unconditional
dependence estimator (black dotted horizontal lines), rolling

window estimator (blue solid lines), and autoregressive estimator
(black solid lines). The intraday dependence estimator effectively
reflects the quickly increasement in risk during the time when
agricultural commodity futures have high negative dependence.
These results indicating that the intraday dependence estimated
with high-frequency data better identify the dynamic interactions
between futures prices, which can be smoothed by the long-time
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FIGURE 6

The evolution of average intraday realized correlation. The intraday realized correlation is computed over 30-min intraday intervals and then

averaged across each interval over the whole sample.

window or rolling method used by the other estimators. Therefore,
intraday dependence estimator provides more information for
short-term especially the intraday trader.

4.4. Intraday dependence

Many studies have concentrated on the intraday patterns of
volatilities based on intraday data. Andersen and Bollerslev [35]
and Tsay [39], find that the intraday volatility typically exhibit a U-
shape, i.e., higher during the opening and closing hours and lower
around the midday. Similar the effects have been documented for
other measures of intraday trading activity such as bid-ask spreads
(e.g., [40]), various types of durations (e.g., [41]) and transaction
volumes (e.g., [42]). However, fewer studies have worked on the
intraday pattern of the dependence structure between the assets.
In this section, we consider the intraday dependence patterns in
Chinese agricultural futures markets. Following Bubak et al. [43],
we first compute the intraday realized correlation, which can give us
a preliminary understanding of the intraday dependence patterns.
For further understanding of the intraday dependence patterns, we
estimate the SCBMDmodel, as detailed in Section 2.

Figure 6 displays the evolution of the intraday realized
correlation for each of the six pairs of agricultural commodity
futures. Particularly, it shows the evolution of the average 30-min
realized correlation, calculated by averaging the intraday realized
correlation over 30-min intraday intervals during the whole sample
period. One can observe a lopsided inverted U-shaped pattern
for the intraday realized correlation between almost all pairs of
agricultural commodity futures. Notably, the peak of the average
30-min realized correlations for all pairs occur during midday
(13:35–14:00), and the average 30-min realized correlations around
the closing time (14:35–15:00) tend to be much lower than those of

other trading times. Thus, the intraday dependence between each
pair of agricultural commodity futures is much stronger around
midday and much weaker around the closing time than other
trading time.

To further assess this specific intraday pattern, we both consider
the constant unconditional dependence estimators and the average
of the autoregressive dependence estimators at a given sampling
time point over the sample period. The constant unconditional
dependence estimators are obtained by using the SCBMD model
over the whole time series of each intraday return, while the
autoregressive dependence estimators are calculated by using the
SCBMDmodel with AR specification based on Patton [36]. Figure 7
plots the average dependence estimators from the Student’s-t copula
and the average tail dependence estimators from the SJC copula for
each of the six pairs of agricultural futures.

Similar to the results of the average 30-min intraday realized
correlation, both the overall dependence estimators and (upper-
and lower-) tail dependence estimators exhibit a lopsided inverted
U-shaped pattern for almost all pairs of agricultural commodity
futures based on either the unconditional estimators or the
averaged autoregressive estimators. To be more specific, we find
that the average dependence and the average tail dependence tend
to be low around the opening time, and then increase gradually
until reaching the peaks around the midday, after which they tend
to decrease until the closing time. This intraday dependence pattern
is evident for nearly all pairs of agricultural futures.

This specific intraday pattern for the dependence structure
between the pairs of the agricultural commodity futures can
be explained by the flow of information during a trading day.
First, the opening hours are normally dominated by idiosyncratic
effects with little surprises, resulting in the lower dependence
level. In particular, a relatively higher percentage of idiosyncratic
and sector-specific news is impounded at the opening of the
trading day. Such idiosyncratic components may play a dominant
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role around the opening hours, which result in lower levels
of dependence between agricultural commodity futures. Second,
the influences of the market-wide information such as macro-
economic announcements are more likely to increase as the
trading proceeds. The market mode components can eventually
play a dominant role around the midday. Thus the dependence
level is likely to increase after the opening time and reach a
peak around the midday. Third, idiosyncratic components may
become dominant again around the closing time. In particular, as
discussed in Bibinger et al. [44], in order to limit the (overnight)
risk, many traders tend to unwind their inventory positions

that are built up over the trading day after midday. Hence,
the idiosyncratic effects become stronger and stronger after the
midday until the closing time. This can lead to the decreasing
of dependence after the midday and the dependence at the
end of the day is therefore likely the lowest in the afternoon
trading session. The intraday pattern of the dependence structure
between soybean-corn futures pair is slightly different, i.e., the
dependence level is relatively higher than other futures pairs
during the opening hours. The reason for this difference may be
due to the relatively higher substitution effect between soybean
and corn.

FIGURE 7 (Continued)
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FIGURE 7 (Continued)

5. Concluding remarks

Difference from the previous studies which mainly focus on
the relationship between the spot and the futures prices for
agricultural commodities, This paper examines the daily and
intraday dependence structure between the agricultural commodity
futures in China by employing the semi-parametric copula models
and high frequency data. In contrast to various versions of the
multivariate GARCH models widely used in the literature, the
semi-parametric copula model estimated with the high frequency
data provides a flexible and comprehensive description of the
dependence between the agricultural futures, and allows us to

observe the latent conditional dependence as well as the intraday
dependence patterns between each pair of agricultural futures.

The empirical results show that each pair of agricultural
commodity futures exhibits positive time-varying dependence
for most of the time, indicating that agricultural commodity
futures dynamically co-move with different intensities. We also
find the relatively strong tail dependence between each pair
of agricultural commodity futures during all four sub-periods
considered, especially during the world food crisis and the global
financial crisis. We also find that the upper tail dependence
between each pair of agricultural futures is less than the lower
tail dependence for most of the time. The overall dependence
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FIGURE 7 (Continued)

The evolution of intraday dependence estimator of white sugar-soybean (A), white sugar-cotton (B), white sugar-corn (C), soybean-cotton (D),

soybean-corn (E), and cotton-corn (F). For a given time point, we consider the time series of returns at this point over the sample period. The black

points marked with x are the constant unconditional dependence estimators using the SC BMD model. The red dotted points are the average of the

autoregressive dependence estimators using the SCBMD model with AR specification based on Patton [36]. Using the cubic spline method, we

smooth the constant unconditional dependence estimators to obtain the blue solid lines and the average of the autoregressive dependence

estimators to obtain the red dotted lines.

as well as (upper and lower) tail dependence between these
pairs of agricultural commodity futures has increased significantly
during the world food crisis and the global financial crisis.
Moreover, the intraday dependence between each pair of the
agricultural commodity futures exhibits a lopsided inverted U-
shaped pattern in most cases with relatively lower dependence
levels around the opening and the closing time, and a peak
around the midday. This special intraday dependence pattern
between the agricultural futures may be due to the existence of

more idiosyncratic components during the opening and closing
hours of trading and more market mode components during
the midday. This paper only explores the dynamic dependence
between agricultural futures, the possible underlying determinants
of this dynamics like trading micro-structure [45], the possible
information content of dependence or correlations [46] or behavior
characteristic like herding [6, 47] are further extensions. The semi-
parametric copula model with high-frequency data applies to the
dependence structure of general commodity futures such as gold
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and silver, whose dynamics may show a different pattern due to
price behavior of its underlying assets.
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