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From static buckling to nonlinear
dynamics of circular rings

Enrico Babilio, Ida Mascolo* and Federico Guarracino

Department of Structures for Engineering and Architecture, University of Naples “Federico II,” Naples,

Italy

The dynamic buckling of circular rings is a pervasive instability problem with a

major impact in various fields, such as structural, nuclear and o�shore engineering,

robotics, electromechanics, and biomechanics. This phenomenon may be simply

seen as the complex motion that occurs deviating from the original circular

shape under, for instance, any kind of time-dependent forcing load. Despite

the fact that this topic has progressively gained importance since the mid-

20th century, it seems that the same points have not been made completely

clear. In fact, even some subtleties in the derivation of classical static buckling

load may still give rise to misinterpretations and lead to misleading results. A

fortiori, research concerning the nonlinear dynamics of rings still su�ers the

inherent di�culties associated with di�erent possible analytical formulations of

post-buckling dynamics. Advancement in this respect would be relevant, both

from a theoretical and a practical point of view, since the applications are endless,

with countless possibilities, especially in the biomedical and biotechnological

fields: buckling-driven transformations of thin-film materials for applications in

electronic microsystems, self-excited oscillations in collapsible tubes and pliable

fluid-carrying shells, vocal-fold oscillations during phonation and snoring, pulse

wave propagation in arteries, closure and reopening of pulmonary airways, stability

of cardiac and venous valves during vascular surgery, stability of annuloplasty

devices, flow-induced deformation and ultimate rupture of a cerebral aneurysm,

and much more. The present article, in the framework of a critical review of the

classic formulation of elastic ring buckling, proposes a straightforward approach

for the nonlinear dynamics of an elastic ring that leads to a Mathieu–Du�ng

equation. In such a manner, some possible evolutions of the system under pulsing

loads are analyzed and discussed, showing the inherent complexity of its dynamic

behavior.

KEYWORDS

circular rings, buckling, nonlinear dynamics, Hamiltonian system, Mathieu-Du�ng
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1. Introduction

The stability of circular rings is a classic and important topic that has attracted

considerable interest among scholars and researchers. The problem may affect many fields

with endless practical applications: structural, nuclear and offshore engineering, robotics,

electromechanics, biomechanics, biomedical and biotechnological sciences, just to mention

a few. The ways of approaching the stability of a ring can be very different depending on the

perspective from which one decides to face the problem: Buckliphobia or Buckliphilia [1, 2].
From a Buckliphobia standpoint, the buckling of a ring is a failure mechanism to be

avoided. Consider, for example, the loss of stability of collapsible tubes or pliable shells

conveying pressurized and high-velocity fluid, such as gas, fuel, and blood [3–5]. The

interaction between the internal flow and the tube, under certain critical conditions (e.g.,
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negative transmural pressure of critical magnitude), can induce

self-excited oscillations with finite amplitudes and, consequently,

catastrophic collapse of the tube/shell [6]. There are a number

of examples of such instability phenomena in everyday life: the

aeroelastic stability (i.e., fluttering) of curved aircraft wings, for

instance, is a topic of great interest in engineering since it induces

painful limitations in the operational condition of the aircraft [7]; in

the same area, one can mention the buckling and the postbuckling

of chemical plant piping, offshore pipelines, or undersea vessels

induced by hydroelastic interaction [8, 9] as they can affect the

normal operation of plants or vessels.

More complex dynamical phenomena can be encountered in

the physiological and medical fields due to the high flexibility

of the biological tubes and the low Reynolds numbers of the

biological flows: the high-frequency Korotokoff sound, i.e., a

puzzling phenomenon induced by the resonant motion of arterial

blood vessels, which trigger a dynamic transition from a buckled

state to an expanding state (see Figure 1 and [10]); crackling

sounds generated when a collapsed airway opens, e.g., the snoring

produced by the oscillations of the soft palate, pharyngeal walls,

epiglottis, and tongue during sleep when the pharyngeal muscles

relax and block the airway [11]; the flow limitation during forced

expiration induced by the interaction between airways and air [12];

the micturition induced by the interaction between urethras and

urine [13]; and the pulse wave propagation in the cardiovascular

system that can induce several cardiovascular pathologies, such as

heart failure, stenosis [14], flow-induced deformation, and ultimate

rupture of aneurysms; all come to mind as just a few of the

more outstanding examples. A comparatively large share of the

scientific and technological interest focuses on the instability of

elastic rings subjected to external confinement [15, 16]. Curved

film-substrate structures, in particular, have drawn special attention

in the biomedical field because of the wide variety of folding

phenomena that are observable in the human body: the formation

of creases in the colon due to the growth of mucous membrane or

the wrinkling patterns that can be observed on the surface of the

bronchus lumen (Figure 2A), crumpled gut surfaces, the sulci and

gyri of the brain, or the morphological evolution of tumor growth

(Figure 2B), which is guided by the buckling mechanism of layered

structures [17, 18].

On the contrary, from a Buckliphilia standpoint, the nonlinear
ring dynamics can be regarded as a potential resource to be

FIGURE 1

Schematic representation of heart valves (left) and their possible

buckled configuration (right).

exploited. Biological phenomena are often based on the control

ad tuning of buckling. Take, for instance, the wavy or wrinkled

morphology of petals (Figure 2C), leaves, stems, or fungi that

confers them unique physical, mechanical, and optical properties,

such as the capability to actively control morphological transitions

[19].

Mimicking such an aptitude, a new generation of

tunable/adaptive micro-/macro-electronic devices, actuators,

and controlled fabric folding can take advantage of the control

of ring dynamics to attain a desirable feature. The issue is

scientifically fascinating and technically important, especially

in the field of soft matter mechanics and structures [20]. Soft

materials undergo large and reversible deformations with a

variety of instability modes, such as wrinkling and creasing

modes. Such a behavior can be usefully exploited in a variety

of functional smart applications by controlling, switching, and

tuning the formation and disappearance of wrinkles and creases

in such a way as to create custom-made topography, control

chemical patterning, adhesion properties, shape morphing,

and configuration, and so on [21, 22]. The range of innovative

applications in the biomedical engineering field is equally wide.

Venous valves used in vascular surgery and annuloplasty devices

(Figure 2D), for instance, may benefit from the control of ring

dynamic behavior providing a major socio-economic impact

and/or potential for investment in addition to an improvement

of their performances, efficiency, and reliability. In the optic

field, intensive investigations are going on tunable resonators,

photonic modulators, wavelength division multiplexing filters, and

switches [23–26]. Taking advantage of the resonance characteristics

of micro-rings, such devices offer many desirable characteristics

and unique performance metrics such as ultra-compact physical

size, ultra-high modulation speed, low power consumption,

ultra-low modulation power, high energy efficiency, and so

on. However, to date, the high susceptibility of micro-ring

resonators/modulators to thermal fluctuations and manufacturing

tolerances and their resonant nature make their practical

applications still challenging. Another interesting field of

application is voice control. During phonation, in fact, the

position, the shape, and the internal surface tension of the glottis

actively control the frequency and amplitude of the vocal cords

oscillations [27].

From a purely theoretical point of view, there is extremely

rich and interesting literature dealing with elastic ring instability

problems (buckling in the plastic range poses much more complex

and still debated problems [3–5, 28]). Most of these studies are

devoted to the buckling and the initial postbuckling of rings under

external pressure, while only a few articles are devoted to the

complex nonlinear dynamics of elastic rings. In the present study,

a unified approach will be pursued; that is, a set of the possible

equations of motion will be derived from the static formulation of

ring buckling.

The first contributions in this respect to the topic were given

in the second half of the 19th century by Bresse [29], Boussinesq

[30], and Levy [31] and were concerned with the static in-

plane buckling of inextensible rings subjected to uniform external

pressure. Significant advancements were successively provided by

several authors in the 20th century [32–40]. The general agreement

is that the critical value of the pressure magnitude, by neglecting the
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FIGURE 2

(A) Schematic representation of the uniaxial patterns that develop in the lumen of human tubular structures (left); the organ wall structure in the

digestive, respiratory, or reproductive tracts with the mechanism for the formation of the wavy morphology (right). Redrafting of an original drawing

of [17]. (B) Typical sequences of evolution for two thin circular artificial tumors confined at the periphery [18]. (C) Lily morphological transitions. (D)

Mitral valve repair with an annuloplasty ring.

effect of the axial and the shear deformations, is

qcrit = k
EI

R3
, (1)

where EI is the bending stiffness of the ring wall (E is the Young’s

modulus of the material and I is the inertia of the cross section,

respectively), R is the mean ring radius, and k is the buckling

coefficient, which is dependent on the boundary and pressure-type

loading conditions. In particular, for the hydrostatic pressure it is

[37, 41–46]

k = n2 − 1 , (2)

so that for a two-wave deformation, n = 2,

k = 3 (3)

holds true (note that n = 1 corresponds to a rigid-body motion).

However, despite the long history of studies on the subject, the

accuracy of the results, especially numerically, may still be an issue

sometimes. Indeed, considering different constitutive assumptions,

such as linear elastic material and Neo-Hookean materials, either

compressible or incompressible, the case of the static, axially

symmetric, deflection of a ring under internal and external pressure

is analyzed in [47], and the obtained results show that also widely

used commercial finite element programs may give inaccurate

results in the case of linearly elastic rings undergoing large strains.

Similar findings have been found and discussed in [48].

One of the first contributions to the study of the dynamic

stability of the circular ring dates back to 1871 by Hoppe [49],

who derived the frequency equation for the in-plane vibrations

of a thin circular ring. Later, Love [50] and other authors

proposed different linear and nonlinear approaches (e.g., [51–

58]). In the midst of the 20th century, several authors analyzed

the ring under uniform radial pressure periodically varying with

time (e.g., [59–63]). More specifically, they generally analyzed the

nonlinear parametric stability problem in the hypothesis of small

perturbations from the initial motion, ring midline inextensibility,

and negligible shear deformation by linearizing the problem in

some way. For thick rings, some authors took into account a

sort of shear deformability in the vibration analysis (e.g., [64–

69]). With respect to the inextensibility, Cooley and Parkey made

interesting considerations regarding the vibration of high-speed
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rotating elastic rings [70]. Other authors dealt with the stability

of rings subjected to impulsive or step loads (e.g., [56, 71–77]).

They essentially showed that the dynamic buckling of elastic rings

is triggered by flexural modes governed by a Mathieu equation.

The solution of this type of equation is expressed in terms of

Mathieu functions, which are periodic in their argument only

for certain so-called characteristic values of the ratio between the

system and the loading frequencies. The solution may be stable,

i.e., bounded, or unstable, i.e., diverging. The transition curves

between stable and unstable domains in the plane of parameters

are related to the characteristic values [78]. The dynamical post-

buckling behavior of circular rings under external pressure shows

an imperfection sensitivity for some types of loading different from

the hydrostatic one [9, 39, 79–84]. In this regard, it is noteworthy

that the omission of some nonlinear terms led Rehfield [79, 85] to

the misleading prediction of imperfection sensitivity also for rings

under hydrostatic pressure. Inconsistent results can also be found

in [86] again because of erroneously neglected cubic and quartic

terms in the energy of the loads [79].

As stated earlier, in the next sections, the present study

will move from the basic formulation of the static buckling

problem (Section 2), highlighting some underlying subtleties in

mathematical modeling and will provide in this framework a set

of very simple equations that nevertheless allow sketching the very

complex and fascinating nonlinear behavior of the ring dynamics

(Sections 3 and 4).

2. Problem of a circular ring under
hydrostatic external pressure

For the classical static buckling analysis, it is assumed that the

ring wall is undeformable from the axial and the shear standpoint,

and it can only experience flexural deformation. Here, it will be

shown that the way in which axial inextensibility is imposed may

have significant implications for the nonlinear dynamics of the

problem.

With reference to the geometry of a buckled circular ring (see

Figure 3), the axial strain εθθ = εθθ (θ , t) at the ring centerline, the
cross-sectional rotation φ = φ(θ , t), and the change of curvature

κ = κ(θ , t) of the ring, respectively, are [37, 38]

εθθ =
v,θ − w

R
+

1

2

(

(

v,θ − w

R

)2

+

(

v+ w,θ

R

)2
)

, (4)

φ = arcsin

(

v+ w,θ

R

)

, (5)

κ =
φ,θ

R
=

κℓ
√

1−
(

v+w,θ

R

)2
, (6)

where R is the mean ring radius, v = v(θ , t) and w = w(θ , t) are the
tangential and normal displacement to the ring wall midline (see

Figure 4), and κℓ = κℓ(θ , t) is the linear change of curvature,

κℓ =
v,θ + w,θθ

R2
. (7)

FIGURE 3

Circular ring under external hydrostatic pressure. Dashed and

continuous lines mark the initial undeformed configuration and the

buckled configuration of the ring, respectively.

FIGURE 4

Tangential and normal displacements, v and w, to the ring midline.

In all formulae, the subscript comma indicates differentiation

with respect to the subsequent variables (in the case of the previous

equations, the polar coordinate θ). No shear deformation is allowed

for the ring wall.
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The total potential energy of the ring is

U = V +W , (8)

where the strain energy V is the sum of the stretching and bending

energies as follows

V =
EI

2

2π
∫

0

κ2 Rdθ +
EA

2

2π
∫

0

ε2θθ Rdθ . (9)

It is worth noticing that, to obtain the buckling pressure given

by Equation (1), it is sufficient to assume κ ≈ κℓ.

The load potential due to a uniform external load per unit

length q = q(t) is

W = −q1A, (10)

where1A describes the difference between the area enclosed in the

ring centerline before and after the deformation (Figure 3), which

can be expressed as follows [38]

1A =
1

2

2π
∫

0

(

2Rw− v2 − w2 + 2v,θw
)

dθ . (11)

The kinetic energy is

T =
µ

2

2π
∫

0

(

v,t
2 + w,t

2
)

Rdθ , (12)

where µ stands for the mass per unit length of the ring wall.

The Lagrangian function is

L = T − U, (13)

and, by virtue of the Euler–Lagrange equation, the partial

differential equations (PDEs) of motion can be written as follows

2R3
(

F2 − 1
)3 (

µw,tt − q F,θ
)

−EAR2
(

F2 − 1
)3 (

F2
(

G+ 1− 3F,θ
)

+ G(G+ 2)
(

G+ 1− F,θ
)

−2F(G+ 1)G,θ

)

+2EI
(

(

3F2 + 1
)

F3,θ − 4F
(

F2 − 1
)

F,θF,θθ +
(

F2 − 1
)2
F,θθθ

)

= 0 (14)

and

2R3
(

F2 − 1
)3 (

µ v,tt − qG,θ

)

−EAR2
(

F2 − 1
)3 (

F
(

F2 + G(G+ 2)+ 2(G+ 1)F,θ
)

+
(

F2 + 3G(G+ 2)+ 2
)

G,θ

)

+2EI
(

F2 − 1
) (

FF2,θ −
(

F2 − 1
)

F,θθ

)

= 0, (15)

where F = F(θ , t) and G = G(θ , t) are dimensionless functions

defined as follows

F = −
v+ w,θ

R
, G = −

v,θ − w

R
. (16)

Substituting Equation (16) in Equation (4) and imposing the

inextensibility of the ring (i.e., εθθ = 0) gives

− G(θ , t)+
1

2

(

F(θ , t)2 + G(θ , t)2
)

= 0, (17)

which leads to four solutions in the form

v,θ = w , w,θ = −v ; (18)

v,θ = w− 2R , w,θ = −v ; (19)

v,θ = w− R , w,θ = −v− R ; (20)

v,θ = w− R , w,θ = −v+ R . (21)

In the following, we will make reference to Equations (18) that

are independent of the radius R. It is interesting to recall that to

evaluate the instability pressure given by Equation (1), classical

static solutions (see, e.g., [37, 38]) assume that the inextensibility

of the centerline is obtained by simply requiring that

v,θ − w

R
= 0, (22)

whichmakes the linear part of Equation (4) null in virtue of the first

of Equations (18). Indeed, the displacements corresponding to the

first classic buckling pressure are given in Equation (1), i.e.,

v =
A

2
sin 2θ ,

w = A cos 2θ ,

(23)

which do not satisfy the equality, εθθ = 0 in toto.

Interestingly, should one use Equation (11) in the case of a

hydrostatic load, the coefficient k of the buckling pressure would

result 36/13, instead of the classic value given in Equation (3) [48].

To overcome this drawback, Equations (18) are both taken into

consideration only to reduce Equation (11) [48] to

1Ā =
1

2

2π
∫

0

(

2Rw− w,θ
2 + w2

)

dθ . (24)

3. Methods

3.1. Derivation of the equations of motion

Continuing to build on the Equations (18), in the present

section, a set of equations governing the nonlinear elastic ring

dynamics in the form of a Mathieu–Duffing equation will be

developed.

First of all, to capture the post-buckling behavior, Equation (5)

needs to be expanded to the third-order powers as follows

φ ≈
v+ w,θ

R

(

1+
v w,θ

2R2

)

, (25)

and it is further assumed that v3 → 0 and w3
,θ → 0, so that

Equation (6) can be written as shown in Equation (26),

κ ≈ κℓ

(

1+
w,θ

R2

(

v+
w,θ

2

))

+
w,θθ

2R4
(

v2 − w2
,θ

)

. (26)
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Inserting Equations (18) into Equation (26), the change of

curvature is expressed in terms of w and its derivatives only, and

the internal energy given by Equation (9) becomes

V =
EI

2

2π
∫

0

(

w

R2
+

w,θθ

R2
−

w w,θ
2

2R4
−

w,θ
2 w,θθ

2R4

)2

Rdθ . (27)

Similarly, inserting Equation (24) in Equation (10), the work of

external loads takes the form

W = −q1Ā, (28)

and the kinetic energy given by Equation (12) becomes

T =
µ

2

2π
∫

0

(

w 2
,t + w 2

,θ t

)

Rdθ . (29)

Thus, the Euler–Lagrange equation associated with the

functional (13) is

µR6
(

w,tt − w,ttθθ

)

+ EIR2
(

w+ 2w,θθ + w,θθθθ

)

−R5q
(

R+ w+ w,θθ

)

+EIw,θθ

(

w2 − w2
,θθ − 4w,θw,θθθ

)

+ EIw2
,θ

(

w− 4w,θθ

−w,θθθθ

)

= 0, (30)

and by introducing the dimensionless variables

W =
w

R
, τ =

t

R2

√

EI

µ
, Q =

q

qcrit
=

qR3

3EI
, (31)

Equation (30) can be written as

W,ττ −W,ττθθ +W + 2W,θθ +W,θθθθ − 3Q
(

1+W +W,θθ

)

+W,θθ

(

W2 −W,θθ
2 − 4W,θW,θθθ

)

+W,θ
2
(

W − 4W,θθ

−W,θθθθ

)

= 0. (32)

Making resort to the Galerkin method, the partial differential

Equation (32) can be written as a set of ordinary differential

equations (ODEs) by setting

W(θ , τ ) =

N
∑

n=1

ϕn(τ ) sin nθ , (33)

where n ∈ N indicates the nth mode shape, and N ∈ N is the

relevant number of mode shapes. By inserting Equation (33) in

Equation (32), multiplying both sides by the weighting functions

sinmθ , m ∈ {1, 2, . . . ,N}, and integrating over the angle interval

from 0 to 2π , one obtains the motion ODEs, which can be

conveniently written as a first-order system, i.e.,

ϕ̇n = ζn, (34)

ζ̇n = A
(n)
1 ϕn +A

(n)
2 Q ϕn +A

(n)
3 ϕ3

n

+

N
∑

i,j=1
i6=j

B
(n)
ij ϕ2

i ϕj +

N
∑

i,j,k=1
i6=j6=k

C
(n)
ijk ϕiϕjϕk ,

n = 1, . . . ,N

(35)

where a dot stands for differentiation with respect to the time

τ , the coefficientsA
(n)
i , i = 1, 2, 3 are

A
(n)
1 = −

(

n2 − 1
)2

n2 + 1
, A

(n)
2 =

3
(

n2 − 1
)

n2 + 1
,

A
(n)
3 =

n2
(

n2 − 1
)2

2
(

n2 + 1
) , (36)

and the coefficients B
(n)
ij and C

(n)
ijk , i, j, k = 1, . . . ,N, that produce

the coupling between modal forms are omitted for the sake of

compactness.

It is worth pointing out that the shape functions in

Equation (33) do not make the change of curvature (26) null,

exactly as it happens in the case of the classic first buckling

shape (23). In this respect, the inextensibility represented by both

Equations (18) plays only the role of an internal constraint that

simplifies the formulation from a mathematical point of view, even

if it reflects the physical aptitude of a thin ring to prefer bending

over extensional deformation, as indeed it is also the case of thin

hollow tubes also do [87].

3.2. Types of dynamical response

Suppose that ϕ = ϕ(τ ) is the stationary (i.e., non-transient)

solution vector of Equations (34) and (35), and the motion is

bounded. Then, the trajectories of the system cannot pass through

all points of the phase space but are confined to moving in a

compact (closed and bounded) manifold embedded in it. The phase

space of a system is the space whose points uniquely represent

all and only the possible states of the system itself. In general,

the phase space has a dimension that is two times the number of

degrees of freedom of the system, and the choice of coordinates

needed to generate it, such as positions and velocities, is crucial

in characterizing the system and its equations of motion. In the

phase space, the evolution appears as a sequence of points or as a

curve, depending on whether the system is discrete or continuous.

To infer in a qualitative way the topology of the manifold on which

the trajectories move, let one consider the motion ϕn, which is

the nth component of ϕ, to be periodic and somehow modulated

by another periodic motion, for instance, the forcing term Q
(provided that it is assigned as a periodic function with non-

vanishing frequency). The two motions can be represented by a

trajectory on the surface of a two-dimensional torus, an invariant

subspace of a three-dimensional phase space. Such a trajectory is

indeed given by the combination of the two motions in the toroidal

and poloidal directions through the remapping rules,

X (τ̃ ) =
(

ϕn
(

�−1τ̃
)

+ 1
)

cos τ̃ , (37)

Y (τ̃ ) =
(

ϕn
(

�−1τ̃
)

+ 1
)

sin τ̃ , (38)

Z (τ̃ ) = ϕ̇n
(

�−1τ̃
)

, (39)

where τ̃ = �τ is the toroidal angle (see Figure 5A).

The ratio ρ between themodulated andmodulating frequencies

is called the rotation number. If ρ is a rational number (ρ ∈ Q),

the motion is periodic with period ρT, where T is the period

of modulating motion, taken as fundamental. In such a case,
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FIGURE 5

(A) Periodic solution (red curve) on the resonant torus. The hidden geometry of the torus in the space XYZ, i.e., the Cartesian coordinates of the flow

computed via toroidal remapping, is made visible using poloidal sections drawn as dotted and gray lines. (B) Power spectrum of the periodic

trajectory, which contains equally spaced spikes.

FIGURE 6

(A) Sketch of sample initial configuration, ϕk(0) = 8, (continuous line), and (B) sketch of possible modes of vibrations (continuous lines) vs.

undeformed configuration (dashed lines).

the frequencies are commensurate, and the trajectory is a closed

curve on the torus (the red curve in Figure 5A), which is said

to be a resonant torus. For this type of solution, it is possible to

write explicitly, through a Fourier expansion, the power spectrum,

which consists of equally spaced pulses or spikes (see Figure 5B).

Typically, one calls harmonic responses (with respect to Q, for
instance) the solutions with ρ = 1 and subharmonic responses

those with ρ > 1.

If ρ is an irrational number, the frequencies are

incommensurate, and the trajectory cannot close itself since

the solution will not repeat periodically anymore. As the time

increases, the trajectory becomes arbitrarily close to each point on

the toroidal surface, densely filling it (for τ → ∞) in a neat way.

In such a case, the response is a quasiperiodic motion, and the

corresponding torus is non-resonant.

The third class of possible solutions is that of chaotic

responses. A chaotic motion is indeed an aperiodic long-term

behavior arising in a deterministic system, without any random or

noisy input, as a consequence of the nonlinearity. Differently

from periodic and quasiperiodic behaviors, the chaotic

responses exhibit a strongly sensitive dependence on initial

conditions, making nearby trajectories diverge exponentially

fast.

3.3. Stroboscopic map

In addition, the very basic information about the main types

of stationary motions reported in Section 3.2, the qualitative

description of the solution of Equations (34) and (35) can be rather

complicated. It is possible to reduce the dynamics by constructing

a discrete dynamical system of co-dimension 1 with respect to

the original continuous system, in which the relevant properties

of the orbits are preserved. Such a discrete description is named
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FIGURE 7

Poincaré maps in the displacement-velocity phase plane for several sets of initial conditions, see Equation (40), and load amplitude δ from half of the

value of the first static critical load, (δ = 0.5), to δ = 1.75, at fixed load frequency (� = 4.0).

stroboscopic map, return map, first recurrence map, or Poincaré

map, after Henri Poincaré (1854–1912), and it can be intuitively

constructed as follows.

Without loss of generality, let one consider the flow shown

in Figure 5A, which lies on a two-dimensional torus, and set a

specified plane, which is called a phase plane, transversely to the

torus. As time increases, the trajectory on the torus intersects the

phase plane at the coordinates (ϕn(2kπ/�), ϕ̇n(2kπ/�)), k =

1, 2, . . . , and it will do so infinitely as τ → ∞. Therefore, the

Poincaré map associates the first point to the second and so on,

from which the name first recurrence map. The Poincaré section

is normal to the flow in the sense that periodic orbits starting on

that subspace flow through it and not parallel to it. The graph of the

map is, therefore, built by collecting the intersection coordinates

on the phase plane. It must be observed that, in the general case,

the Poincaré section is a hyper-surface of co-dimension 1, like the

corresponding map. The resulting set of points from the Poincaré

map forms a pattern that can be either regular or irregular.

If ϕn is a ρ-periodic function (with reference to Q, provided
that it is assumed to be the fundamental modulating motion),
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FIGURE 8

Poincaré maps in the displacement-velocity phase plane for several sets of initial conditions, see Equation (40), and load amplitude δ from two times

the value of the first critical load (δ = 2.) up to δ = 3.25, at fixed load frequency (� = 4.0).

a set of ρ points will be mapped on the Poincaré section. In

the case of quasiperiodic motion, the Poincaré maps produce a

closed curve in the phase plane, which can be interpreted, from

a geometric point of view, as the cross section of the torus.

Finally, Poincaré maps exhibit a folded and stretched fractal

structure in case of a chaotic response. The transition from a

quasiperiodic motion to a chaotic one implies the breaking of

the torus, which is indeed one of the strongest indicators of

chaotic behavior.

4. Numerical results

On the basis of the formulation introduced in Section 3.1 for

the nonlinear dynamics of an elastic ring, results from several

numerical simulations are collected in Figures 7, 8 in terms of

Poincaré maps. To understand the dynamic behavior, several sets

of initial conditions are considered. In particular, Equations (34)

and (35) are integrated assuming that all the initial conditions, but

ϕk(0) and ϕ̇k(0), vanish, and we call the mode k the dominant
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FIGURE 9

View enlargement of the Poincaré map for the solutions at δ = 0.5. In (A), one of the 10 islands, namely, that symmetric to the axis ϕ̇2 = 0, for positive

ϕ2, is shown. The elliptic point, two hyperbolic points formed by the stable and unstable manifold bounding the island, and a number of 10-periodic

tori are visible. In (B), the hyperbolic point on the axis ϕ2 = 0 for positive ϕ̇2 is shown (there is a symmetric one for negative ϕ̇2).

degree of freedom. Therefore, it is set as follows:

ϕk(0) = 8 , ϕ̇k(0) = 8̇,

ϕn(0) = 0 , ϕ̇n(0) = 0 , n = 1, . . . , k− 1, k+ 1, . . . ,N.
(40)

It can be observed, and numerically verified, that such a choice

implies that all the coupling terms in Equation (35) vanish. The

results reported below are obtained by choosing the second mode

(k = 2) as the dominant one. With reference to Figure 6, the

motion is assumed to start at a configuration that is perturbed

from the initial perfect round one (Figure 6A), and this allows the

circular ring to deform dynamically (Figure 6B) also for maximum

values of the forcing load, which would result below the statical

critical pressure.

Provided that the forcing load is set as

Q(τ ) = δ cos�τ , (41)

the equation of motion of the parametrically excited dominant

shape results from theMathieu–Duffing type [78]. In the performed

calculations, it is set � = 4.0, and the intensity δ ranges from 0.5 to

5.0 (δ = 1.0 being the static buckling load).

To depict the Poincaré sections with a sufficiently defined

pattern, a sufficient number of points must be collected. Therefore,

the simulation time spans over the interval 0 ≤ τ ≤ 2cπ/�, with

c being a sufficiently large number of cycles of Q. In the following,

c = 5× 103 is set if not otherwise stated.

Figures 7, 8 appear as layered tori, each torus being an invariant

manifold fixed by the initial conditions. These stable tori occupy a

precise, simply or multiply connected, region of the phase space.

The outside regions are unstable with rapidly divergent solutions.

For instance, in the case of a simply connected stable region, the

unstable one can be found by choosing initial conditions such that

8 ≈ ±5/9, and 8̇ = 0. This is interesting since, according

to the definitions given in Equation (3.1), it is 5/9 = 1/A
(2)
2 .

Focusing on the stable solution of which the vast majority is

quasiperiodic, it can be noticed that some periodic solutions can be

found, too.

At δ = 0.5, a resonant solution is found for 8 = 0.4185636

and 8̇ = 0. Since the trajectory in the phase space goes through

the Poincaré plane 10 times per cycle of the forcing load, this

is a subharmonic of order 10, i.e., a solution of period 10 with

respect to Q. Such a periodic solution is shown in Figure 5A and

can contribute to explaining the behavior of a resonant torus.

In the corresponding power spectrum, (Figure 5B), the first pulse

appears at a frequency of exactly �/(10 × 2π). The 10 points

are located inside islands, which can be detected with the proper

refinement of the grid of the initial conditions, as can be seen

in Figure 9A. The islands correspond to tori showing multiply

connected sections (i.e., multiperiodic tori). In the case under

consideration, since the cross sections of the tori are made of 10

islands, we have 10-periodic tori. The points corresponding to

the periodic solutions are called elliptic points and are alternated

with hyperbolic ones. These latter are actually saddle points (see

Figure 9B). The lines connecting the hyperbolic points represent

the boundaries of the islands and separate regions of tori with

different periodicities.

At δ = 0.75, the resonant solution of period 10 can still

be found closer to the unstable region, but the small islands are

still not visible at the resolution of the graphics in Figure 7. More

interestingly, a new stratum of islands appears. Differently from

the case of the 10-periodic tori, here two families of 3-periodic

tori (i.e., their cross sections are made of three islands), develop

approximately two 3-periodic solutions. In the case of the 10-

periodic tori, initial conditions that are symmetric with respect to

the origin of the axes lead to the same trajectory. By contrast, in
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the case of the two families of 3-periodic tori, two sets of symmetric

conditions lead to two different trajectories, one on a torus of the

first family and the other on a torus of the second. The islands

belonging to a family of tori are alternated with those belonging

to the other.

At δ = 1.00, the islands of the external 10-periodic tori and the

two internal 3-periodic tori are larger. At both strata, elliptic and

hyperbolic points are found.

The section at δ = 1.25 shows that the islands of the 3-

periodic tori are still increasing and, at the same time, radially

pushed toward the unstable region by that of the internal (simply

connected or single) tori. These islands progressively enlarge as the

load intensity δ increases. As a consequence, the 10-periodic tori

enter the unstable region, and their islands progressively lose their

stability.

Such a phenomenon is confirmed at δ = 1.50 and it is even

more evident at δ = 1.75 where 3-periodic tori are detached from

the stable region and show distorted shapes. More interestingly,

other small islands, apparently corresponding to 18-periodic tori,

develop inside the 3-periodic tori islands.

As δ increases, the onset of new periodic solutions can be

observed (see δ = 2 and δ = 2.25).

About δ = 2.25, the cross section of internal tori starts to

shrink along the ϕ̇2−axis. At δ = 2.5, a saddle at the origin of axes

separates an external stratum of single tori from an internal family

of 2-periodic tori. These latter tori will survive for a while (δ = 2.75

and more), even after the destruction of the external single tori that

vanish in the unstable region.

However, for some values of δ above 3.25, where the islands are

already distorted, no stable solutions can be found, at least in the

region of parameters that have been considered (0.5 ≤ δ ≤ 5).

Overall, the variety of dynamic behaviors of the elastic rings

yielded by the solution of Equations (34) and (35) summarizes

some results of the Kolmogorov–Arnold–Moser (KAM) theorem

and of the related theory. The KAM theorem proved for the

first time that, in Hamiltonian systems, quasiperiodic motions are

generic and, thus, it radically changed the previously accepted

idea that their dynamics were close to being integrable [88].

Without entering details, if a Hamiltonian (as in the present

case, where no source of dissipation is considered) dynamical

system is subject to a weakly nonlinear perturbation, some of the

invariant tori are deformed while others are destroyed. In the

present study, the process has been driven by changing initial

conditions since neighboring initial conditions can be thought

of as mutual perturbations. The criterion by which this occurs

is a condition of “quasiresonance” on the frequencies of the

motions (commensurability), and the KAM theorem quantifies

the conditions on the perturbations for this to happen. Indeed,

the deformed tori have an even number of points, appearing in

pairs of elliptic and hyperbolic fixed points, in common with the

undeformed tori. At the elliptic fixed points, the dynamics is the

same as the main system, giving rise to a self-similar structure.

Hyperbolic points, being fixed saddle points, present trajectories

entering or moving away from the fixed point, and they are both

invariant sets, i.e., stable and unstable manifolds, respectively.

Noteworthy, the considered system may exhibit chaotic behavior

originating from hyperbolic points. The region of phase space

where the chaos develops must be confined and that happens in

the case an erratic motion arises between invariant tori, which

play the role of barriers. Since often the erratic motions that have

been found in the present study develop in places very close to

the unstable region, additional investigations would be necessary

to determine if any of the motions shown in Figures 7, 8 may be

classified as chaotic, or they are just unstable solutions that will

diverge after a sufficiently long time.

5. Conclusion

In the present study, starting from a brief resumè of the possible
implications in various fields of physics, engineering, and biology of

the buckling instability and nonlinear dynamics of circular elastic

rings, attention has been focused on the fundamental hypotheses at

the basis of most classic treatments of the problem.

In this respect, a simple model for analyzing the nonlinear

dynamic behavior of elastic rings under external pulsating loads

has been proposed, and a depiction of the possible evolution of the

dynamical system has been discussed in detail.

In the literature, the behavior of rings under external pressure

load has been recognized to be governed by the Mathieu equation,

which can actually be used as a mathematical model in a number

of problems in engineering and physics. To cite but a few,

these are the vibrations in elliptic membranes, the motion of an

inverted pendulum with the suspension point undergoing vertical

vibration, the stability of floating bodies, the ion trap, and the

elastic oscillations of a ferromagnetic material. The solution of

the Mathieu equation is expressed in terms of Mathieu functions,

which are periodic in their argument only for certain so-called

characteristic values of the ratio between the system and the

loading frequencies. The solution may be stable, i.e., bounded, or

unstable, i.e., diverging, and the transition curves between stable

and unstable domains in the plane of parameters are related to the

characteristic values.

The simple modeling proposed in this study leads to a

nonlinear version of the Mathieu equation called the Mathieu–

Duffing equation due to the presence of cubic nonlinearity.

Indeed, the Mathieu–Duffing equation is a relevant combination

of the Mathieu and Duffing equations, the latter being

perhaps the most well-known and celebrated oscillator with

cubic nonlinearity.

The analysis of the obtained results has shown that even

the simple problem under consideration can give origin to very

complex dynamics in the phase space. Since the considered

equation of motion does not contain any dissipative term,

the resulting dynamics is Hamiltonian, with a wide prevalence

of quasiperiodic responses. This means that invariant tori are

characterized by two not commensurate frequencies and curves

over these tori are not closed and fill the tori, which are non-

resonant. In the case of commensurate frequencies, the responses

are periodic and close to themselves.

The implications for many of the practical problems of

elasticity described in Section 1 can be countless, depending on

the specific application. It goes without saying that adaptations of

the governing equations may be needed with respect to the type of

loading, the material model, and so on.
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