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Two new goodness-of-fit testing procedures are introduced to test exponentiality

when data are subject to Type-I censoring. We proposed four test statistics for this

purpose. Under extensive Monte Carlo simulations, we showed that the proposed

tests maintain the nominal significance level and show good power for both

monotonic and non-monotonic hazard function alternatives even for small samples

as n = 10. A real dataset is studied for illustrative purposes.
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1. Introduction

In reliability and life testing problems, Type-I censoring has gained a significant amount of

popularity due to the duration of the experiment being fixed prior to it being started and the fact

that it is under the control of the experimenter.

It is of interest to study the lifetime of n items by performing a life testing experiment. By

controlling the total time, the experiment can be terminated at the time of T, which can be

determined before the life testing experiment begins. This means that d observations take the

form of X1 : n ≤ X2 : n ≤ . . . ≤ Xd : n, and n − d data values are censored, as discussed by

Balakrishnan and Cohen [1] and Cohen [2].

The exponential distribution considered in this article is well-known and frequently uses

lifetime models. The exponential model is a special case among many important statistical

models such as Weibull and gamma distributions. The simplicity and the existence of closed

form solutions for many problems make the exponential model appealing, which informs the

current study (see also Balakrishnan and Basu [3]). We assume the following form of pdf for the

exponential distribution with scale parameter θ

f (x) = 1

θ
exp(− x

θ
) , x > 0 .

Suppose n items are placed in a life testing experiment, which will be terminated at a pre-

determined time T > 0. Let X1 : n,X2 : n, . . . ,Xd : n be the corresponding Type-I censored sample

from a distribution function F. Consider the following goodness-of-fit hypothesis

H0 : F(x) = 1− exp(−x/θ) , versus H1 : F(x) 6= 1− exp(−x/θ) , (1)

For some positive scale parameter θ . Based on this, the current study was interested in testing

for exponentiality.

The maximum likelihood estimator (MLE) of θ , based on censored data

X1 : n,X2 : n, . . . ,Xd : n is given by

θ̂ = 1

d

{ d
∑

i=1

Xi : n + (n− d)T

}

, (2)
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TABLE 1 Monte Carlo estimate of the coe�cient of skewness (
√

β1) and coe�cient of kurtosis (β2) for the test statistics T1, T2, T3, and TB under the null

distribution of exponentiality.

F(T) = 1− exp(−T/θ)

Coe�cient Test statistic 0.4 0.5 0.6 0.7 0.8 0.9 0.99
√

β1 T1 −0.3129 −0.1180 0.0271 0.1912 0.3796 0.5875 0.6320

T2 1.3232 1.3133 1.4808 1.6821 1.8963 2.1000 2.0743

T3 0.4641 0.4881 0.5641 0.7117 0.8580 1.0095 1.0359

TP 1.4783 1.6418 1.6760 1.7500 1.6208 1.4810 1.4247

β2 T1 2.9265 2.8364 2.7859 2.8209 2.9906 3.3985 3.4865

T2 6.4788 5.8247 7.1227 7.7983 8.9460 10.4060 9.8452

T3 3.4250 3.2778 3.3825 3.6152 3.9251 4.5293 4.5615

TP 7.3660 8.6962 8.5972 9.1348 7.7253 6.4801 5.9467

FIGURE 1

Monte Carlo simulated pdf curves for the test statistics T1, T2, T3, and TP under the assumption of exponential model.

FIGURE 2

CDF of the alternative groups G1, G2, and G3 (left to right) and the CDF of a standard exponential distribution (dashed).
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TABLE 2 Empirical significance level for the test statistics T1, T2, T3, and TP when n = 10, 20, 30 with α = 0.10 and 105 iterations.

F(T) = 1− exp(−T/θ)

Alt. model Test statistic 0.4 0.5 0.6 0.7 0.8 0.9 0.99

n = 10 T1 0.0991 0.0993 0.0998 0.1004 0.1036 0.0975 0.0987

T2 0.0999 0.1003 0.0997 0.1013 0.0974 0.0995 0.1006

T3 0.0996 0.0999 0.0989 0.1016 0.0963 0.0991 0.1005

TP 0.0989 0.0974 0.1018 0.0995 0.0971 0.09993 0.1026

n = 20 T1 0.0993 0.1013 0.0998 0.1004 0.0994 0.1035 0.0983

T2 0.0989 0.1014 0.0969 0.0994 0.1008 0.1028 0.1001

T3 0.0994 0.1003 0.0975 0.1007 0.1027 0.1015 0.1007

TP 0.0995 0.0981 0.0977 0.1012 0.0999 0.1025 0.1021

n = 30 T1 0.1002 0.0981 0.1011 0.1042 0.1011 0.1010 0.0972

T2 0.1001 0.0993 0.1004 0.1026 0.1034 0.1003 0.0988

T3 0.0996 0.1002 0.0998 0.1010 0.1035 0.0998 0.0994

TP 0.0985 0.0998 0.1010 0.1013 0.1023 0.0976 0.1001

Provided that d ≥ 1. However, hereafter we assume that d ≥ 1

and that at least one example of censored data are observed.

Pearson [4] was the first to study the problem of goodness-of-fit,

which is a statistical procedure for testing the suitability of a specific

model to describe a given set of complete or censored data. For a

detailed discussion of this problem see D’Agostino and Stephens [5],

Huber-Carol et al. [6], and Nikulin and Chimitova [7] among others.

Stephens [8] proposed a version of the Cramer-von Mises and

Anderson-Darling goodness-of-fit test statistics for Type-I censored

data. Pakyari and Balakrishnan [9] studied a goodness-of-fit testing

procedure for the exponential distribution when the available data are

Type-I censored. They studied the goodness-of-fit testing problem

for the exponential model by treating the Type-I censored data as a

complete sample and then performing classical goodness-of-fit tests

for complete data.

Their method considered the Type-I censored sample X1 : n ≤
X2 : n ≤ . . . ≤ Xd : n as order statistics from a complete sample of

size d, from a right-truncated exponential distribution at time T.

Pakyari and Resalati Nia [10] extended their work to test other

lifetimemodels such asWeibull and log-normal distributions.We use

this idea to present test statistics based on order statistics in Section

2. For the various goodness-of-fit procedures available for censored

data see also Balakrishnan et al. [11], Balakrishnan et al. [12], Doring

and Cramer [13], Lim and Park [14], Lin et al. [15], Noughabi [16],

Pakyari and Balakrishnan [17], Pakyari [18], Pakyari and Baklizi [19],

Park and Pakyari [20], and Qi et al. [21].

This article presents new testing procedures for testing the

goodness-of-fit of the exponential model when data are Type-I

censored. We study several testing procedures in this regard such as

tests based on order statistics, tests based on quantiles, and tests based

on binomial distribution. However, our proposed method is based on

order statistics followed by tests based on quantiles. We investigate

the empirical power of the proposed tests through an extensiveMonte

Carlo simulation study.

This study aims to provide some easy yet powerful goodness-of-fit

testing procedures for exponentiality, which is known to be a special

case among many well-applied lifetime models.

The paper is structured as follows. Section 2 introduces some

test statistics which are constructed based on order statistics. In

Section 3 we propose a test statistic based on a linear combination

of quantiles vector. Tests based on binomial distribution are

discussed in Section 4. In Section 5, we investigate the validity

of the proposed tests by calculating the empirical significance

levels and comparing them with the nominated levels. We then

perform a Monte Carlo simulation study to access the empirical

power of the proposed tests so that we can compare them with

the power of some known tests described in the literature on

this subject. Finally, we explain the proposed tests using a real

data example.

2. Tests based on order statistics

Note that conditional on D = d,

(X1 : n, . . . ,Xd : n)
d= (V1 : d, . . . ,Vd : d),

Where the order statisticsV1 : d, . . . ,Vd : d are a random sample of size

d from exponential distribution but right truncated at T; see Arnold

et al. [22] and David and Nagaraja [23].

On finding the MLE of θ , it will be useful to transform the

Type-I censored sample X1 : n,X2 : n, . . . ,Xd : n to the complete

uniformly distributed sample U1 : d,U2 : d, . . . ,Ud : d using the

following transformation:

Ui : d = 1− exp(−Xi : n/θ̂)

1− exp(−T/θ̂)
, for i = 1, . . . , d . (3)

Therefore, testing that the Type-I censored data

X1 : n,X2 : n, . . . ,Xd : n follow exponential distribution is equivalent

to testing that the complete data U1 : d,U2 : d, . . . ,Ud : d follow a

uniform distribution.

If we then let νi = Ui : d − i
n+1 be the deviation of each order

statistics Ui : d from its expected value, then several goodness-of-fit

test statistics can be considered:
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TABLE 3 Empirical power for various alternative models, n = 10, α = 0.10 and 105 iterations.

F(T) = 1− exp(−T/θ)

Alt. model Test statistic 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Gamma (0.5, 1.0) T1 0.0778 0.0777 0.0913 0.1235 0.1969 0.3119 0.4422

T2 0.0012 0.0007 0.0009 0.0024 0.0299 0.1901 0.4574

T3 0.0011 0.0007 0.0008 0.0023 0.0327 0.1960 0.4764

TP 0.4067 0.3124 0.2478 0.1807 0.1395 0.1072 0.0896

KS 0.2890 0.3023 0.3161 0.3265 0.3365 0.3455 0.3506

CM 0.2839 0.3082 0.3284 0.3467 0.3635 0.3769 0.3819

AD 0.4832 0.4985 0.5122 0.5260 0.5397 0.5525 0.5584

Gamma (2.0, 1.0) T1 0.0397 0.0407 0.0644 0.1058 0.1436 0.1422 0.1123

T2 0.3674 0.5499 0.7112 0.8199 0.8802 0.8950 0.6350

T3 0.3840 0.5633 0.7193 0.8246 0.8839 0.8966 0.6469

TP 0.1654 0.0755 0.0501 0.0594 0.1118 0.2311 0.5117

KS 0.0172 0.0424 0.0864 0.1431 0.2090 0.2766 0.3428

CM 0.0069 0.0223 0.0562 0.1129 0.1920 0.2658 0.3914

AD 0.0047 0.0142 0.0373 0.0785 0.1417 0.2080 0.3416

Weibull (0.5, 1.0) T1 0.1485 0.1728 0.2136 0.2776 0.3750 0.4877 0.5944

T2 0.0111 0.0128 0.0178 0.0326 0.1094 0.4173 0.7360

T3 0.0089 0.0103 0.0124 0.0249 0.1087 0.4295 0.7533

TP 0.2883 0.2541 0.2361 0.2189 0.2154 0.2383 0.3204

KS 0.3261 0.3632 0.3973 0.4314 0.4673 0.5112 0.5845

CM 0.3032 0.3489 0.3919 0.4325 0.4786 0.5328 0.6230

AD 0.5493 0.5829 0.6126 0.6427 0.6740 0.7120 0.7748

Weibull (2.0, 1.0) T1 0.0376 0.0369 0.0307 0.0201 0.0509 0.1888 0.4095

T2 0.5026 0.5577 0.5126 0.4000 0.3229 0.4234 0.6259

T3 0.5287 0.5974 0.5737 0.4755 0.3515 0.3589 0.5843

TP 0.1327 0.2337 0.4356 0.6517 0.8180 0.8659 0.8547

KS 0.1131 0.2463 0.4020 0.5421 0.6515 0.6683 0.6739

CM 0.0764 0.2132 0.4021 0.5831 0.7252 0.7489 0.7691

AD 0.0500 0.1570 0.3262 0.5066 0.6699 0.7084 0.7374

Log-normal (0, 0.5) T1 0.0075 0.0023 0.0020 0.007 0.0583 0.2516 0.5692

T2 0.7264 0.9087 0.9413 0.8844 0.8173 0.8399 0.8377

T3 0.7545 0.9270 0.9682 0.9338 0.8551 0.8193 0.7770

TP 0.0833 0.1759 0.4220 0.6734 0.8444 0.9309 0.9738

KS 0.0597 0.2801 0.5690 0.7498 0.8349 0.8715 0.8759

CM 0.0279 0.2098 0.5221 0.7516 0.8600 0.9069 0.9119

AD 0.0184 0.1528 0.4393 0.6924 0.8226 0.8822 0.8999

Log-normal (0, 1.0) T1 0.0206 0.0308 0.0435 0.0521 0.0633 0.0685 0.0870

T2 0.4181 0.4111 0.4024 0.3848 0.3698 0.3350 0.1544

T3 0.4529 0.4418 0.4322 0.4166 0.3911 0.3347 0.1486

TP 0.1014 0.1195 0.1350 0.1402 0.1479 0.1560 0.1982

KS 0.0878 0.0922 0.1091 0.1152 0.1211 0.1299 0.1318

CM 0.0598 0.0951 0.1211 0.1275 0.1297 0.1315 0.1354

AD 0.0378 0.0645 0.0861 0.0999 0.1008 0.1023 0.1059

(Continued)
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TABLE 3 (Continued)

F(T) = 1− exp(−T/θ)

Alt. model Test statistic 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Lomax (1, 4.0) T1 0.0070 0.0051 0.0067 0.0117 0.0299 0.0743 0.1590

T2 0.0001 0.0002 0.0001 0.0004 0.0022 0.0361 0.1706

T3 0.0001 0.0001 0.0001 0.0002 0.0021 0.0364 0.1781

TP 0.5390 0.3998 0.2704 0.1647 0.1073 0.0784 0.0727

KS 0.0999 0.1073 0.1163 0.1275 0.1395 0.1495 0.1582

CM 0.0931 0.1035 0.1153 0.1287 0.1423 0.1554 0.1658

AD 0.1038 0.1131 0.1245 0.1391 0.1545 0.1700 0.1881

Bold values indicate the largest estimated power in each case.

T1 = max
1≤i≤d

(νi)+ max
1≤i≤d

(−νi) , T2 =
d

∑

i=1

ν2i

d
, T3 =

d
∑

i=1

|νi|
d

.

(4)

Large values of these statistics will tend to reject the null

hypothesis of exponentiality. In Section 5, we use the Monte Carlo

simulation to determine the upper tail of the simulated values of the

statistics T1, T2, and T3 as critical points for testing exponentiality.

3. Test based on quantiles

Note that the order statistics Ui : d defined by Equation (3) follow

beta distribution with parameters (i, d − i+ 1). Define

pi = FB(ui : d; i, d − i+ 1), (5)

Where FB(x;α,β) = B(x;α,β)
B(α,β)

is the cumulative distribution function

(CDF) and B(α,β) =
∫ x
0 tα−1(1 − t)β−1 dt is the incomplete beta

function. pi is the CDF of the beta distribution with parameters

(i, d − i+ 1) evaluated at ui : d.

The quantiles vector

P = (p1, p2, . . . , pd)
′ ,

can be used as a measure of goodness-of-fit. Extreme values of pi,

i.e. values close to zero or one are signs of "badness-of-fit"! It is

noteworthy that, although pi’s are uniformly distributed over (0, 1),

they are not statistically independent.

We propose a test statistic in terms of a linear combination of pi
and 1− pi as follows:

TP = −
d

∑

i=1

{w log(p(i))+ (1− w) log(1− p(i))} , (6)

Where w = i−1
d
, for i = 1, 2, . . . , d and p(i)’s are the ordered values

of pi arranged from smallest to largest. Note that the test statistic TP

will be calculated for values of p(i) in the interval (0, 1), i.e. we exclude

the cases with p(i) = 0 or p(i) = 1. Note also that whilst ui : d’s are

ordered in terms of their values, the pi’s are not necessarily ordered.

Moreover, the test statistic TP, will be large whenever one of pi’s are

close to zero or one. Hence, large values of TP provide evidence that

the null hypothesis H0 of exponentiality should be rejected.

4. Test based on binomial distribution

Let the discrete random variable D denote the number of

observed failures before the termination time T. Then, under the

validity of the null hypothesis, under the exponentiality of the model,

D follows a binomial distribution with parameters (n, p), where p =
F(T) = 1− exp(−T/θ).

Hence, testing the null hypothesis of exponentiality (1), is

equivalent to performing a binomial test say

H0 : p = F(T) , versus H1 : p 6= F(T) . (7)

Note that if we assume that the null hypothesis is true, i.e.

under the validity of the exponential model, we expect to observe

nF(T) failures. The usual binomial test may then be used to find the

associated p-value.

For large values of sample size n, the binomial distribution is well

approximated by the Gaussian model in which a z-test is performed

to the test statistic Z, using continuity correction given by

TB = d − nF(T)± 0.5√
nF(T)(1− F(T))

. (8)

However, using the Monte Carlo simulation we found that the

test statistic TB does not maintain the nominated significance level

for small sample sizes even for sample sizes n ≤ 40, so we did not

include the power of TB in our simulation study.

In the following section, we perform aMonte Carlo simulation to

assess the power of the proposed tests for various alternative models,

and for a combination of various sample sizes n and censoring

proportion 1− F(T) = exp(−T/θ).

5. Simulation study

In this section, the performance of our proposed tests will

be evaluated by studying the empirical significance level and the

empirical power through extensive Monte Carlo simulations. We

used the R pseudo-random generator with 50,000 iterations.

First, we investigate the null distribution of the test statistics

presented in the previous section using the Monte Carlo estimate

of the coefficient of skewness (
√

β1) and the coefficient of kurtosis

(β2) when the underlying distribution is standard exponential. The

results are shown in Table 1. The coefficient of skewness (
√

β1) and

the coefficient of kurtosis (β2) are defined as:
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TABLE 4 Empirical power for various alternative models, n = 20, α = 0.10 and 105 iterations.

F(T) = 1− exp(−T/θ)

Alt. model Test statistic 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Gamma (0.5, 1.0) T1 0.0182 0.0268 0.0494 0.1055 0.2309 0.4381 0.6051

T2 0.0006 0.0006 0.0004 0.0003 0.0272 0.2949 0.6679

T3 0.0001 0.0002 0.0006 0.0004 0.0275 0.2874 0.6760

TP 0.6579 0.5661 0.4720 0.3892 0.3055 0.2363 0.1861

KS 0.4719 0.4969 0.5208 0.5401 0.5576 0.5709 0.5810

CM 0.4953 0.5280 0.5566 0.5794 0.5995 0.6164 0.6266

AD 0.6914 0.7111 0.7270 0.7421 0.7552 0.7680 0.7769

Gamma (2.0, 1.0) T1 0.0356 0.0965 0.1981 0.3072 0.3605 0.2873 0.1951

T2 0.6529 0.8402 0.9382 0.9795 0.9915 0.9935 0.8940

T3 0.6665 0.8433 0.9361 0.9786 0.9904 0.9936 0.9105

TP 0.1004 0.0320 0.0282 0.0630 0.1487 0.3430 0.7356

KS 0.0497 0.1052 0.1788 0.2587 0.3443 0.4377 0.5446

CM 0.0241 0.0693 0.1465 0.2450 0.3573 0.4805 0.6217

AD 0.0159 0.0507 0.1171 0.2093 0.3208 0.4511 0.6081

Weibull (0.5, 1.0) T1 0.1243 0.1889 0.3036 0.4549 0.6325 0.7829 0.8686

T2 0.0022 0.0037 0.0055 0.0153 0.1068 0.6130 0.9267

T3 0.0015 0.0020 0.0026 0.0077 0.1024 0.6148 0.9325

TP 0.5391 0.5188 0.5017 0.4984 0.5127 0.5502 0.6573

KS 0.5517 0.6032 0.6489 0.6919 0.7363 0.7868 0.8607

CM 0.5672 0.6247 0.6772 0.7243 0.7714 0.8223 0.8926

AD 0.7700 0.8068 0.8383 0.8657 0.8907 0.9169 0.9516

Weibull (2.0, 1.0) T1 0.0519 0.0555 0.0338 0.0150 0.0747 0.4667 0.8202

T2 0.7815 0.8200 0.7588 0.6440 0.6007 0.8118 0.9483

T3 0.8037 0.8603 0.8401 0.7603 0.6606 0.7770 0.9449

TP 0.1333 0.3359 0.6336 0.8765 0.9710 0.9899 0.9900

KS 0.2490 0.4472 0.6458 0.8029 0.8966 0.9106 0.9257

CM 0.2103 0.4486 0.6851 0.8538 0.9423 0.9620 0.9711

AD 0.1719 0.4019 0.6487 0.8345 0.9328 0.9702 0.9662

Log-normal (0, 0.5) T1 0.0044 0.0019 0.0019 0.0022 0.0834 0.5793 0.9512

T2 0.9313 0.9958 0.9992 0.9965 0.9942 0.9978 0.9979

T3 0.9448 0.9972 0.9998 0.9991 0.9967 0.9968 0.9947

TP 0.0524 0.2508 0.6612 0.9224 0.9884 0.9992 0.9999

KS 0.1964 0.6236 0.8898 0.9691 0.9902 0.9954 0.9963

CM 0.1181 0.5572 0.8886 0.9762 0.9942 0.9978 0.9986

AD 0.0844 0.5029 0.8771 0.9771 0.9956 0.9985 0.9991

Log-normal (0, 1.0) T1 0.0275 0.0468 0.0650 0.0755 0.0826 0.0858 0.1259

T2 0.6370 0.6378 0.6074 0.5851 0.5637 0.5291 0.2006

T3 0.6861 0.6900 0.6663 0.6440 0.6086 0.5443 0.2060

TP 0.1123 0.1518 0.1748 0.1960 0.2092 0.2297 0.3296

KS 0.1059 0.1216 0.1487 0.1524 0.1682 0.1719 0.2016

CM 0.1351 0.1477 0.1586 0.1782 0.1943 0.2059 0.2206

AD 0.1251 0.1337 0.1408 0.1757 0.1845 0.1958 0.2147

(Continued)
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TABLE 4 (Continued)

F(T) = 1− exp(−T/θ)

Alt. model Test statistic 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Lomax (1, 4.0) T1 0.0004 0.0001 0.0005 0.0026 0.0156 0.0749 0.1865

T2 0.0001 0.0001 0.0001 0.0001 0.0006 0.0425 0.2331

T3 0.0002 0.0001 0.0001 0.0001 0.0006 0.0397 0.2393

TP 0.7237 0.5520 0.3769 0.2429 0.1547 0.1097 0.0889

KS 0.1122 0.1237 0.1374 0.1553 0.1754 0.1960 0.2217

CM 0.1090 0.1242 0.1424 0.1660 0.1901 0.2161 0.2421

AD 0.1178 0.1318 0.1498 0.1730 0.1993 0.2280 0.2481

Bold values indicate the largest estimated power in each case.

√

β1 =
E[T − E(T)]3

[Var(T)]3/2
, (9)

and

β2 =
E[T − E(T)]4

[Var(T)]2
. (10)

From Table 1, it is clear that the null distribution of all the test

statistics are far from normality, as
√

β1 and β2 are not close to 0 and

3 respectively, which are the coefficients of skewness and kurtosis of

normal distribution. This is also evident from Figure 1, which depicts

the simulated pdf curves for the test statistics under the validity of the

null hypothesis. Indeed, it has been observed that all the test statistics

are skewed to the right. Hence, we use empirical critical values to

perform goodness-of-fit tests.

We compare the empirical power of the proposed tests to those

of the EDF-based test statistics proposed by Pettitt and Stephens [24]

and Stephens [8].

Stephens [8] studied the modification of the Kolmogorov-

Smirnov statistic for the Type-I censored data from an exponential

model in the form of:

1DT : n = max
1≤i≤d

{

i

n
− u(i), u(i) −

i− 1

n
, u(d+1) −

d

n

}

, (11)

Where u(i) = 1− exp(−xi : n/θ̂) and u(d+1) = 1− exp(−T/θ̂) with θ̂

being the MLE of the scale parameter θ given by Equation (2).

Pettitt and Stephens [24] also studied the Cramér-von Mises

statistic 1W
2
T : n and the Anderson-Darling statistic 1A

2
T : n under

Type-I censoring in the form of:

1W
2
T : n =

d+1
∑

i=1

(

u(i) −
2i− 1

2n

)2

+ d + 1

12n2
+ n

3

(

u(d+1) −
d + 1

n

)3

,

(12)

and

1A
2
T : n = − 1

n

d+1
∑

i=1

(2i− 1){log u(i) − log(1− u(i))} (13)

− 2

d+1
∑

i=1

log(1− u(i))

− 1

n
{(d − n+ 1)2 log(1− u(d+1))− (d + 1)2 log u(d+1)

+ n2u(d+1)}.

We considered seven alternative models in three groups G1, G2

and G3 based on their behavior of hazard functions as follows:

G1: Group I alternative (Monotonic decreasing hazard rates):

1. Gamma distribution with shape parameter α = 0.5 and scale

parameter β = 1.0, denoted by Gamma (0.5, 1.0).

2. Weibull distribution with shape parameter a = 0.5 and scale

parameter b = 1.0, denoted by Weibull (0.5, 1.0).

3. Lomax distribution with shape parameter d = 4.0 and scale

parameter c = 1.0, denoted by Lomax (1.0, 4.0).

G2: Group II alternative (Monotonic increasing hazard rates):

1. Gamma distribution with shape parameter α = 2.0 and scale

parameter β = 1.0, denoted by Gamma (2.0, 1.0).

2. Weibull distribution with shape parameter a = 2.0 and scale

parameter b = 1.0, denoted by Weibull (2.0, 1.0).

G3: Group III alternative (Non-monotonic hazard rates):

1. Log-normal distribution with location parameter µ = 0 and

scale parameter σ = 0.5, denoted by Log-normal (0, 0.5).

2. Log-normal distribution with location parameter µ = 0 and

scale parameter σ = 1.0, denoted by Log-normal (0, 1.0).

The following forms of probability density functions were used

here.

The gamma distribution with density function

f (x;α,β) = 1

Ŵ(α)βα
xα−1 exp

{

− x

β

}

, x > 0,

Where α > 0 is the shape parameter and β > 0 is the scale parameter.

The Weibull distribution with density function

f (x; a, b) = a

b

(

x

b

)a−1

e−( x
b
)a , x > 0,

Where a > 0 and b > 0 are the shape and scale parameters,

respectively.
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TABLE 5 Empirical power for various alternative models, n = 30, α = 0.10 and 105 iterations.

F(T) = 1− exp(−T/θ)

Alt. model Test statistic 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Gamma (0.5, 1.0) T1 0.0048 0.0109 0.0327 0.0962 0.2567 0.5326 0.7399

T2 0.0001 0.0001 0.0002 0.0002 0.0238 0.3757 0.8141

T3 0.0001 0.0002 0.0002 0.0006 0.0235 0.3597 0.8173

TP 0.7943 0.7199 0.6393 0.5516 0.4584 0.3630 0.3011

KS 0.6189 0.6510 0.6755 0.6984 0.7179 0.7335 0.7442

CM 0.6552 0.6889 0.7169 0.7405 0.7602 0.7773 0.7875

AD 0.8231 0.8421 0.8564 0.8688 0.8790 0.8889 0.8956

Gamma (2.0, 1.0) T1 0.0679 0.1829 0.3564 0.5111 0.5527 0.4292 0.2861

T2 0.8100 0.9397 0.9877 0.9978 0.9995 0.9997 0.9749

T3 0.8174 0.9403 0.9865 0.9975 0.9994 0.9997 0.9809

TP 0.0465 0.0157 0.0272 0.0768 0.2016 0.4617 0.8659

KS 0.0705 0.1449 0.2520 0.3591 0.4632 0.5754 0.7054

CM 0.0392 0.1060 0.2289 0.3642 0.4970 0.6326 0.7788

AD 0.0304 0.0916 0.2076 0.3432 0.4860 0.6337 0.7861

Weibull (0.5, 1.0) T1 0.1063 0.2064 0.3789 0.6082 0.8000 0.9226 0.9644

T2 0.0006 0.0011 0.0027 0.0093 0.1105 0.7425 0.9816

T3 0.0003 0.0005 0.0009 0.0030 0.1057 0.7379 0.9832

TP 0.7134 0.6959 0.6936 0.7015 0.7182 0.7574 0.8521

KS 0.7110 0.7616 0.8054 0.8434 0.8782 0.9141 0.9576

CM 0.7397 0.7937 0.8378 0.8748 0.9074 0.9378 0.9724

AD 0.8853 0.9133 0.9343 0.9518 0.9653 0.9778 0.9906

Weibull (2.0, 1.0) T1 0.0748 0.0734 0.0351 0.0155 0.0991 0.6881 0.9623

T2 0.9047 0.9309 0.8946 0.8136 0.7968 0.9501 0.9957

T3 0.9191 0.9567 0.9482 0.9044 0.8559 0.9368 0.9958

TP 0.1608 0.4555 0.7979 0.9618 0.9962 0.9996 0.9996

KS 0.3515 0.6020 0.8006 0.9230 0.9747 0.9884 0.9982

CM 0.3275 0.6297 0.8462 0.9548 0.9908 0.9977 0.9985

AD 0.3016 0.6056 0.8362 0.9529 0.9900 0.9978 0.9989

Log-normal (0, 0.5) T1 0.0027 0.0020 0.0021 0.0012 0.1044 0.7779 0.9974

T2 0.9818 0.9997 1.0000 0.9999 0.9999 1.0000 1.0000

T3 0.9871 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000

TP 0.0453 0.3513 0.8408 0.9869 0.9996 1.0000 1.0000

KS 0.3141 0.8019 0.9784 0.9979 0.9998 0.9999 1.0000

CM 0.2203 0.7550 0.9811 0.9986 0.9999 1.0000 1.0000

AD 0.1789 0.7453 0.9830 0.9992 0.9999 1.0000 1.0000

Log-normal (0, 1.0) T1 0.0376 0.0642 0.0848 0.1039 0.1037 0.0934 0.1576

T2 0.7867 0.7779 0.7559 0.7290 0.7092 0.6692 0.2460

T3 0.8318 0.8333 0.8160 0.7918 0.7637 0.6916 0.2606

TP 0.1375 0.1923 0.2390 0.2657 0.2814 0.3159 0.4363

KS 0.1175 0.1204 0.1403 0.1626 0.1711 0.1795 0.2113

CM 0.1393 0.1424 0.1501 0.1646 0.1840 0.1985 0.2214

AD 0.1492 0.1428 0.1595 0.1778 0.1921 0.2044 0.2379

(Continued)
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TABLE 5 (Continued)

F(T) = 1− exp(−T/θ)

Alt. model Test statistic 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Lomax (1, 4.0) T1 0.0001 0.0001 0.0002 0.0007 0.0090 0.0728 0.2148

T2 0.0001 0.0001 0.0001 0.0001 0.0032 0.0401 0.2905

T3 0.0001 0.0001 0.0001 0.0001 0.0002 0.0361 0.2948

TP 0.7973 0.6338 0.4552 0.2943 0.1863 0.1256 0.1059

KS 0.1212 0.1391 0.1633 0.1887 0.2167 0.2443 0.2718

CM 0.1216 0.1442 0.1721 0.2046 0.2385 0.2711 0.2970

AD 0.1293 0.1494 0.1764 0.2097 0.2456 0.2821 0.3185

Bold values indicate the largest estimated power in each case.

The log-normal distribution with density function

f (x;µ, σ ) = 1√
2π σ x

exp

{

− (log x− µ)2

2σ 2

}

, x > 0,

Where −∞ < µ < ∞ is the mean and σ > 0 is the standard

deviation of the transformed normal distribution.

Finally, the Lomax distribution (also known as Pareto Type II),

with probability density function

f (x; c, d) = d

c (1+ x/c)1+d
, x > 0 ,

With the scale parameter c > 0 and the shape parameter d > 0.

The plot of CDFs of the alternative distributions in groups G1, G2

and G3 are depicted in Figure 2.

For a comprehensive discussion of these distributions, one may

refer to Johnson et al. [25, 26] and Kleiber and Kotz [27].

Verifying the empirical significance level is of great importance

for the validity of any goodness-of-fit test statistic. To assess

the validity of our tests we investigate the empirical significance

level by generating 100, 000 Type-I censored random data from

the exponential distribution with a rate equal to one (standard

exponential). We considered a combination of various sample sizes

n and proportions (probability) of failures F(T) = 1 − exp(−T).

The empirical significance levels at nominated level α = 0.10 are

tabulated in Table 2. The values in this table confirm the validity of

our proposed tests in terms of preserving the nominated significance

level.

The power of the proposed tests together with the powers

associated with the classical EDF-based tests are recorded in Tables 3–

5 for sample sizes n = 10, n = 20, and n = 30, respectively for

the three alternative groups G1, G2, and G3. Figures 4–6 depict the

corresponding heatmaps to provide better visualization of the results.

The greyscale is given in Figure 7.

The test statistics T3 and TP outperformed the classical EDF-

based statistics for groups G2 and G3, respectively for the monotonic

increase and non-monotonic hazard function alternatives for all

sample sizes considered here. The test statistic T2 also had the

best power in some cases in groups G2 and G3. However, in the

group G1 alternative for monotonic decreasing hazard functions, the

EDF-based test statistic AD performed better than the other tests.

In Table 5, for log-normal (0, 0.5) alternative and n = 30, the

empirical powers are equal to 1.00 for most tests when the censoring

FIGURE 3

Histogram of the complete data and fitted exponential pdf curve of

the data in Table 6.

proportion F(T) is at least 60%. This shows the consistency of the

test statistics considered here. Moreover, as one would expect the

empirical power values of all the tests considered here increase when

the sample size n increases and/or when the censoring proportion

F(T) increases.

In summary, for the monotonically increasing and non-

monotonic hazard rate alternatives, we recommend using the test

statistics T3 and TP. For the Lomaxmodel alternative, we recommend

TP for a small amount of censoring proportion and the AD statistic

for large values of F(T).

6. Numerical example

In this section, we study a numerical example to illustrate our

proposed procedure and test statistics. The data concerning the

times to breakdown of an insulating fluid tested at 34 kilovolts

for n = 19 insulating fluids (see Nelson [28], Table 1.1,

page 105).

Suppose we decided to terminate the experiment at time T = 15

so any data larger than 15 is censored. The complete and the Type-I

censored data are summarized in Table 6.
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FIGURE 4

Heatmap of the empirical powers listed in Table 3 for n = 10, α = 0.10 and 105 iterations.

FIGURE 5

Heatmap of the empirical powers listed in Table 4 for n = 20, α = 0.10 and 105 iterations.

The value of d is found to be d = 14 and using Equation (2), the

MLE of θ is θ̂ = 10. Hence, F(T) = F(15) = 1−exp(−15/10) = 0.78.

The values of the test statistics and the associated p-values

are given in Table 7. The p-values are sufficiently large for all test

statistics and thereby the null hypothesis of exponentiality is not

significant and the exponential model fits the data. The histogram

of the complete data and the fitted exponential pdf curve with scale

parameter θ = 10 are depicted in Figure 3.
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FIGURE 6

Heatmap of the empirical powers listed in Table 5 for n = 30, α = 0.10 and 105 iterations.

TABLE 6 Insulating fluid tested at 34 kilovolts data.

Complete data 0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67 4.85 6.50

7.35 8.01 8.27 12.06 31.75 32.52 33.91 36.71 72.89

Type-I censored data 0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67 4.85 6.50

7.35 8.01 8.27 12.06

TABLE 7 Test values of test statistics and their corresponding p-values for

the data in Table 6 when testing for the exponential model.

Criterion T1 T2 T3 TP

Test statistic 0.2438 0.0080 0.0748 9.0941

p-value 0.6224 0.8257 0.8110 0.6066

7. Concluding remarks

In this paper, we proposed some new goodness-of-fit tests for

exponentiality when the available data are Type-I censored. We

employed two methods for this purpose: the first was based on the

distance between the observed order statistics and its theoretical

mean under the assumption of exponentiality.

The second method was based on the values of quantiles

of uniform order statistics, which are known to follow the beta

distribution, as is the fact that under the assumption of the null

hypothesis, most of the quantiles pi’s should be close to 0.5. We

proposed test statistics based on the weighted mean of the logarithm

of pi.

Among the four test statistics presented in this article, the

test statistic T3, based on order statistics, exhibits the most

FIGURE 7

The greyscale used in Figures 4–6.

powerful test followed by the test statistic T4, which is based

on quantiles.

The large sample properties of the proposed estimators will

be examined in a separate future study through Monte Carlo

simulation.
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