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Linear regression for Poisson
count data: a new semi-analytical
method with applications to
COVID-19 events

Massimiliano Bonamente*

Department of Physics and Astronomy, University of Alabama in Huntsville, Huntsville, AL, United States

This study presents the application of a new semi-analytical method of linear
regression for Poisson count data to COVID-19 events. The regression is based
on the maximum-likelihood solution for the best-fit parameters presented in
an earlier publication, and this study introduces a simple analytical solution
for the covariance matrix that completes the problem of linear regression
with Poisson data for one independent variable. The analytical nature of both
parameter estimates and their covariance matrix is made possible by a convenient
factorization of the linear model proposed by J. Scargle. The method makes
use of the asymptotic properties of the Fisher information matrix, whose inverse
provides the covariance matrix. The combination of simple analytical methods
to obtain both the maximum-likelihood estimates of the parameters and their
covariance matrix constitutes a new and convenient method for the linear
regression of Poisson-distributed count data, which are of common occurrence
across a variety of fields. A comparison between this maximum-likelihood linear
regression method for Poisson data and two alternative methods often used for
the regression of count data—the ordinary least–square regression and the χ2

regression—is provided with the application of these methods to the analysis of
recent COVID-19 count data. The study also discusses the relative advantages and
disadvantages among these methods for the linear regression of Poisson count
data.
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1. Introduction

Integer-count data based on the Poisson distribution are quite common in real-life

applications, from Poisson’s use of his name-sake distribution for the study of civil and

criminal cases [1], Lord Rutherford’s characterization of the rate of decay of radioactive

isotopes [2] and Clarke’s application to the number of bombs that fell in London during

WorldWar II [3] and to the distribution of low-count political events [4], such as the number

of seats lost by the president’s party in a mid-term election [5] or the study of mutations

in bacteria [6]. The common occurrence of the Poisson distribution lies primarily in its

association with the Poisson process, whereby this distribution describes the probability of

occurrence of events—e.g., in a period of time or for a spatial region—from a process with a

fixed rate of occurrence (e.g., [7]). Among the data analysis methods for Poisson-based count

data, linear regression plays a fundamental role, given that the linear model is arguably the

simplest model that enforces a correlation between the independent variables (or regressors)

and the dependent measured variables.
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The maximum-likelihood estimate of a two-parameter linear

model for integer-valued count data can be accomplished with the

use of the Poisson log-likelihood, also known as the Cash or C

statistic [8]. Despite its common occurrence, it has been elusive

to find a simple analytical expression for the maximum-likelihood

estimates of the parameters for linear Poisson regression (see, e.g.,

Section 2.2 of [9]), even in the case of one independent variable.

This restriction has resulted in a limited use of the maximum-

likelihood method for the regression of count data. This is in

contrast to the simple analytical solutions that are available for

the ordinary least-square (OLS) regression for data with equal

variances (i.e., homoskedastic data) or with different variances (i.e.,

heteroskedastic data), and for the regression with the χ2 statistic,

which is a maximum-likelihood method for heteroskedastic data of

common use for normally-distributed data (e.g., [10]). Such simple

analytical solutions, which also extend to the more general multiple

linear regression with more than two adjustable parameters (e.g.,

see [11] for a review), are now a standard of practice for linear

regression. Their use is in fact so widespread that it is not

uncommon to see χ2-basedmethods of regression even for Poisson

count data for which the method is not justified, or rather it is

known to lead to known biases that have been documented as early

as [12] and more recently by [13] and [14].

Motivated by the need to provide a simple maximum-

likelihood method for the linear regression of count data

(sometimes also referred to as cross-section data) that explicitly

accounts for the Poisson distribution of the measurements, in

[15] we have reported the first semi-analytical solution for the

parameters of linear regression with the Poisson-based C statistic.

In this study, we continue the investigation of the same problem

and report a new analytical solution for the covariance matrix

of the two model parameters, based on the Fisher information

matrix [16]. The combination of the new results presented in

this study and those provided in [15] thus provide a complete

treatment of the maximum-likelihood linear regression with

Poisson-distributed count data. The availability of these new

analytical methods for the linear regression of count data, therefore,

represents a key step toward a wider use of an unbiased method

of regression for such integer-count data, without the need to

resort to either numerical solutions or the use of alternative and

less accurate methods, such as those based on least-squares or the

χ2 statistics.

There are alternatives to the modeling of count data with

the simple one-parameter Poisson distribution considered in this

study. One of the key limitations of the Poisson regression

is the inability to properly model overdispersed data (see, e.g.,

discussion in Chapter 3 of [9]). For such overdispersed data,

other data models such as the negative binomial distribution

can be used [17]. Alternatively, the standard Poisson maximum-

likelihood regression can be modified to a quasi-MLE regression

with empirical variance functions that reflect the overdispersion

(e.g., [18]), that is also used in the generalized linear model (GLM)

literature (e.g., [19]). Nonetheless, the simple linear regression of

Poisson count data is an essential tool for the data analyst, and

the development of simple analytical tools for its application is the

subject of this study.

The article is structured as follows: Section 2 summarizes the

model for the regression with count data, which is described in

full in [15]; Section 3 describes methods to obtain the covariance

matrix, with Section 3.3 describing the properties of the matrix for

the Poisson linear regression under consideration and Section 3.4

presents an alternative method to estimate the covariance matrix

based on the error propagation method. Section 4 provides

an application of the results to recent COVID-19 data with

comparison to the least-squares and χ2 methods. Finally, Section 5

contains a discussion and the conclusions.

2. Model for the regression of count
data with the C statistic

The data under consideration are in the form of independent

pairs of measurements (xi, yi), where yi are Poisson-distributed

variables, for i = 1, . . . ,N, and xi are fixed values of the

independent variable.

2.1. Parameterization of the linear model

A convenient parameterization of the linear model was

proposed by [20], and it is in the form

fS(x) = λ(1+ a(x− xA)), (1)

where xA is a constant that usually coincides with the beginning

of the range of the independent variable x, and λ and a are the

two parameters. This parameterization is thus equivalent to a linear

model with an overall slope λ a, and intercept λ(1 − a xA), yet this

factorization has algebraic andvantages when used in the Poisson

log-likelihood. The parent mean of the Poisson distribution of the

variable yi is then given as

µi = fS(xi)1xi, (2)

where 1xi is the width of the i-th bin of data, which is not required

to be uniform among the measurements.

2.2. Maximum-likelihood regression

Upon minimization of the logarithm of the Poisson likelihood

of the data with model, in [15] we have shown that the method

of maximum likelihood yields two simple equations for the

determination of the parameter estimates, which are summarized

in the following. The first is a analytical relationship between the

two parameters:

λ(a) = M

R

(

1+ a
R

2

) , (3)

where M is the sum of all integer counts yi, and R is the range of

the independent variable, typically chosen to be R = xB − xA. This

equations enables the determination of λ̂ from â. The second is an

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2023.1112937
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Bonamente 10.3389/fams.2023.1112937

equation that must be solved to obtain â, and it is conveniently cast

as the zero of a function F(a):

F(a) = 1+ R

2

(

a− M

g(a)

)

= 0, with g(a) =
N
∑

i=1

yi
(xi − xA)

1+ a(xi − xA)
.

(4)

In general, solution of (4) to obtain the estimate â can be obtained

numerically. The inherently analytical method leading to (3) and

(4) and the need for a numerical solution of the latter constitute

this new semi-analyticalmethod for the linear regression of Poisson

count data. The properties of the two functions F(a) and g(a) are

described in detail in [15], and the key properties are reported in

the following.

2.3. Identification of points of singularity
and zeros of g(a)

It is immediate to identify the n points of singularity of g(a)

and its zeros, using the property that g′(a) < 0 between points

of singularity. Since it is also true that F′(a) < 0 between the

function’s points of singularity, which are the zeros of g(a), and the

n − 1 zeros of F(a) can be easily found because of the continuity

of the function between singularities. In particular, the acceptable

solution—defined as the pair of best-fit parameters (â, λ̂) that gives

a non-negative model throughout its support, as required by the

counting nature of the Poisson distribution—is either the first or

the last zero according to the asymptotic value of the function F(a)

for a → ±∞. The acceptable solution â can therefore be found

with elementary numerical methods from the equation F(a) = 0.

2.4. Applicability of the model to data with
gaps

Both Equations (3) and (4) apply to data with arbitrary bin size,

i.e., the bin size 1xi in (2) need not be uniform. Moreover, when

there are gaps in the data, defined as intervals of the x variable

without measurements, the two equations are modified with the

introduction of a modified range Rm defined as

Rm = R2 − 2SG

R− Rg
(5)

where RG is the sum of the ranges RG,j of all the gaps, and SG is a

constant defined by

SG =
g
∑

j=1

RG,j(xG,j − xA),

where xG,j is the midpoint of the j-th gap. The equations are

modified to1



























F(a) = 1+ aRm

2
− MRm

2g(a)
= 0

λ(a) = M

R

(

1+ a
R

2

)

− (RG + aSG)

.
(6)

Such modifications for the presence of gaps in the data do not

introduce any additional statistical complication to the analysis of

either the maximum-likelihood estimates or the covariance matrix.

Gaps in the data are quite common in data analysis, for example,

when a range of wavelengths in the spectrum of an astronomical

source is unavailable (e.g., because of detector inefficiencies, as in

[21]) or when a time interval for the light-curve of a source is

unobserved (e.g., [22]).

The reason for the parameterization of the linear model

according to (1) is that the two resulting Equations (3) and (4) can

be used to identify the maximum-likelihood parameter estimates

more easily than for the standard parameterization a + b x, which

leads to two coupled non-linear equations instead (as noted, e.g.,

in Chapter 16 of [11] or in [15]). This is the main reason for

the [20] parameterization used in this study. Another advantage

of the present method is that a solution of Equations (3) and (4)

is always possible, whereas the same is not true for the simpler

parameterization (as shown in [11]). Moreover, as will be shown in

the next section, these equations lead to a very convenient analytical

solution for the covariance matrix, which represents the main new

result of this study.

A more general multiple linear regression that includes several

independent variables xj as predictors for a Poisson-distributed

variable y can also be treated in a similar way as the present

case of a simple linear regression. The results of the multiple

linear regression method for Poisson data will be presented in a

separate article.

3. Evaluation of the covariance matrix

3.1. General properties of the covariance
matrix

The maximum-likelihood estimators of the linear model

parameters θ̂ = (λ̂, â) from Poisson count data are normally

distributed but only in the asymptotic limit of a large number of

measurements N (see, e.g., [9, 23]). In this asymptotic limit, the

maximum-likelihood estimators are also unbiased and efficient,

with their variance reaching the Cramér-Rao lower bound (see, e.g.,

[24–26]). Within this limit, it is thus possible to approximate the

covariance or error matrix of the parameters, defined by

ε = E[(θ̂ − θ0)(θ̂ − θ0)
T],

1 This modification is justified in Lemma 6.7 of [15].
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as the inverse of the Fisher information matrix,

ε̂ = −
(

E

[

∂2 lnL

∂θ ∂θ ′

])−1

θ=θ0

= −
(

E

[

N
∑

i=1

∂2 ln f (xi)

∂θ ∂θ ′

])−1

θ=θ0

.

(7)

In this application, f (xi) is the Poisson distribution for the

measurement at a value xi of the indepedendent variable, with a

µi parameter given by (2), and the expectation in (7) is taken with

respect to this distribution.2 In practice, Equation (7) means that

the maximum-likelihood estimates of the parameters of the linear

model converge in distribution to a normal distribution with the

covariance matrix given by (7) or

(θ̂ − θ0)
d→ N(0, ε̂).

Fisher was the first to associate the concept of information with the

second derivative—or curvature—of the logarithm of the likelihood

[16], and similar definitions of information have been derived

from this idea (e.g., [27–29]). Given that the true parameter values

θ0 are unknown, the information matrix is evaluated at θ = θ̂

in recognition of the fact that the maximum-likelihood estimates

are unbiased and thus asymptotically converge to the true-yet-

unknown values (e.g., [16], Chapter IX of [30], or Chapter 33 of

[25]).

3.2. Evaluation of the covariance matrix for
the Poisson linear regression with the
Scargle parameterization

The negative of the logarithm of the likelihood, which is related

to the C statistic by C = −2 lnL + const, can be written as

−lnL = λ(R−RG)+λaS1−M ln λ−
N
∑

i=1

yi ln(1+a(xi−xA)), (8)

where the constant S1 is defined by

S1 =
N
∑

i=1

(xi − xA)1xi =
R2 − 2SG

2
, (9)

and the second equation connects S1 with the constants defined

in Section 2, and it is an immediate consequence of the model

linearity. The first derivatives are















−∂ lnL

∂a
= λS1 − g(a)

−∂ lnL

∂λ
= (R− RG)+ aS1 −

M

λ

(10)

in which, when set to zero, they yield the usual maximum-

likelihood estimates described in Section 2 and in more detail in

2 The notation ∂2 lnL /∂θ ∂θ ′ indicates that diagonal elements are second

derivatives with respect to the same parameter, and o�-diagonal elements

have cross-derivatives with respect to two di�erent parameters. The symbol

T indicates the transpose.

[15]. From these, it is immediate to evaluate the second-order

derivatives and thus obtain

− ∂2 lnL

∂θ ∂θ ′
=







M

λ2
S1

S1 G(a)






(11)

with a new function G defined as

G(a) = −∂g(a)

∂a
=

N
∑

i=1

yi(xi − xA)
2

(1+ a(xi − xA))2
. (12)

The expectation of (11) is immediately calculated with the

consideration that

E[yi]
∣

∣

θ̂
= µi|θ̂ = λ̂(1+ â(xi − xA))1xi,

where 1xi is the size of the i-th bin of data. Given that all terms in

(11) are linear in the measurements yi, the expectation is found as

− E

[

∂2 lnL

∂θ ∂θ ′

]∣

∣

∣

∣

θ̂

=







(R− RG)+ âS1

λ̂
S1

S1 λ̂H(â)






, (13)

with

H(a) =
N
∑

i=1

(xi − xA)
2

1+ a(xi − xA)
1xi (14)

defined as a convenient analytical function to describe one of the

terms of the information matrix. Notice how the bin size appears

explicitly in this function, unlike in the case of the function g(a) in

(4), which is independent of the bin size.

With the simple analytical expression available for the second-

order derivatives of the logarithm of the likelihood (13), it is finally

possible to provide the asymptotic estimate of the covariancematrix

as its inverse as

ε̂ =
[

σ̂ 2
a σ̂ 2

a λ

σ̂ 2
a λ σ̂ 2

λ

]

= 1

1









λ̂H(â) −S1

−S1
(R− RG)+ âS1

λ̂









, (15)

with 1 as the determinant of the matrix (13),

1 =
(

(R− RG)+ âS1
)

H(â)− S21.

This simple analytical form for the covariance matrix of the

maximum-likelihood estimates for linear regression to Poisson data

is the main result of this study. Its properties are analyzed in the

following section.

3.3. Properties of the covariance matrix

Basic results on the sign of the terms in the covariance matrix

(15) are provided in this section. First, it is necessary to recall the

definition of acceptability of the estimates of the model parameters

as values that ensure a non-negative parent Poisson mean, which
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was briefly introduced in Section 2. Acceptable solutions for â and

λ̂ require that the quantities

λ̂(1+ â(xi − xA))

are all non-negative. This results in values of the two parameters

to be found in two possible ranges, namely, (a) for â ≤ −2/1x1,

where λ̂ < 0 or (b) for â > −1/(R − 1xN/2), where λ̂ > 0 (see

Lemma 5.2 of [15] for a proof). In the following, it is assumed that

xA is the beginning of the range of the independent variable x.

Lemma 3.1 (Sign of the determinant 1). The determinant 1

in (15) is a positive definite for all acceptable solutions of the

regression coefficients.

Proof: The determinant can be written as

1 =
N
∑

i=1

(xi − xA)
2

1+ â(xi − xA)
1xi ·

N
∑

i=1

(1+ â(xi − xA))1xi

−
(

N
∑

i=1

(xi − xA)1xi

)2

.

This is in the form

1 =
N
∑

i=1

r2i
si

·
N
∑

i=1

si −
(

N
∑

i=1

ri

)2

with ri = (xi − xA)1xi and si = (1 + â(xi − xA))1xi. Notice that

the terms si are either all positive or all negative, therefore making

it such that one can use |si| in their place in the previous equation,

1 =
N
∑

i=1

r2i
|si|

·
N
∑

i=1

|si| −
(

N
∑

i=1

ri

)2

.

With the substitution ai = ri/
√
|si| and bi =

√
|si|, the

determinant becomes

1 =
N
∑

i=1

a2i ·
N
∑

i=1

b2i −
(

N
∑

i=1

aibi

)2

≥ 0,

according to the Cauchy-Schwartz inequality.

It is also possible to show that the variances of â and λ̂ have the

proper sign, and that the covariance between them is negative.

Lemma 3.2 (Signs of variance and covariance terms). The diagonal

terms in the covariance matrix (15) are positive, and the off-

diagonal terms are negative, for all acceptable solutions of the linear

regression coefficients.

Proof: The term S1 is positive according to its definition (9), and

therefore, the covariance is always negative.

According to (14), the variance of the estimate â is

σ̂ 2
a = λ̂H(â)

1
= λ̂

1

N
∑

i=1

(xi − xA)
2

1+ a(xi − xA)
1xi.

Given the discussion at the beginning of this section, λ̂ and each of

the terms 1 + â(xi − xA) must have the same sign for acceptable

values of the regression coefficients. The variance is, therefore,

always positive, as it should.

For the same reasons, the variance of λ̂ is immediately shown

to have the proper sign:

σ̂ 2
λ = 1

1λ̂

(

(R− RG)+ âS1
)

= 1

1

∑N
i=1(1+ â(xi − xA))1xi

λ̂
≥ 0.

The alternative approach to achieve a non-negative Poisson

mean for all values of the model parameters would be to perform

an exponential transform so that the expectations for the Poisson-

distributed mesurements is, for example, of the type µi =
exp

(

a+ b xi
)

(see, e.g., Section 2.2 of [9]). In practice, this

corresponds to a linear model for the logarithm of the means,

logµi = a + b xi. Although this transformation does indeed

provide a Poisson mean µi that is always non-negative, the model

is no longer linear between x and y, and therefore unsuitable for

those cases where a linear relationship is required, e.g., because

of the physical nature of the two variables. Moreover, even

with this exponential transformation, the maximum-likelihood

method of regression for Poisson data does not have an analytical

solution with the usual parameterization of the linear model

[9].

3.4. An alternative approximation for the
covariance matrix

A different analytical approximation for the covariance matrix

of the coefficients of linear regression can be given using the error

propagationmethod, also known as the deltamethod (e.g., [9, 31]).

The method consists of treating the parameters as a function of

the independent measurements, θj = θj(yk), and approximating

the variances and covariances with the first-order terms of their

Taylor series:

σ̂ 2
θi θj

≃
N
∑

k=1

(

∂θi

∂yk

)
∣

∣

∣

∣

θ̂

(

∂θj

∂yk

)
∣

∣

∣

∣

θ̂

σ 2
k , (16)

where σ 2
k
is an estimate of the variance of the measurement yk. The

regression model described in Section 2 does not lead to best-fit

parameters θ̂ that are described as a function of the measurements

in a closed form. Nonetheless, it is possible to take the derivatives of

both (3) and (4), or more generally (6), with respect to yj to obtain

the derivatives ∂θi/∂yk as follows.

Start with

λR

(

1+ a
R

2

)

− λ(RG + aSG) = M,

which is the most general equation to obtain â in the presence of

gaps in the data and of non-uniform binning. The equation can be

brought in a simpler form as

λ(R− RG)+ aλ

(

R2

2
− SG

)

=
N
∑

i=1

yi,
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leading to

∂λ

∂yj

(

R− RG + a

(

R2

2
− SG

))

+ ∂a

∂yj
λ

(

R2

2
− SG

)

= 1,

and therefore

∂λ

∂yj
=

1− λ

(

R2

2
− SG

)

∂a

∂yj

R− RG + a

(

R2

2
− SG

)
. (17)

Alternatively, this partial derivative can be expressed in terms of a

alone as

∂λ

∂yj
=

R− RG +
(

R2

2
− SG

)(

a−M
∂a

∂yj

)

(

R− RG + a

(

R2

2
− SG

))2
, (18)

where the correction for the presence of gaps in the data is in the

constants RG and SG, both of which become null when the data

spans a continous range between xA and xB, with R = xB − xA.

A similar procedure yields the partial derivatives of a from

(

a+ 2

Rm

)

g(a) = M,

which is the general expression corresponding to the equation

F(a) = 0 needed to find â. The equation can be written in a more

convenient way as

N
∑

i=1

yi
(

2/Rm(xi − xA)− 1
)

1+ a(xi − xA)
=, 0

and from this, taking the derivative with respect to yj,

∂a

∂yj
=

1− 2/Rm(xj − xA)

1+ a(xj − xA)
· 1

g2(a)− 2/RmG(a)
, (19)

with the aid of a new function defined by

g2(a) =
N
∑

i=1

yi(xi − xA)

(1+ a(xi − xA))2
. (20)

The result is proven by noting that, in taking the total differential

of the term in the sum for i = j, there is an extra term due to the

presence of the random variable yj.

The partial derivatives in (18) and (19) can now be used in

(16) to provide an estimate of the covariance matrix from the error

propagation method. The variance σ 2
k
of the measurement yk can

be estimated as either the measurement yk itself or as the best-fit

model µ̂k = E[yk/θ̂] = λ̂(1 + â(xk − xA))1xk. In the application

provided below in Section 4, the parent expectation µ̂k is used for

the numerical result.

TABLE 1 Daily number of events (deaths) reported at the beginning of the

pandemic.

Day Number of events Cumulative

0 0 0

1 1 1

2 2 3

3 3 6

4 4 10

5 2 12

6 0 12

7 3 15

8 4 19

9 3 22

10 4 26

11 5 31

12 6 37

13 6 43

14 7 50

15 10 60

16 8 68

17 23 91

18 26 117

19 45 162

Data are from [32]. Day 0 is 28 February 2020, the day prior to the first reported death, which

occurred on 29 February 2020.

4. Application to COVID-19 data

This section provides an application of the methods described

in this study for the maximum-likelihood linear regression of

Poisson data with the [20] parameterization and a comparison with

other methods of regression commonly used for count data.

The daily number of deaths caused by the COVID-19 pandemic

in the United States provides an example of count data that can be

analyzed with the linear regression model presented in this study.

The data are obtained from the New York Times [32], and they are

reported in Table 1.3 These data follow the data model of Section 2,

whereby the number of events are collected in a time interval with

a uniform size of length 1x = 1 day, and the measurements in the

column “number of events” are independent of one another.

This section presents two sets of linear regressions to these

data with the C statistic to illustrate the novel method of analysis

described in this study and in [15]. It also presents the comparison

with two popular regression methods, the ordinary least squares

regression and the fit based on the χ2 statistic. The comparison

among these methods is used to illustrate the advantages of the

new method of linear regression for Poisson data and to discuss

assumptions and limitations of the different methods.

3 The New York Times archive reports the cumulative number of deaths,

Table 1 also reports the daily counts.
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FIGURE 1

Linear regressions to days 0–9 of the COVID-19 data of Table 1. The
black curves correspond to linear regression with the C statistics,
and the blue curves for the ordinary least-squares regression.

4.1. Fit to days 0–9 with uniform binning

For this application, the data for days 0 (day prior to first case

recorded) through 9 from Table 1 are fit to the linear model, with a

total of N = 10 data points.

4.1.1. The maximum-likelihood parameter
estimates

The best-fit model according to (1) is shown in Figure 1 as

the black line, with the step-wise continuous black line indicating

the best-fit model µ̂i. The two lines intersect because the data are

collected over bins with unit size (1x = 1).

The method of maximum-likelihood regression (see Section 2)

makes use of two functions g(a) and F(a) that are reported in

Figure 2. In this application, there is a total of M = 22 counts

for N = 10 bins and n = 8 unique non-zero bins. According to (4),

this results in n = 8 points of singularity for g(a) marked as green

crosses in Figure 2, and n− 1 = 7 roots or zeros of g(a) marked as

blue dots between consecutive singularities, with g′(a) < 0 in each

interval. The roots of g(a) are also points of singularity for F(a),

whose zero(s) are the estimates of the parameter a. Of the n−2 = 6

solutions, only the last one is acceptable, i.e., it is the only value â

that gives a non-negative model throughout its support, as required

for Poisson counts (see Section 5 of [15]). Having identified the last

singularity of F(a) as the last zero of g(a), the acceptable solution â

is marked as the rightmost green dot in Figure 2.

It is clear that it is not necessary to identify and calculate all the

roots of g(a) in order to determine â but just the last one between

the last two singularities of g(a). The computational burden is

therefore very limited, even for data with a large number of events.

Figure 2 report all points of singularities and the zeros for both g(a)

and F(a) only for illustration purposes.

FIGURE 2

Functions g(a) and F(a) used for the Poisson regression, see
Equation (4).

4.1.2. The covariance matrix
The error matrix evaluated according to (15) is

ε̂ =
[

0.346 −0.665

−0.665 1.044

]

with the estimated standard deviations of the parameters also

reported in the figure for estimated parameters â = 0.63 ± 1.02

and λ̂ = 0.53± 0.66.

4.1.3. The log-likelihood or C statistic
Moreover, the fit statistic is evaluated according to

Cmin =
N
∑

i=1

(µ̂i − yi + yi ln
(

yi/µ̂i

)

), (21)

as reported in Equation 3 of [15]. Hypothesis testing with the C

statistics requires the evaluation of critical values of its distribution,

which is known only in the asymptotic limits of a large number

of measurements N and for large parent means when Cmin is

approximately distributed as χ2(N − m) (see, e.g., [11, 33]), with
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m = 2 adjustable parameters. Although a detailed discussion of

the method of hypothesis testing with the C statistics goes beyond

the scope of this study, it is nonetheless useful to provide a brief

description of its application for this example since hypothesis

testing is an integral part of the overall regression. In the present

example of small Poisson means, the approximation of Cmin with a

χ2(N − m) distribution is not accurate, and in [14], we proposed

an approximate method to estimate critical values that applies also

to the low-mean case. The method consists of using the parent

mean and variance of each term in (21) in place of the mean and

variance of a χ2(1) distribution (which are, respectively, 1 and

2) and use the central limit theorem to ensure an approximately

normal distribution for the statistic. Following this method, the

critical value of the Cmin distribution for N − m = 8 degrees of

freedom is 13.6 [compared to a corresponding critical value of 13.4

for the χ2(8) distribution], and therefore, these data are consistent

with the null hypothesis of a linear model at the 90% confidence

level. Notice how both the parameter estimation and the goodness-

of-fit statistic naturally account for measurements with zero counts,

such as bins 0 and 6.

4.1.4. The confidence band
The gray-hatched band associated with the best-fit model

highlights another strength of the availability of the error matrix

for the C statistic regression, which makes it is possible to estimate

the variance of any function of the model parameters. In particular,

it is often useful to estimate the variance of the expectation of the

fS(x) function for a fixed value of the independent variable x, i.e.,

f̂S(x) = E[fS(x)/x, θ̂] = λ̂(1+ â(1− x)),

or, equivalently, for the expectation of the number of counts in a

bin centered at x and with arbitrary bin size,

ŷx = E[y/x, θ̂] = λ̂(1+ â(1− x))1x,

where x is any value of the regressor variable, not limited to the

values xi that correspond to the measurements. The variance of the

variable ŷx is represented by the variance of y values along a vertical

line for a given x. The range ŷx ± σyx is usually referred to as the

confidence band of the best-fit model and is represented by the gray

hatched region in Figure 1. The variance σ 2
yx

is estimated by the

error-propagation method, with

σ̂ 2
yx

= σ̂ 2
λ

(

∂yx

∂λ

)2
∣

∣

∣

∣

∣

θ̂

+ σ̂ 2
a

(

∂yx

∂a

)2
∣

∣

∣

∣

∣

θ̂

+ 2 σ̂ 2
λ a

(

∂yx

∂λ

)(

∂yx

∂a

)
∣

∣

∣

∣

θ̂

.

The standard error σyx is therefore estimated immediately from the

error matrix ε̂ in (15) and from the analytical form for yx. Similar

condiderations can be extended to any function of the model

parameters. Another useful application is to the overall slope of the

model, which is measured as â · λ̂ = 0.33± 0.15 in this example.

4.2. Comparison to OLS regression

For comparison, Figure 1 also reports the ordinary least-

squares fit to the same data, with uniform weights for all the points,

with the linear model following the usual parameterization f (x) =
a + bx. For completeness, a brief review of the OLS estimator is

provided below.

4.2.1. OLS estimators
The OLS estimators are given by the usual formulas:

θ̂OLS =





â

b̂



 = 1

1





∑N
i=1 x

2
i ·
∑N

i=1 yi −
∑N

i=1 xi ·
∑N

i=1 xi yi

N
∑N

i=1 xi yi −
∑N

i=1 xi ·
∑N

i=1 yi





(22)

with

1 = N

N
∑

i=1

x2i −
(

N
∑

i=1

xi

)2

.

The OLS regression is known to provide an unbiased estimate

of the parameters, regardless of the parent distribution of the

measurements, due to the linearity of the model (see, e.g., [9, 23]).

As a result, Figure 1 shows that the C statistics and the OLS linear

regressions provide qualitatively similar best-fit values.

4.2.2. Estimate of the covariance matrix for OLS
Under the assumption of a normal distribution with equal

variance for all the measurements, the OLS method is equivalent to

the maximum-likelihood method, and the value for the common

variance is required to estimate the covariance matrix (e.g., see

Chapter 11 of [11]). For measurements that are not normally

distributed, such as the data model presented in this study and

for this specific data example, it is still possible to provide an

estimate of the parameter variances for the OLS estimators, if the

OLS estimator are interpreted as a function of the measurements

yi, without requiring homoskedasticity or normality. In this case,

the linear OLS is no longer a maximum-likelihood estimator, but it

retains the convenient property of unbiasedness.

Using the assumption that yi ∼ Poisson(θ0 + xiθ1) and that the

measurements are independent, it follows that Var(yi) = θ0 + xiθ1,

and therefore

Var(θ̂OLS) ≃
1

12









∑N
i=1

(

∑N
i=1 x

2
i − xi

∑N
i=1 xi

)2
· (θ0 + xiθ1)

∑N
i=1

(

Nxi −
∑N

i=1 xi

)2
· (θ0 + xiθ1)









(23)

Naturally, since the true parameters are unknown, one can only

use these variances by substituting θ̂ for θ in the right-hand side

of (23). This simple result is due to the linearity of the model, and

the independence of the measurements.

It is necessary to emphasize that the approximate variances

derived in (23) are an ad-hoc estimate, and they do differ from the

standard OLS error matrix4

εOLS =
σ 2

1





∑N
i=1 x

2
i −

∑N
i=1 xi

. . . N



 (24)

4 See, e.g., Equation (11.19) of [11] or Example 19.6 of [34].
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where σ 2 is the common (and unknown) variance. In the usual

case of the OLS with equal variances, one would normally proceed

with the estimation of σ 2 via the sum of square residuals, divided

by N − k,

σ̂ 2 = 1

N − k

N
∑

i=1

(yi − (â+ b̂ xi))
2 (25)

where k = 2 corresponds to the two adjustable parameters of

the model. But such estimator would be biases for the case of

heteroskedastic data and, therefore, not meaningful for this Poisson

regression. This is the reason for the development of the ad-hoc

approximation (23).

Moreover, an estimate for the covariance of the linear OLS

estimators can be obtained by the usual error propagation

method, namely,

σ̂ 2
ab =

N
∑

j=1

∂ â

∂yj

∂ b̂

∂yj
σ 2
j ,

where σ 2
j is the variance of the j-thmeasurement, in this application

assumed to be Poisson-distributed. Notice that this method can also

be used to obtain the error matrix (24) (e.g., see Section 11.3 of

[11]). The result is

σ̂ 2
ab =

1

12







N

N
∑

i=1

x2i +
(

N
∑

i=1

xi

)2




N
∑

j=1

xjσ
2
j

−
N
∑

i=1

xi





N
∑

i=1

x2i

N
∑

j=1

σ 2
j + N

N
∑

j=1

x2j σ
2
j







 , (26)

which becomes the same as in (24) under the assumption of

homoskedasticity. In (26), however, the variances to be used are

the non-uniform Poisson-estimated σ 2
j = â + xjb̂. In summary,

it is still possible to estimate a covariance matrix for the linear OLS

in place of the maximum-likelihood and Poisson-based (15). These

estimates, (23) and (26), are obtained by a post facto use of the

Poisson distribution in the usual OLS regression estimators, which

in general do not require the specification of a parent distribution.

The data of Figure 1 yield linear OLS parameters of a = 0.93±0.80

and b = 0.25 ± 0.16 for a covariance σ̂ 2
ab

= −0.11, using (23) and

(26). The confidence band according to these errors is reported as

the blue hatched area in Figure 1.

For the purpose of comparison, the parameter uncertainties

for the standard OLS regression according to (24) and (25) are

also calculated. First, from the OLS best-fit parameters, Equation

(25) yields an estimated common data variance of σ̂ 2 = 1.78,

and accordingly, the OLS error matrix yields errors that result in

a = 0.93± 0.85 and b = 0.25± 0.15. In this application, the errors

calculated for this “standard” OLS model is similar to those of the

“modified” OLS model (a = 0.93 ± 0.80, b = 0.25 ± 0.16) and

also to those with the “proper” Poisson regression of Section 4.1

(â = 0.63 ± 1.02 and λ̂ = 0.53 ± 0.66, with overall slope â · λ̂ =
0.33 ± 0.15). This chance agreement is in part the result of the fact

that the Poisson data are consistent with the model, as determined

by the analysis of the C statistics in Section 4.1.3. This agreement,

however, is not guaranteed in every case, and the standard OLS

regression for heteroskedastic data is not recommended (see, e.g.,

the discussion in Section 3.1 of the textbook by [9]).

Finally, it is worth noticing that a weighted least-squares

(WLS) linear regression, with weights equal to the variances of the

measurements5, is not recommended in this case. In fact, the WLS

estimators depend on the unknown (and unequal) variances, and

therefore, it is not possible to determine a priori a best-fit WLS

model from which the Poisson variances for the error analysis is

inferred, as was done in (23).

4.2.3. Goodness-of-fit analysis for OLS regression
Another difference between the maximum-likelihood C

statistics regression and the OLS regression is with regard to

goodness-of-fit testing. When the common variance is unavailable,

as is generally the case for the OLS regression, the test statistics

often used is

t = b̂

σ̂ 2
b

∼ t(N − 2), (27)

where

σ̂ 2
b = (1− r2)

N − 2
·
∑N

i=1(yi − y)2
∑N

i=1(xi − x)2
(28)

is the sample variance of the slope b, and r is the linear correlation

coefficient. Notice that this is a non-parametric estimate of the

variance of the slope b, in that no assumptions on the distribution

of the data are required. The linear correlation coefficient is defined

by r2 = b b′, where b is the usual slope of the linear regression of

Y given X, and b′ is the slope of the linear regression of X given Y

(see, e.g., Chapter 14 of [11]). This variance differs from that in (23),

where the parent distribution of the measurement is used. From the

observations that a = y− b x and that (1− r2)
∑

(yi − y)2/(N − 2)

is the non-parametric unbiased estimator of the sample variance

of y, (28) yields a non-parametric estimate of the variance of the

parameter a of the regression as

σ̂ 2
a = σ̂ 2

b

(

1

N

N
∑

i=1

(xi − x)2 + x2

)

, (29)

(see, e.g., Sections 11.5 and 14.3 of [11]).6 The test statistics (27)

assumes that the parent slope is null (b = 0), and it is distributed

like a Student’s t distribution with N − 2 degrees of freedom, and

it is sometimes referred to as the Wald statistics, after [35]. For

these data, the linear correlation coefficient is r2 = 0.273 for a

value of t = 1.73, corresponding to a p-value of 0.12. Therefore, in

the case of the OLS regression, the t-statistic provides an alternate

non-parametric means to test the null hypothesis that the data are

uncorrelated or with b = 0.

5 The weighted least-squares regression is discussed, for example, in

heteroskedastic 19.17 of [34].

6 These formulas are implemented in the

scipy.stats.linregress software.
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FIGURE 3

Linear regressions to days 2–17 of the COVID-19 data of Table 1,
with a gap in the data, and non-uniform binning. The black curves
correspond to linear regression with the Poisson-based C statistics,
the blue curves corresponds to the ordinary least-squares
regression, and the red curves corresponds to the χ2 regression that
assumes heteroskedastic errors reported as red error bars.

4.3. Fit to days 2–16 with a gap in the data,
and non-uniform binning

In this example, the data for days 0 and 1 were ignored, the data

for days 2–3 and 4–5 were combined into bins of size 1x = 2 days,

the data for day 6 (where no events were reported) were ignored,

and the datapoints for days 7–16 were kept with the original

binning of1x = 1 days, for a total ofN = 12measurements. These

choices were simply made for illustration purposes. Specifically, it

is generally not advisable to ignore a bin where no counts were

recorded since the non-detection is actually positive information;

a case with no counts-in-bin was provided in the previous example.

Moreover the linear regression—and any non-linear regression as

well—is sensitive to the choice of bin size. The choice of bin sizes

must be dictated by an understanding of the data at hand and of the

scientific goals of the regression.

4.3.1. Poisson regression
The results of the fit to these data are shown in Figure 3, for

best-fit values of â = 0.31 ± 0.24, λ = 1.43 ± 0.85, and an error

matrix of

ε̂ =
[

0.716 −0.202

−0.202 0.060

]

.

It is illustrative to compare this estimate to the one from the

error propagation method described in Section 3.4, which yields an

estimated error matrix of

ε̂ep =
[

0.687 −0.200

−0.200 0.061

]

,

where the variance of themeasurements yk were approximated with

the estimated parent means µ̂k. This covariance matrix is nearly

identical to the one based on the information matrix, and the small

differences between ε̂ and ε̂ep provide an example of the agreement

between the two estimates. Figure 3 also shows the confidence band

for the Poisson regression as the gray hatched area.

4.3.2. Comparison with OLS and χ
2 regression

For comparison, a maximum-likelihood regression using the

χ2 statistic was also performed for this example, and the results

are shown as the red line and confidence band. The ordinary

least-squares regression is also shown in blue. For the method of

regression that minimizes the χ2 statistic, the data are assumed

to be normally-distributed, with variances equal to the number of

counts in each bin. Given the variable bin size, the continuous lines,

therefore, represent a density, i.e., the number of counts per unit

interval of the x variable, which in this case it is time in units of

days. This is reflected in the relationship between the function (1)

in units of counts per unit y, and the parent mean in (2) in units of

pure counts, which are related by the bin size 1xi. Accordingly, in

the χ2 fit with non-uniform binning, the fit statistic is

χ2 =
N
∑

i=1

(

yi − µi

σ̂i

)2

where µi is given by (2) with a bin size 1xi = 2 for i = 1, 2 and

1xi = 1 for the other bins. Equivalently, the χ2 regression can

be performed directly to the function (1) (or to the linear model

with the standard parameterization a + b x) by re-scaling both

the measurements yi and the errors σ̂i to counts per unit y since

this is the usual assumption in standard software that is used for

maximum-likelihood regression for normal data.7 Following this

method, the first two data points have a count rate of one half of the

values reported by the black dots, and the ±σ̂ error bars for the χ2

regression are illustrated as red vertical lines; those error bars have

no meaning for the C statistic or the OLS regressions.

The overall slope of the C statistic regression line is aλ =
0.44± 0.11, while for the χ2 regression it is 0.39± 0.13, and for the

least-squares fit, it is 0.50 ± 0.08. The differences, albeit relatively

small in this application, are the result of the different assumptions

used in the modeling of the data, namely, the choice of Poisson vs.

normal distribution for the number of counts in each bin.

5. Discussion and conclusion

This study has reviewed the [15] maximum-likelihood method

of linear regression for Poisson count data and has presented an

analytical method for the calculation of the covariance matrix for

the parameters of a linear model. For this method of regression,

it is found that the parameterization of the model of Equation 1,

proposed by [20], is quite convenient due to its factorization of the

two parameters, which results in convenient algebraic properties

for the logarithm of the Poisson likelihood.

The method to obtain the covariance matrix is based on

the Fisher information matrix, whose inverse approximates the

7 For example, linregress or curve_fit in the scipy libraries. Such

rescaling of units preserves the statistical properties of the measurements.
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covariance matrix in the asymptotic limit of a large number of

measurement. The key result of this study is that it is possible

to obtain a simple analytical expression for the covariance matrix

(Equation 15) that can be used for the Poisson linear regression.

This new result, together with the maximum-likelihood estimates

of the parameters presented in [15], offers a simple and accurate

method to perform linear regression on a variety of Poisson-

distributed count data, including data with non-uniform binning

and with the presence of gaps in the coverage of the independent

variable. This method of regression for Poisson-distributed count

data is, therefore, available for use in a variety of data applications,

such as the one in the biomedical field presented in Section 4.

The study has also shown that an alternative method for the

estimation of the covariance metrix, based on the error propagation

or delta method, and also provides a simple analytical estimate

that is in general good agreement with the method based on

the information matrix. The main limitation in the use of the

covariance matrix estimated from the information matrix (as well

as that from the error propagation method) is that it applies only in

the limit of a large number of measurements, where the maximum-

likelihood estimates of the parameters are normally-distributed

(e.g., [16, 25]). In this limit, the variance of the parameters and

the covariance can be used for hypothesis testing assuming normal

distribution of the parameters.

The maximum-likelihood linear regression to Poisson-

distributed count data, presented in this study and in [15], have

the advantages of being unbiased and asymptotically efficient,

in the sense that, in the asymptotic limit of a large number of

measurements, the estimators of the linear model parameters

have the minimum variance bound according to the Cramér-Rao

theorem ([24, 25], see also [34, 36]). Given that maximum-

likelihood estimators are also known to be consistent in general

(see, e.g., Chapter 18 of [34]), this method of regression has

very desirable properties for the estimation of the linear model

parameters. On the contrary, the ordinary least-squares regression

does retain the convenient property of unbiasedness, even for

the type of heteroskedastic variances that apply to these Poisson-

distributed data. The OLS, however, is not guaranteed to be

efficient, in the sense that the variances are in general larger than

those of the maximum-likelihood method, and they can also be

biased (e.g., [34, 37]). As a result, the OLS should be viewed as

a less accurate method for the regression of Poisson-distributed

count data.

Two other methods of linear regression also discussed in

this study, the weighted least-squares and the χ2 methods, suffer

from more fundamental shortcomings when applied to integer-

count Poisson data. In both cases, it is necessary to know a

priori the unequal variances of the data, in order to proceed

with the estimation, and this information is simply not available.

In particular, the χ2 method is often applied by making the

assumption that the variances are equal to the square root of the

counts, de facto assuming that the data are normally distributed

and with variances equal to the measured counts. Although the

Poisson distribution does converge to a normal distribution in the

limit of a large number of counts (e.g., see Section 3 of [11]), the

fact that the variance is approximated with the measured counts

leads to a bias that remains even in the case of large-count data

(e.g., [13, 14]). It is therefore not appropriate to use either of

these two methods for the regression of Poisson-distributed count

data.
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