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Symmetry-breaking bifurcations
for compartmental reaction
kinetics coupled by two bulk
di�using species with comparable
di�usivities in 2-D

Merlin Pelz and Michael J. Ward*

Department of Mathematics, University of British Columbia, Vancouver, BC, Canada

For a 2-D coupled PDE-ODE bulk-cell model, we investigate symmetry-breaking

bifurcations that can emerge when two bulk di�using species are coupled to two-

component nonlinear intracellular reactions that are restricted to occur only within

a disjoint collection of small circular compartments, or “cells,” of a common small

radius that are confined in a bounded 2-D domain. Outside of the union of these cells,

the two bulk species with comparable di�usivities and bulk degradation rates di�use

and globally couple the spatially segregated intracellular reactions through Robin

boundary conditions across the cell boundaries, which depend on certain membrane

reaction rates. In the singular limit of a small common cell radius, we construct steady-

state solutions for the bulk-cell model and formulate a nonlinear matrix eigenvalue

problem that determines the linear stability properties of the steady-states. For a

certain spatial arrangement of cells for which the steady-state and linear stability

analysis become highly tractable, we construct a symmetric steady-state solution

where the steady-states of the intracellular species are the same for each cell. As

regulated by the ratio of the membrane reaction rates on the cell boundaries, we

show for various specific prototypical intracellular reactions, and for a specific two-

cell arrangement, that our 2-D coupled PDE-ODE model admits symmetry-breaking

bifurcations from this symmetric steady-state, leading to linearly stable asymmetric

patterns, even when the bulk di�using species have comparable or possibly equal

di�usivities. Overall, our analysis shows that symmetry-breaking bifurcations can

occur without the large di�usivity ratio requirement for the bulk di�using species

as is well-known from a Turing stability analysis applied to a spatially uniform

steady-state for typical two-component activator-inhibitor systems. Instead, for our

theoretical compartmental-reaction di�usion bulk-cell model, our analysis shows

that the emergence of stable asymmetric steady-states can be controlled by the

ratio of the membrane reaction rates for the two species. Bifurcation theoretic results

for symmetric and asymmetric steady-state patterns obtained from our asymptotic

theory are confirmed with full numerical PDE simulations.

KEYWORDS

bulk di�usion, symmetry-breaking, nonlinearmatrix eigenvalue problem,membrane reaction

rate ration, Turing stability analysis

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2023.1110497
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2023.1110497&domain=pdf&date_stamp=2023-02-09
mailto:nredleaf22@gmail.com
https://doi.org/10.3389/fams.2023.1110497
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2023.1110497/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Pelz and Ward 10.3389/fams.2023.1110497

1. Introduction

A central issue in many chemical and biological systems that

involve the coupling of diffusive processes and nonlinear reactions is

to determine conditions for which spatio-temporal patterns can form

from either a patternless or a pre-patterned state. In a pioneering

theoretical study, Turing [1] established that diffusing morphogens

with different diffusivities can destablilize a spatially uniform and

stable steady-state of the nonlinear reaction kinetics. As applied to

two-component activator-inhibitor reaction-diffusion (RD) systems,

this Turing stability analysis shows that a sufficiently large diffusivity

ratio is typically needed to obtain spatial pattern formation from

the destabilization of a spatially uniform state, unless the nonlinear

reaction kinetics are finely tuned (cf. Pearson and Horsthemke [2],

Baker et al. [3], and Diambra et al. [4]). For certain chemical

systems, this large diffusivity ratio requirement needed for pattern

formation may be feasible to achieve in situations where one of the

chemical species can bind to a substrate, which has the consequence

of reducing the effective diffusivity of this species (cf. Lengyel

and Epstein [5] and Dulos et al. [6]). However, in many cellular

processes related to developmental biology and morphogenesis,

the theoretical large diffusivity ratio threshold needed for freely

diffusing morphogens to create symmetry-breaking patterns is

often unrealistic as different small molecules typically have very

comparable diffusivities (cf. Müller et al. [7] and Rauch and Millonas

[8]). In Müller et al. [7], various modifications of the simple “freely

diffusing” morphogen paradigm such as facilitated diffusion, transient

binding, immobilization and transcytosis, among others, have been

postulated to play a central role in specific applications of diffusive

transport at the cellular level. Qualitatively, the postulated overall

effect of these mechanisms is to modify an effective diffusivity ratio

of the morphogens, which can, therefore, lead to the emergence

of spatial patterns and symmetry-breaking behavior in cellular

processes related to developmental biology and early morphogenesis

(cf. Sozen et al. [9]).

As a result, one key long-standing theoretical question in RD

theory is how to modify the two-component RD paradigm so

as to robustly generate stable spatial patterns from a spatially

homogeneous state when the time scales for diffusion of the

interacting species are comparable. By including an additional non-

diffusible component, which roughly models either membrane-

bound proteins or an immobile chemically active substrate, it has

been shown (cf. Pearson [10], Klika et al. [11], and Korvasová et al.

[12]) that this “2+1” extension of the two-component RD framework

can yield stable spatial patterns even when the two diffusible species

have a common diffusivity. In another direction, which is based

on graph-theoretic properties associated with nonlinear reactions

between multiple species that are either immobile or freely diffusing,

it has been shown that with certain activating and inhibiting feedback

relations in the chemical kinetics, spatial patterns can form without

the large diffusivity ratio requirement (cf. Marcon et al. [13], Diego

et al. [14], and Landge et al. [15]). More recently, the authors

in Haas and Goldstein [16] have revealed that in random, multi-

component, RD systems the required diffusivity threshold for pattern

formation typically decreases as the number of interacting and

diffusing species increases.

From a theoretical viewpoint, in specific applications where a

large diffusivity ratio is a realistic assumption, it has been shown both

analytically and from numerical simulations (cf. Vanag and Epstein

[17], Ward [18], Halatek et al. [19], and Halatek and Frey [20]) that

two-component RD systems admit a wide range of spatially localized

patterns and instabilities that occur in the “far-from-equilibrium”

regime, far from where a Turing linear stability analysis will provide

any insight into pattern-forming properties.

The goal of this paper is to formulate and quantitatively analyze a

new theoretical model in a 2-D setting that robustly leads to pattern

formation even when the two diffusing species have a comparable

or equal diffusivity. More specifically, we analyze symmetry-breaking

pattern formation for a 2-D PDE-ODE bulk-cell RD model in which

spatially segregated localized reaction compartments, referred to as

“cells,” are coupled to a two-component linear bulk diffusion field

with constant bulk degradation rates. In the cells, which are assumed

to have a common radius that is small compared to the domain

length-scale and the inter-cell distances, two-component intracellular

activator-inhibitor reaction kinetics are specified. The intracelluar

species undergo an exchange with the two bulk species across the

cell boundaries, as mediated by membrane reaction rates in a Robin

boundary condition that is specified on each cell boundary. The

two extracellular diffusing bulk species, with comparable diffusivities

and degradation rates, provide the mechanism that couples the

nonlinear intracellular reactions that occur in the union of the

spatially segregated cells. We refer to this modeling framework as a

compartmental-reaction diffusion system.

The numerical implementation of our theoretical analysis for

this model for various specific intracellular reaction kinetics reveals

that it is the ratio of the reaction rate of the inhibitor component

to that of the activator component on the compartment boundaries

that plays a central role in the initiation of symmetry-breaking

bifurcations of a symmetric steady-state. The magnitude of this ratio

ultimately controls whether linearly stable asymmetric steady-states

for the bulk-cell model can occur even when the bulk diffusivities

are comparable or equal. The bifurcation threshold condition for

this key membrane reaction rate ratio parameter is distinct from

the usual large diffusivity ratio threshold that is required for pattern

formation from a spatially uniform state for typical two-component

activator-inhibitor RD systems (cf. Maini et al. [21] and Krause

et al. [22]). We emphasize that our linear stability analysis predicting

symmetry-breaking bifurcations for the bulk-cell model, as regulated

by the membrane reaction rate ratio, is significantly more challenging

than performing a simple Turing stability analysis [1] since it is

based on the linearization of the bulk-cell model around a spatially

non-uniform symmetric steady-state. In our previous 1-D study

[23], where nonlinear reactions were restricted either to domain

boundaries or at lattice site on a 1-D periodic chain, it has been

shown for some specific nonlinear kinetics that symmetry-breaking

bifurcations can occur from a symmetric steady-state when the ratio

of membrane reaction rates exceeds a threshold.

We remark that our 2-D study, and related 1-D analysis in Pelz

and Ward [23], is largely inspired by the agent-based numerical

computations in Rauch and Millonas [8] where it was shown

that nonlinear kinetic reactions restricted to lattice sites on a 2-D

lattice can generate stable Turing-type spatial patterns when coupled

through a spatially discretized two-component bulk diffusion field in

which the two diffusible species have a comparable diffusivity.

In a broader context, the study of novel pattern-forming

properties associated with compartmentalized reactions interacting
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through a passive bulk diffusion field originates from the 1-D

analysis in Gomez-Marin et al. [24] for the FitzHugh-Nagumo

model and the bulk-membrane analysis of Levine and Rappel

[25] in disk-shaped domains. In a 1-D context, and with one

bulk diffusing species, this compartmental-reaction diffusion system

modeling paradigm has been shown to lead to triggered oscillatory

instabilities for various reaction kinetics involving conditional

oscillators (cf. Gou et al. [26] Gou and Ward [27], and Gou et

al. [28]). Amplitude equations characterizing the local branching

behavior for these triggered oscillations have been derived in

Paquin-Lefebvre et al. [29] using a weakly nonlinear analysis.

Applications of this framework have been used to model intracellular

polarization and oscillations in fission yeast (cf. Xu and Bressloff

[30] and Xu and Jilkine [31]). In a 2-D domain, similar bulk-

cell models, but with only one diffusing bulk species, have

been formulated and used to model quorum-sensing behavior

(cf. Gou and Ward [32], Iyaniwura and Ward [33], Ridgway

et al. [34], and Gomez et al. [35]). With regards to bulk-

membrane RD models in a multi-spatial dimensional context,

where nonlinear kinetics are restricted to the membrane, the

associated pattern-forming properties have been studied both

theoretically (cf. Rätz [36], Elliott et al. [37], Madzvamuse et al.

[38], Madzvamuse and Chung [39], and Paquin-Lefebvre et al.

[40]), and for some specific biological applications (cf. Cusseddu

et al. [41], Rätz and Röger [42, 43], Stolerman et al. [44], and

Paquin-Lefebvre et al. [45]).

The outline of this paper is as follows. In Section 2 we formulate

our bulk-cell model and use a singular perturbation approach in the

limit of a small common cell radius to derive a nonlinear algebraic

system characterizing all steady-state solutions of the model. In

Section 3 we show that the discrete eigenvalues of the linearization of

the bulk-cell model around a steady-state solution are determined by

a root-finding condition on a nonlinear matrix eigenvalue problem.

For a certain type of spatial configuration of the cells, the bulk-

cell model is shown to admit a symmetric steady-state solution in

which the steady-states of the intracellular reactions are identical. The

possibility of symmetry-breaking bifurcations along this symmetric

steady-state solution branch, leading to the existence of linearly

stable asymmetric patterns, are analyzed by applying solution path

continuation software to our bifurcation-theoretic analytical results.

For a certain two-cell configuration in the unit disk, and for either

Rauch and Millonas [8], Gierer and Meinhardt [46], or FitzHugh

and Nagumo [24] intracellular reactions, we show in Section 4 that

it is the magnitude of the ratio of the reaction rates for the two

bulk species on the cell membranes that controls whether linearly

stable asymmetric patterns can bifurcate from the symmetric steady-

state. Our theoretical predictions of symmetry-breaking behavior,

leading to stable asymmetric steady-states even when the two bulk

species have comparable or equal diffusivities, are confirmed from

full PDE numerical simulations. For a closely-spaced arrangement

of cells as is typical in biological tissues, and where our asymptotic

theory no longer applies, the PDE numerical simulations shown

in Section 4.4 illustrate that symmetry-breaking bifurcations can

still be controlled by the reaction rate ratio on the cell boundaries.

In particular, our numerical results suggest that such bifurcations

occur with a smaller membrane reaction-rate ratio than for the

situation where the cells are more spatially segregated. In Section 5

we discuss our theoretical results in a wider context, and suggest a

few open directions.

2. Compartmental-reaction di�usion
system in 2-D

2.1. Model formulation

We consider a bounded 2-D domain with length scale L, denoted

by �L ⊂ R
2, that contains m disconnected circular compartments

�L
j , for j ∈ {1, ...,m}, referred to as “cells”. We will assume that

these cells have a common radius that is small in comparison with

the length scale L of the domain. The bulk or extracellular medium is

the region�L\
⋃m

j=1�
L
j .

In the bulk we assume that there are two extracellularly diffusing

and degrading chemical species with concentrations U and V .

These messenger molecules are synthesized on the “cell” membranes

through the interaction with two corresponding intracellular species

Mj andHj. With the molecule counts U,V,Mj andHj corresponding

to respectively U,V ,Mj and Hj, the chemical equations are

U
[βU ]
⇋

[βU ]
Mj , V

[βV ]
⇋

[βV ]
Hj . (2.1)

Here we made the assumption that the exponential forward reaction

rates equal the backward reaction rates and that all compartments

are identical in that they have common membrane reaction rates.

The intra-compartmental species, in turn, are produced by certain

reaction kinetics, denoted by f (M,H) and g(M,H), that are assumed

to be identical in each compartment.

More precisely, in dimensional variables, our bulk-cell coupled

model is

bulk














∂TU = DU 1XU − κU U , X ∈ �L\
⋃m

j=1�
L
j ,

∂TV = DV 1XV − κV V , X ∈ �L\
⋃m

j=1�
L
j ,

∂ñXU = ∂ñXV = 0 , X ∈ ∂�L , (Neumann condition)

(2.2a)

reaction fluxes
{

DU ∂nj,XU = βU,1 U − βU,2 Mj , X ∈ ∂�L
j , (Robin condition)

DV ∂nj,XV = βV ,1 V − βV ,2 Hj , X ∈ ∂�L
j ,

(2.2b)

compartments


















d
dT

Mj = κR µc f
(

1
µc
Mj,

1
µc
Hj

)

+
∫

∂�L
j
(βU,1 U − βU,2 Mj) dSX ,

d
dT

Hj = κR µc g
(

1
µc
Mj,

1
µc
Hj

)

+
∫

∂�L
j
(βV ,1 V − βV ,2 Hj) dSX

(reaction kinetics) ,

(2.2c)

with j ∈ {1, ...,m} and where nj,X is the outward unit normal vector to

�L
j while ñX is the outward unit normal vector to�L. The diffusivities

(diffusion coefficients) for U and V are DU and DV , and U and V

are degrading in the bulk with exponential rate constants κU and

κV , respectively. The exponential reaction rates on the compartment

boundaries are βU and βV with corresponding rates βU,1 and βV ,1 per

area times length and βU,2 and βV ,2 per length and time units, and µc

is a normalizing constant for the intracellular species. Lastly, κR is a

dimensional reaction rate for the intracellular reactions.
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FIGURE 1

A 2-D bounded domain with four di�usion-coupled circular cells of a

common radius. In the jth cell, activator-inhibitor reaction kinetics

occur for the activator µj and inhibitor ηj. Across the cell membrane,

there is an exchange between the intracellular and bulk species. In the

bulk, u and v di�use and undergo degradation. The cells are assumed

to be small but are drawn larger here for illustration only.

In Appendix A we non-dimensionalize (Equation 2.2) to obtain

the dimensionless PDE-ODE model

bulk














∂tu = Du1u− σuu , x ∈ �\
⋃m

j=1�j ,

∂tv = Dv1v− σvv , x ∈ �\
⋃m

j=1�j ,

∂ñu = ∂ñv = 0 , x ∈ ∂� ,

(2.3a)

reaction fluxes
{

εDu∂nju = du1u− du2µj , x ∈ ∂�j ,

εDv∂njv = dv1v− dv2ηj , x ∈ ∂�j ,
(2.3b)

compartments






dµj

dt
= f (µj, ηj)+ 1

ε

∫

∂�j
(du1u− du2µj) dS ,

dηj
dt

= g(µj, ηj)+ 1
ε

∫

∂�j
(dv1v− dv2ηj) dS ,

(2.3c)

for j ∈ {1, . . . ,m}. Here n and ñ are the outward unit normal

vectors to �j and �, respectively, and we have dropped the label

“x" for 1 and the outward unit normal vectors. In Equation (2.3),

the compartments are disks of a common radius ε ≪ 1 centered at

xj ∈ �, i.e. �j ≡ {x | |x− xj| ≤ ε}. We will refer to du1 , d
v
1, d

u
2 , and

dv2 as dimensionless membrane reaction rates. An illustration of the

bulk-cell model is shown in Figure 1.

We will use strong localized perturbation theory [18] to construct

the steady-state solutions of Equation (2.3) and to analyze their linear

stability properties in the asymptotic limit ε ≪ 1 and under the

assumption that m circular cells are well-separated in the sense that

the cell centers satisfy |xi − xj| = O(1), for i, j ∈ {1, ...,m} and i 6= j.

2.2. Asymptotic construction of the
steady-states

Our main goal is to construct a symmetric steady-state solution

for Equation (2.3) in which the concentration of each species is

the same inside and in the local vicinity of each compartment.

We will show below that even when the bulk diffusing species

have comparable diffusivities this symmetric steady-state is unstable

to symmetry-breaking perturbations that occur beyond a pitchfork

bifurcation point associated with the membrane reaction rate ratio

ρ ≡ dv1/d
u
1 = dv2/d

u
2 . This leads to the existence of linearly stable

asymmetric steady-state solutions to Equation (2.3).

In the absence of diffusion, the ODE system for the intra-

compartmental species is decoupled from the bulk medium and

reduces to

µ̇(t) = f (µ, η) , η̇(t) = g(µ, η) . (2.4)

Let (µe, ηe) be an equilibrium point for Equation (2.4) and label

F(µ, η) ≡ (f (µ, η), g(µ, η)). For a specific parameter set, the linear

stability property of the equilibrium state is characterized by whether

the eigenvalues λ of the Jacobian matrix DF(µe, ηe) have positive

(unstable, exponentially growing perturbations) or negative (stable,

exponentially decaying perturbations) real parts Re(λ). However,

when there is bulk diffusion and the compartments are coupled

through the bulk, the steady-state solution in the compartments

depends on the bulk diffusivities, the membrane reaction rates, and

the spatial configuration of the cells.

We now use the method of matched asymptotic expansions to

construct steady-state solutions for Equation (2.3). In the jth inner

region, defined within anO(ε) neighborhood of the boundary of the

jth cell, we introduce the local variables yj = ε−1(x − xj), uj(x) =
u(εyj + xj), and vj(x) = v(εyj + xj), where pj ≡ |yj|. Upon writing

the steady-state of Equation (2.3a) in terms of the inner variables, for

ε → 0 the steady-state problem in the jth inner region is 1uj = 0

and 1vj = 0, for pj ≥ 1, subject to Du ∂pjuj = du1uj − du2µj and

Dv ∂pjvj = dv1vj − dv2ηj on pj = 1. The radially symmetric solutions to

these problems are

uj(pj) = Au
j log pj +

1

du1

(

Du A
u
j + du2µj

)

,

vj(pj) = Av
j log pj +

1

dv1

(

Dv A
v
j + dv2ηj

)

, (2.5)

for j ∈ {1, . . . ,m}, where Au
j and Av

j for j = 1, . . . ,m are constants to

be determined. Upon substituting (Equation 2.5) into the steady-state

problem of Equation (2.3c), we obtain for the jth cell that

f (µj, ηj)+ 2πDu A
u
j = 0 , g(µj, ηj)+ 2πDv A

v
j = 0 ,

j ∈ {1, . . . ,m} . (2.6)

Next, we must determine Au
j and Av

j by matching the far-field

behavior of the inner solutions (Equation 2.5) to the outer solutions

defined in the bulk region.

In the limit ε → 0, in the bulk region the compartments formally

shrink to points and from the far-field behavior of Equation (2.5),

when written in outer variables, we obtain that the steady-state bulk

species U satisfies

1U − ω2
u U = 0 , x ∈ � \ {x1, . . . , xm} ; ∂nU = 0, x ∈ ∂� ;

(2.7a)

U ∼ Au
j log |x− xj| +

Au
j

ν
+

1

du1
(DuA

u
j + du2µj) ,

as x → xj , j ∈ {1, . . . ,m} , (2.7b)
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where ν ≡ −1/ log ε ≪ 1 and ωu ≡
√
σu/Du. Similarly, with

ωv ≡
√
σv/Dv, for the bulk species V we have that

1V − ω2
v V = 0 , x ∈ � \ {x1, . . . , xm}

∂nV = 0 , x ∈ ∂� ; (2.8a)

V ∼ Av
j log |x− xj| +

Av
j

ν
+

1

dv1
(DvA

v
j + dv2ηj)

as x → xj , j ∈ {1, . . . ,m} . (2.8b)

To represent solutions to (2.7) and (2.8), we introduce the

reduced-wave Green’s function Gω(x, xj) that satisfies

1Gω − ω2Gω = −δ(x− xj) , x ∈ � ; ∂nGω = 0 , x ∈ ∂� ;
(2.9a)

Gω ∼ −
1

2π
log |x− xj| + Rω(xj)+ o(1) , as x → xj . (2.9b)

Here Rω(xj) is the regular, or non-singular, part of the singularity

at x = xj. The solutions to (2.7) and (2.8) are represented as

U(x) = −2π

m
∑

i=1

Au
i Gωu (x; xi) , V(x) = −2π

m
∑

i=1

Av
iGωv (x; xi) .

(2.10)

The pre-specification of the regular part of each singularity

condition in Equations (2.7), (2.8) yields a constraint. These

constraints provide algebraic systems for Au
j and Av

j for j ∈
{1, . . . ,m}. By expanding (Equation 2.10) as x → xj, we enforce

that that the non-singular terms in the resulting expression agree

with the conditions that are required in Equations (2.7b), (2.8b) for

each j ∈ {1, . . . ,m}. This leads to linear algebraic systems for Au ≡
(Au

1 , . . . ,A
u
m)

T andAv ≡ (Av
1, . . . ,A

v
m)

T , given in matrix form by

((

1+
νDu

du1

)

I + 2πνGωu

)

Au = −
νdu2
du1

µ ,

((

1+
νDv

dv1

)

I + 2πνGωv

)

Av = −
νdv2
dv1

η , (2.11)

whereµ ≡ (µ1, . . . ,µm)
T and η ≡ (η1, . . . , ηm)

T . In Equation (2.11),

Gω with either ω = ωu or ω = ωv is the symmetric reduced-wave

Greens’ interaction matrix defined by

Gω ≡













Rω1 Gω12 . . . Gω1m
Gω21 Rω2 . . . Gω2m
...

...
. . .

...

Gωm1 Gωm2 . . . Rωm













. (2.12)

Here Gωji = Gωij ≡ Gω(xj; xi) for i 6= j, and Rωj ≡ Rω(xj) for

j ∈ {1, . . . ,m}, are obtained from the solution to Equation (2.9).

To determine a nonlinear algebraic system that characterizes our

steady-state solution, we solve (Equation 2.11) for Av and Au, and

substitute the resulting expressions into Equation (2.6). In this way,

we obtain a 2m dimensional nonlinear algebraic system for µj and ηj,

for j = 1, . . . ,m, given by

f (µj, ηj)− eTj 2uµ = 0 , g(µj, ηj)− eTj 2vη = 0 ,

for j ∈ {1, . . . ,m} , (2.13a)

Where ej ≡ (0, . . . , 0, 1, 0, . . . , 0)T is the unit vector in the jth

direction. In Equation (2.13a),2u and2v are defined by

2u ≡ 2πνDu
du2
du1

[(

1+
νDu

du1

)

I + 2πνGωu

]−1

,

2v ≡ 2πνDv
dv2
dv1

[(

1+
νDv

dv1

)

I + 2πνGωv

]−1

. (2.13b)

We can simplify our steady-state analysis for the special case

where g(µ, η) is linear and inhibiting in η, with the form

g(µ, η) = g1(µ)− g2η , (2.14)

where g2 ≥ 0 is a constant. This specific form applies to Rauch and

Millonas [8], FitzHugh and Nagumo [24], and Gierer and Meinhardt

[46], reaction kinetics, and is relevant for the illustrations of the

theory given in Section 4. In this case, we obtain from the second

equation in Equation (2.13a) that

η =
[

g2I +2v

]−1
g1 where g1 ≡ (g1(µ1), . . . , g1(µm))

T .

(2.15)

Then, from the first equation in Equation (2.13a) we obtain anm

dimensional nonlinear algebraic system forµ = (µ1, . . . ,µm)
T given

by

f
(

µj, e
T
j (g2I +2v)

−1g1

)

− eTj 2uµ = 0 , j ∈ {1, . . . ,m} . (2.16)

Next, we define a symmetric cell arrangement for which the

steady-state analysis can be further simplified.

Definition 2.1. A symmetric cell arrangement is defined by the

condition that the symmetric Green’s matrix Gω satisfies the following

two properties:

• Property 1: e ≡ (1, . . . , 1)T is an eigenvector of Gω for all ω > 0:

• Property 2: The eigenspace of Gω orthogonal to e is independent

of ω.

These two properties certainly hold when Gω is a circulant

matrix. In particular, Gω is a circulant matrix when m small cells

are equidistantly spaced on a ring that is concentric within a circular

domain�. Such an arrangement of cells is called a ring pattern.

For a symmetric cell arrangement, Gωu and Gωv have a common

eigenspace, and so we can seek a symmetric solution to Equation

(2.13) of the form

µ = µce , η = ηce , Au = Au
c e , Av = Av

ce , (2.17)

where the scalars µc, ηc, Au
c , and Av

c are to be found. Upon

substituting (Equation 2.17) into Equation (2.13), we obtain that µc

and ηc satisfy the nonlinear algebraic system

f (µc, ηc)− αuµc = 0 , g(µc, ηc)− αvηc = 0 , (2.18)

where αu and αv, denoting the eigenvalues of 2u and 2v for the

eigenvector e, respectively, are defined by

αu ≡
2πνDud

u
2/d

u
1

1+ νDu/d
u
1 + 2πνκu

, αv ≡
2πνDvd

v
2/d

v
1

1+ νDv/d
v
1 + 2πνκv

.

(2.19a)
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Here κu and κv are the eigenvalues of the Green’s matrices for the

eigenvector e, given by

Gωue = κue , Gωve = κve . (2.19b)

Moreover, if g(µ, η) has the specific form in Equation (2.14), we

obtain from Equation (2.16) that for a symmetric pattern of cells,

there is a symmetric steady-state solution whenever there is a root

µc to the scalar nonlinear algebraic equation

f

(

µc,
g1(µc)

g2 + αv

)

− αuµc = 0 . (2.20)

In summary, for a symmetric pattern of cells, the asymptotic

construction of a symmetric steady-state solution for Equation (2.3)

is reduced to the much simpler problem of determining a solution to

the two-dimensional nonlinear algebraic problem (Equation 2.18) for

general reaction kinetics, or to Equation (2.20) when g has the specific

form in Equation (2.14). In these algebraic problems, the eigenvalues

κu and κv, as needed in Equation (2.19a), are the constant row sums

of the Green’s matrices for the two bulk species. The bulk diffusivities,

the membrane reaction rates, and the spatial configuration of the cells

all influence αu and αv.

2.3. Symmetry-breaking bifurcations

To detect any symmetry-breaking pitchfork bifurcation points

along the symmetric steady-state solution branch we can perform

a linear stability analysis of Equation (2.3) around the steady-state

solution and seek λ = 0 eigenvalue crossings. An equivalent,

but simpler, approach to detect zero-eigenvalue crossings for the

linearized problem is to determine bifurcation points associated with

the linearization of the nonlinear algebraic system (Equation 2.13)

around a symmetric steady-state.

To do so, we introduce the perturbations

µ = µce+ µ̃ , η = ηce+ η̃ ,

Au = Au
c e+ Ã

u
, Av = Av

ce+ Ã
v
, (2.21)

into Equation (2.13) and linearize the resulting system. In this way,

we obtain that a symmetry-breaking bifurcation occurs if and only if

there is a non-trivial solution to the 2m × 2m homogeneous linear

system

(

f cµI −2u f cη I

gcµI gcηI −2v

)(

µ̃

η̃

)

=
(

0

0

)

, (2.22)

at some point along the symmetric solution branch given by Equation

(2.18). In Equation (2.22) we have labeled f cµ by f cµ ≡ ∂µf (µ, η) when

evaluated at µ = µc and η = ηc, while I is them×m identity matrix.

For the special case where g has the specific form in Equation (2.14),

we can solve (Equation 2.22) for η̃ and reduce (Equation 2.22) to the

m-dimensional homogeneous linear system

(

f cµI + f cηg
′
1(µc)

(

g2I +2v

)−1 −2u

)

µ̃ = 0 . (2.23)

Next, by Property 2 for a symmetric cell arrangement, it follows

that Gωu and Gωv have a common orthogonal eigenspace Q⊥ ≡
span{q2, . . . , qm}, where qTj e = 0 for j ∈ {2, . . . ,m} and qTi qj = 0

for i 6= j. The eigenvalues of Gωu and Gωv in this common eigenspace

are labeled by

Gωuqj = κ⊥u,jqj , Gωvqj = κ⊥v,jqj , j ∈ {2, . . . ,m} , (2.24)

so that

2uqj = α⊥u,jqj , 2vqj = α⊥v,jqj , j ∈ {2, . . . ,m} , (2.25)

with

α⊥u,j ≡
2πνDud

u
2/d

u
1

1+ νDu/d
u
1 + 2πνκ⊥u,j

, α⊥v,j ≡
2πνDvd

v
2/d

v
1

1+ νDv/d
v
1 + 2πνκ⊥v,j

.

(2.26)

By setting µ̃ = µ̃cqj and η̃ = η̃cqj in Equation (2.22), we

conclude that a symmetry-breaking bifurcation occurs for the jth

mode with j ∈ {2, . . . ,m} whenever

(

f cµ − α⊥u,j f cη
gcµ gcη − α⊥v,j

)(

µ̃c

η̃c

)

=
(

0

0

)

, (2.27)

has a nontrivial solution. This is equivalent to the condition that

(

f cµ − α⊥u,j
) (

gcη − α⊥v,j
)

− f cηg
c
µ = 0 , j ∈ {2, . . . ,m} , (2.28)

is satisfied at some point along the symmetric solution branch defined

by the solution to (2.18).

Finally, for the special case where g has the specific form

in Equation (2.14), we obtain that there is a symmetry-breaking

bifurcation for the jth mode, with j ∈ {2, . . . ,m}, when there is a

root to the scalar problem

f cµ +
f cηg

′
1(µc)

g2 + α⊥v,j
− α⊥u,j = 0 , (2.29)

whenever ηc = g1(µc)/(g2 + αv) where µc satisfies (Equation 2.20).

In the examples shown in Section 4 we will use ρ ≡ dv1/d
u
1 =

dv2/d
u
2 as the bifurcation parameter to detect whether symmetry-

breaking bifurcations can occur along the symmetric solution branch.

2.4. A symmetric cell arrangement with two
cells

Consider a symmetric cell arrangement with two cells, i.e.m = 2,

for the special case where g has the form in Equation (2.14). Then, to

determine all steady-state solutions we need only solve the nonlinear

algebraic system (Equation 2.16) for µ1 and µ2. The symmetric

steady-state solution, for whichµc ≡ µ1 = µ2, is obtained by solving

the scalar problem (Equation 2.20). To detect whether symmetry-

breaking bifurcations can occur, we note that q2 = (1,−1)T spans the

common eigenspace of Gωu and Gωv orthogonal to e, and that κu =
Rωu1 − Gωu12 and κv = Rωv1 − Gωv12 are the associated eigenvalues

for q2. This yields that the root-finding condition (Equation 2.29)

becomes

f cµ +
f cηg

′
1(µc)

g2 + α⊥v,2
− α⊥u,2 = 0 , (2.30)
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where in terms of the entries of the Green’s matrices we have

α⊥u,2 ≡
2πνDud

u
2/d

u
1

1+ νDu/d
u
1 + 2πν

[

Rωu1 − Gωu12
] ,

α⊥v,2 ≡
2πνDvd

v
2/d

v
1

1+ νDv/d
v
1 + 2πν

[

Rωv1 − Gωv12
] . (2.31)

To detect any pitchfork bifurcation points on the symmetric

steady-state branch parameterized by ρ = dv1/d
u
1 = dv2/d

u
2 we

numerically solve (Equation 2.20) together with Equation (2.30). In

Section 4 we illustrate this approach for certain reaction kinetics

when � is the unit disk. The advantage of considering a disk-

shaped confining domain is that the reduced-wave Green’s function

is known analytically by using separation of variables (see Appendix

B). We remark that it would also be readily feasible to illustrate our

asymptotic theory for a rectangular-shaped confining domain, since

the reduced-wave Green’s function is also available analytically for

such a domain.

3. The linear stability analysis

In this section, we formulate the linear stability problem for

the steady-state solutions constructed in Section 2.2. We denote

the bulk steady-state solutions of Section 2.2 by ue(x) and ve(x),

and the steady-state vector of intracellular steady-states by µe =
(µe1, . . . ,µem)

T and ηe = (ηe1, . . . , ηem)
T .

To formulate the linear stability problem, we first introduce the

perturbations

u(t, x) = ue(x)+ eλtφ(x) , v(t, x) = ve(x)+ eλtψ(x) ,

µj(t) = µej + eλtξj , ηj(t) = ηej + eλtζj , for j ∈ {1, . . . ,m} ,

into Equation (2.3) and linearize the resulting system. This yields the

eigenvalue problem

bulk















1φ −�2
uφ = 0 , x ∈ �\

⋃m
j=1�j ,

1ψ −�2
vψ = 0 , x ∈ �\

⋃m
j=1�j ,

∂ñφ = ∂ñψ = 0 , x ∈ ∂� ,

(3.1a)

reaction fluxes

{

εDu∂njφ = du1φ − du2ξj , x ∈ ∂�j ,

εDv∂njψ = dv1ψ − dv2ζj, x ∈ ∂�j ,
(3.1b)

compartments















(

λI − Jj
)

(

ξj

ζj

)

= ε−1





∫

∂�j
(du1φ − du2ξj) dS

∫

∂�j
(dv1ψ − dv2ζj) dS



 ,

j ∈ {1, . . . ,m} .
(3.1c)

Here the Jacobian matrix Jj of the intracellular kinetics, as well as

�u and�v are defined by

Jj ≡
(

∂µf (µ, η) ∂ηf (µ, η)

∂µg(µ, η) ∂ηg(µ, η)

)

∣

∣

∣

µ=µej ,η=ηej
,

�u ≡

√

λ+ σu
Du

, �v ≡

√

λ+ σv
Dv

. (3.2)

We now use strong localized perturbation theory [18] to analyze

(Equation 3.1) in the limit ε → 0. In this way we will derive

a nonlinear matrix eigenvalue problem, referred to as the globally

coupled eigenvalue problem (GCEP), for the discrete eigenvalues λ

of the linearization. This GCEP will be used to investigate various

instabilities of the steady-state solutions constructed in Section 2.2.

In the O(ε) inner region near the jth cell we introduce the local

variables yj = ε−1(x−xj), φj(x) ≡ φ(xj+εyj) andψj(x) ≡ ψ(xj+εyj),
with pj = |yj|. Upon writing (Equation 3.1a) in terms of the inner

variables, for ε → 0 we obtain in the jth inner region that 1φj = 0

and 1ψj = 0, for pj ≥ 1, subject to Du ∂pjφj = du1φj − du2ξj and

Dv ∂pjψj = dv1ψj − dv2ζj on pj = 1. The radially symmetric solutions

to these problems are

φj(pj) = cuj log pj +
1

du1

(

Du c
u
j + du2ξj

)

,

ψj(pj) = cvj log pj +
1

dv1

(

Dv c
v
j + dv2ζj

)

, (3.3)

for j ∈ {1, . . . ,m}, where cuj and cvj for j ∈ {1, . . . ,m} are constants to
be determined. Upon substituting (Equation 3.3) into Equation (3.1c)

we obtain, in terms of the Jacobian Jj of Equation (3.2), that

(

λI − Jj
)

(

ξj

ζj

)

=
(

2πDuc
u
j

2πDvc
v
j

)

, for j ∈ {1, . . . ,m} . (3.4)

To determine cuj and cvj we must match the far-field behavior of

the inner solutions (Equation 3.3) to the outer solutions defined in

the bulk region. Similar to the analysis of the steady-state solution,

we obtain that

1φ −�2
u φ = 0 , x ∈ � \ {x1, . . . , xm} ; ∂nφ = 0 , x ∈ ∂� ;

U ∼ cuj log |x− xj| +
cuj

ν
+

1

du1
(Duc

u
j + du2ξj) , (3.5a)

as x → xj , j ∈ {1, . . . ,m} , (3.5b)

where ν ≡ −1/ log ε≪ 1. Similarly, for the perturbation of the other

bulk species we obtain

1ψ −�2
v ψ = 0 , x ∈ � \ {x1, . . . , xm} ; ∂nψ = 0 , x ∈ ∂� ;

ψ ∼ cvj log |x− xj| +
cvj

ν
+

1

dv1
(Dvc

v
j + dv2ζj) , (3.6a)

as x → xj , j ∈ {1, . . . ,m} . (3.6b)

The solutions to Equations (3.5), (3.6) are represented as

φ(x) = −2π

m
∑

i=1

cui Gu,λ(x; xi) , ψ(x) = −2π

m
∑

i=1

cviGv,λ(x; xi) ,

(3.7)

where, to simplify the notation and emphasize the dependence on the

eigenvalue parameter λ, we have defined

Gu,λ(x; xj) ≡ G�u (x; xj) , Gv,λ(x; xj) ≡ G�v (x; xj) , (3.8)

where Gω(x; xj) is defined by the solution to Equation (2.9). Upon

letting x → xj in Equation (3.7) and ensuring that the singularity

conditions in Equations (3.5b), (3.6b) are satisfied, we obtain a linear

algebraic system for the vectors cu ≡ (cu1 , . . . , c
u
m)

T and cv ≡
(cv1, . . . , c

v
m)

T , given in matrix form by

((

1+
νDu

du1

)

I + 2πνGu,λ

)

cu = −
νdu2
du1

ξ ,

((

1+
νDv

dv1

)

I + 2πνGv,λ

)

cv = −
νdv2
dv1

ζ , (3.9)
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where ξ ≡ (ξ1, . . . , ξm)
T and ζ ≡ (ζ1, . . . , ζm)

T . In Equation (3), Gu,λ

and Gv,λ denote the reduced-wave Green’s matrix given in Equation

(2.12) with either ω = �u or ω = �v, respectively. Here �u and �v

are defined in terms of λ by Equation (3.2).

Assuming that λ is not an eigenvalue of Jj for any j ∈ {1, . . . ,m},
we obtain upon inverting (Equation 3.4) and writing the system in

matrix form that

ξ = 2πDuK11c
u + 2πDvK12c

v , ζ = 2πDuK21c
u + 2πDvK22c

v ,

(3.10)

where ξ = (ξ1, . . . , ξm)
T and ζ = (ζ1, . . . , ζm)

T . Here K11, K12, K21,

and K22 are the diagonal matrices defined by

K11 ≡ diag(K11j) , K12 ≡ diag(K12j) ,

K21 ≡ diag(K21j) , K22 ≡ diag(K22j) , (3.11a)

with diagonal entries given by

K11j ≡ eT1 (λI − Jj)
−1e1 , K12j ≡ eT1 (λI − Jj)

−1e2 ,

K21j ≡ eT2 (λI − Jj)
−1e1 , K22j ≡ eT2 (λI − Jj)

−1e2 , (3.11b)

where e1 = (1, 0)T and e2 = (0, 1)T .

Then, upon substituting (Equation 3) into Equation (3.10), we

obtain the 2m × 2m homogeneous algebraic system, which we write

in block matrix form as

M(λ)

(

cu

cv

)

=
(

0

0

)

, where M(λ) ≡
(

Mu(λ) Hu(λ)

Mv(λ) Hv(λ)

)

,

(3.12a)

with

Mu(λ) ≡
(

1+
νDu

du1

)

I + 2πνDu
du2
du1

K11 + 2πνGu,λ ,

Hu(λ) ≡ 2πνDv
du2
du1

K12 , (3.12b)

Hv(λ) ≡ 2πνDu
dv2
dv1

K21 ,

Mv(λ) ≡
(

1+
νDv

dv1

)

I + 2πνDv
dv2
dv1

K22 + 2πνGv,λ . (3.12c)

The nonlinear matrix eigenvalue problem (Equation 3.12) is

referred to as the globally coupled eigenvalue problem (GCEP). The

GCEP has a nontrivial solution (cu, cv)T 6= (0, 0)T , if and only λ

satisfies detM(λ) = 0. The set3(M), defined by

3(M) ≡ {λ | detM(λ) = 0} , (3.13)

is the union of all such roots. Any element λ ∈ 3(M) satisfying

Re(λ) > 0 provides an approximation, valid as ε → 0, for an

unstable discrete eigenvalue of the linearized problem (Equation 3.1).

However, if for all λ ∈ 3(M) we have Re(λ) < 0, then the

steady-state solution is linearly stable.

When there is a large number of cells m, the determination

of the discrete eigenvalues comprising 3(M) is in general a

very challenging numerical problem. A survey of nonlinear matrix

eigenvalue problems and available solution strategies that apply to

only certain classes of matrices is given in Güttel and Tisseur [47] and

Betcke et al. [48]. Specific applications of nonlinear matrix problems

in simpler contexts where M(λ) is either a polynomial or a rational

function of λ are discussed in Betcke et al. [49]. Since for our problem,

M(λ) is not symmetric and has a complicated dependence on the

eigenvalue parameter through the Green’s matrices and from the

diagonal K matrices of Equation (3.11), these previously developed

numerical strategies are not applicable for computing the set 3(M)

in Equation (3.13) for a steady-state solution with an arbitrary

collection of cells.

For a symmetric steady-state solution corresponding to a

symmetric cell arrangement, we now verify that the condition

det(M(0)) = 0 in Equation (3.12) is equivalent to the zero-

eigenvalue crossing condition derived in Equation (2.22), which was

based on a linearization of the nonlinear algebraic system around the

symmetric steady-state. When λ = 0, we have

2πDuc
u = −2uξ , 2πDvc

v = −2vζ ,

where2u and2v are defined in Equation (2.13b). Since K11, K12, K22,

and K21 are all multiples of the identity for a symmetric steady-state,

we obtain from Equation (3.12) together with Equation (3) that when

λ = 0 we have in block matrix form

(

ξ

ζ

)

+
(

K11I K12I

K12I K22I

)(

2u 0

0 2v

)(

ξ

ζ

)

=
(

0

0

)

. (3.14)

Here we have re-defined the scalars K11, K12, K21, and K22 by

K11 = K11I, K12 = K12I, K21 = K21I, and K22 = K22I. When λ = 0,

we calculate that

K =
(

K11I K12I

K21I K22I

)

= −J−1
c , where Jc ≡

(

f cµI f cη I

gcµI gcηI

)

.

Finally, upon multiplying (Equation 3.14) by Jc, and using JcK =
−I, we readily obtain that

(

f cµI −2u f cη I

gcµI gcηI −2v

)(

ξ

ζ

)

=
(

0

0

)

, (3.15)

which is precisely the same as in Equation (2.22).

3.1. Re-formulation of the linear stability
problem

A simpler formulation of the linear stability problem that applies

to both symmetric and asymmetric steady-state solutions can be done

when g has the specific form in Equation (2.14). In this situation, we

can write (Equation 3.4) in the form

ζj =
g′1(µj)

λ+ g2
ξj+

2πDv

λ+ g2
cvj ,

(

λ− fµ(µj, ηj)
)

ξj−fη(µj, ηj)ζj = 2πDuc
u
j .

Then, upon relating cvj and cuj to ζj and ξj by using Equation (3),

we obtain in matrix form that

ζ =
1

λ+ g2
32ξ −

1

λ+ g2
2v,λζ , 33ξ −34ζ = −2u,λξ , (3.16)
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Where 2u,λ, 2v,λ, and the diagonal matrices 32, 33, and 34 are

defined by

2u,λ ≡ 2πνDu
du2
du1

[(

1+
νDu

du1

)

I + 2πνGu,λ

]−1

,

2v,λ ≡ 2πνDv
dv2
dv1

[(

1+
νDv

dv1

)

I + 2πνGv,λ

]−1

, (3.17a)

32 ≡ diag(g′1(µj)) , 33 ≡ diag(λ− fµ(µj, ηj)) ,

34 ≡ diag(fη(µj, ηj)) . (3.17b)

Upon eliminating ζ in Equation (3.16), we obtain the following

nonlinear eigenvalue problem for the case where g has the form in

Equation (2.14):

N(λ)ξ = 0 , where N(λ) ≡ 33−34

[

(λ+ g2)I +2v,λ

]−1
32+2u,λ .

(3.18)

Observe that setting det(N(λ)) = 0 involves root-finding on the

determinant of a matrix of size m×m rather than that for the larger

2m× 2mmatrix, as needed for Equation (3.13).

The characterization (Equation 3.18) is particularly useful for

determining the linear stability properties of a symmetric steady-state

for a symmetric cell arrangement when g has the form in (2.14). For

a symmetric steady-state with λ = 0, we obtain from Equation (3.17)

that32 = g′1(µc)I,33 = −f cµI, and34 = f cη I. From Equation (3.18),

this yields that

N(0) = −f cµI − f cηg
′
1(µc)

[

g2I +2v,0

]−1 +2u,0 .

Since 2u,λ = 2u and 2v,λ = 2v when λ = 0, where 2u and

2v were defined in Equation (2.13b), we obtain that the condition

det(N(0)) = 0 is equivalent to the formulation (Equation 2.23)

derived in Section 2.3, which was based on linearizing the nonlinear

algebraic system around the symmetric steady-state solution.

For a symmetric steady-state solution of a symmetric cell

arrangement, one key advantage of the re-formulation (Equation

3.18) is that the discrete eigenvalues of the linearization (Equation

3.1) can be determined by finding the union of the roots of m scalar

problems. This is done by using det(N(λ)) =
∏m

j=1 σj(λ), where σj(λ)

for j = {1, . . . ,m} are the eigenvalues ofN(λ). More specifically, since

Gu,λ and Gv,λ have the common eigenspace

Gu,λe = κu,λe , Gv,λe = κv,λe ; Gu,λqj = κ⊥u,λjqj ,

Gv,λqj = κ⊥v,λjqj , j ∈ {2, . . . ,m} , (3.19a)

the eigenvalue σ1(λ) corresponding to e and the eigenvalues σj(λ)

corresponding to qj, for j ∈ {2, . . . ,m} are readily calculated. A

simple calculation yields that

σ1(λ) = λ− f cµ −
f cηg

′
1(µc)

λ+ g2 + αv,λ
+ αu,λ , (3.20a)

σj(λ) = λ− f cµ −
f cηg

′
1(µc)

λ+ g2 + α⊥v,λj
+ α⊥u,λj ,

j ∈ {2, . . . ,m} , (3.20b)

where we have defined

αu,λ ≡
2πνDud

u
2/d

u
1

1+ νDu/d
u
1 + 2πνκu,λ

, αv,λ ≡
2πνDvd

v
2/d

v
1

1+ νDv/d
v
1 + 2πνκv,λ

,

(3.20c)

α⊥u,λj ≡
2πνDud

u
2/d

u
1

1+ νDu/d
u
1 + 2πνκ⊥u,λj

, α⊥v,λj ≡
2πνDvd

v
2/d

v
1

1+ νDv/d
v
1 + 2πνκ⊥v,λj

,

j ∈ {2, . . . ,m} . (3.20d)

With this re-formulation, for a symmetric steady-state of a

symmetric cell arrangement, and with g of the form in Equation

(2.14), the set of discrete eigenvalues of the linearization, 3(M), in

Equation (3.13) can be written conveniently as

3(M) ≡ {λ | σ1(λ) = 0} ∪
m
⋃

j=2

{λ |σj(λ) = 0} . (3.21)

In summary, to determine the linear stability properties of this

symmetric steady-state solution we need only solve m scalar root-

finding problems and determine whether there are any roots in

Re(λ) > 0. This is considerably more tractable numerically than

performing a root-finding based on the determinant of the GCEP in

Equation (3.18).

4. Illustrations of the theory: A ring
pattern of cells

In this section we illustrate the steady-state and linear stability

theory developed in Sections 2.2, 3 for a ring pattern of cells inside

unit disk �, for which the Green’s function is given analytically

in Appendix B. We will show that symmetry-breaking bifurcations

can occur for the Rauch and Millonas [8], Gomez-Marin et

al. [24], and Gierer and Meinhardt [46] reaction kinetics. The

theoretical prediction of stable asymmetric patterns will be confirmed

through full time-dependent numerical simulations of Equation (2.3)

computed using FlexPDE [50].

For a ring pattern of m cells in the unit disk with ring radius r,

with 0 < r < 1, the cell centers are located at

xk = r

(

cos

(

2π(k− 1)

m

)

, sin

(

2π(k− 1)

m

))

, k ∈ {1, . . . ,m} .

(4.1)

For a ring pattern of cells, all Green matrices are symmetric and

circulant and have the common eigenspace

vk = (1,Zk,Z
2
k , ...,Z

m−1
k

)T with Zk ≡ exp

(

2π i(k− 1)

m

)

and k ∈ {1, ...,m} ,

which are a basis of C
m. In Equation (B.2) of Appendix B we

summarize how to obtain the matrix spectrum of a symmetric and

circulant matrix that has a real-valued basis for the eigenspace.

In our illustrations of the theory below, we will assume for

simplicity that the membrane reaction rates satisfy

du1 = du2 ≡ du dv1 = dv2 ≡ dv , with ρ ≡
dv

du
, (4.2)

and that g(µ, η) has the specific form in Equation (2.14). We

will focus on a two-cell ring pattern in the unit disk, as shown

schematically in Figure 2, for three specific reaction kinetics.
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FIGURE 2

A schematic plot of a ring pattern in the unit disk with two cells. The

bifurcation parameter for symmetry-breaking is ρ, while the

di�usivities satisfy Du = Dv .

To numerically implement our asymptotic theory, the steady-

state solution branches are computed from Equation (2.16) withm =
2 using the parameter continuation software MatCont [51], while

the symmetric solution branch is obtained from Equation (2.20).

Symmetry-breaking bifurcation points in ρ along the symmetric

branch are identified by numerically solving (Equation 2.30) together

with Equation (2.20). Finally, to determine the linear stability

properties of the symmetric branch we need only determine if there

exists a λ with Re(λ) > 0 in the set 3(M) given in Equation (3.21).

For m = 2, this is done by calculating all the roots of σ1(λ) = 0

and σ2(λ) = 0 by using Equation (3.20) and the explicit expressions

for the eigenvalues of the Green’s matrices as can be obtained from

Appendix B.

4.1. Gierer-Meinhardt reaction kinetics

We consider a prototypical Gierer-Meinhardt model (GM),

where the nonlinear reaction kinetics are confined within the

compartments. The original GM model, introduced in Gierer and

Meinhardt [46] and Gierer [52] to model pattern formation in

biological morphogenesis, has the form

∂tu = Du1u− σuu+ ̺0(x)+ cu̺u(x)
u2

v
,

∂tv = Dv1v− σvv+ cv̺v(x)u
2 .

This model disregards that in biological tissues morphogen-

producing reactions mostly occur intracellularly and on the

membranes of cells. For simplicity, we illustrate our compartmental-

reaction diffusion theory for the specific case where ̺0 ≡
0, cu̺u(x) ≡ 1, and cv̺v ≡ 1. When there is no bulk diffusion,

the compartments are uncoupled from the bulk and we impose the

intracellular reaction kinetics

µ̇(t) = f (µ, η) ≡
µ2

η
, η̇(t) = g(µ, η) ≡ µ2 . (4.3)

The uncoupled equilibrium for Equation (4.3) given by µe =
0, and where ηe is an arbitrary constant, is non-hyberbolic in all

directions.

To apply the bulk-cell steady-state analysis of Section 2 for a two-

cell ring pattern, we first identify that g(µ, η) = g1(µ) − g2η, where

g1 = µ2 and g2 = 0. For m = 2, we conclude from Equation (2.16)

that all steady-states of the bulk-cell system are associated with the

nonlinear algebraic problem

f (µe1, e
T
12

−1
v ((µe1)

2, (µe2)
2)T)− eT12u(µe1,µe2)

T = 0

f (µe2, e
T
22

−1
v ((µe1)

2, (µe2)
2)T)− eT22u(µe1,µe2)

T = 0 .
(4.4)

The symmetric equilibrium (µe, ηe), which satisfies (Equation

2.20), is readily calculated as

µe =
αv

αu
, ηe =

αv

α2u
, (4.5)

where αu and αv are defined in Equation (2.19). By combining

(Equation 4.5) with Equation (2.30), we conclude that a symmetry-

breaking bifurcation from the symmetric steady-state occurs

whenever the condition

αv

α⊥v,2
+
α⊥u,2
2αu

− 1 = 0 , (4.6)

is satisfied at some point along the symmetric solution branch. Here

α⊥u,2 and α
⊥
v,2 were defined in (2.31).

In Figure 3, Left we plot the bifurcation diagram of solutions to

Equation (4.4) for a parameter set where Dv = Du and with the

other parameter values as in the figure caption. We observe that

a supercritical symmetry-breaking pitchfork bifurcation from the

symmetric branch occurs at the critical value ρ = ρp ≈ 9.79168.

In Figure 4 we show full PDE results for Equation (2.3) computed

with FlexPDE [50] for values of ρ on either side of this theoretically

predicted bifurcation value. In the left panels of this figure, we observe

that when ρ = 5 < ρp, an initial perturbation of the symmetric

steady-state converges back to the symmetric steady-state as time

increases. In contrast, when ρ = 15 > ρp, we observe from the

Figure 4, Right that, for an initial condition near the symmetric

steady-state, the time-dependent PDE solution converges as time

increases to the asymmetric steady-state predicted in Figure 3, Left.

In the Figure 3, Right we show that the pitchfork bifurcation value

for the emergence of asymmetric steady-states increases substantially

when the ring radius for the two-cell pattern increases. As a result,

we conclude that for cells that are farther apart, a larger value of ρ is

needed to create a stable asymmetric pattern.

We now show that by varying the membrane reaction rate

du, which necessarily varies the membrane reaction rate to the

v-species according to dv = ρ du, the steady-state solution

branches with GM kinetics (Equation 4.3) computed from Equation

(4.4) can exhibit a hysteresis structure for low du. The numerical

results of Figure 5 show such a hysteretic bifurcation structure

between the asymmetric and symmetric solution branches for

two values of du. We observe that as du decreases the extent

of the hysteresis increases. The range where hysteresis occurs is

given by the separation ρp − ρs between the pitchfork point

ρp and the secondary fold bifurcation point ρs along each

asymmetric branch. Numerical results for this range for a parameter
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FIGURE 3

Left: 3-D Bifurcation diagram, computed from Equation (4.4), showing symmetric and asymmetric steady-states of a two-cell ring pattern with ring radius

r = 0.5 and GM kinetics (Equation 4.3). Asymmetric steady-states emerge at the supercritical pitchfork bifurcation point ρ = ρp ≈ 9.79168 along the

symmetric branch. Right: The pitchfork bifurcation value of ρ increases rapidly as the ring radius r, and consequently the distance between the cells,

increases. The dots are the values computed from Equation (4.6), while the curve is the interpolation by the plotting function in Bezanson et al. [53].

Parameters: Du = Dv = 5, σu = σv = 0.6,du = 0.09, and ε = 0.03.

set where hysteresis occurs when du < 0.09 is given in

Table 1.

For the parameter set with du = 0.05, which corresponds to

the bifurcation diagram shown in the Figure 5, Right, the full time-

dependent computations of Equation (2.3) with FlexPDE [50], as

shown in Figure 6, illustrate that for an initial condition near the

symmetric steady-state branch, and with ρ either satisfying ρ <

ρs or ρs < ρ < ρp, the time-dependent solution converges

to the stable symmetric steady-state solution. However, as shown

in Figure 7, Left, for an initial condition near the asymmetric

branch when ρ is in the hysteresis region ρs < ρ < ρp,

the time-dependent solution converges to the asymmetric steady-

state. Moreover, if ρ > ρp, the Figure 7, Right shows that for

an initial condition near the unstable symmetric steady-state the

time-dependent solution converges to the asymmetric steady-state

solution.

To determine the linear stability properties of the symmetric

steady-state solution branch as ρ is varied in Figures 3, 5 we must

determine the eigenvalues λ in the set (3.21). This is done by

numerically computing the largest roots to σ1(λ) = 0 and to σ2(λ) =
0, as defined in Equation (3.20). In Figure 8 we plot these roots

vs. ρ for two values of du. From this figure, we observe that in-

phase perturbations of the symmetric steady-state solution branch,

as determined by the roots of σ1(λ) = 0, are always linearly stable.

In contrast, anti-phase perturbations of the symmetric steady-state,

as characterized by the roots of σ2(λ) = 0, are linearly stable only

for ρ < ρp, where ρp is the symmetry-breaking threshold. For

ρ > ρp, the symmetric steady-state solution branch is unstable to

an anti-phase eigenperturbation q2 = (1,−1)T .

Next, to study the linear stability properties of the asymmetric

steady-state solution branches we must determine whether the root-

finding condition det(N(λ)) = 0 in Equation (3.18) yields an

eigenvalue with Reλ > 0. The numerical results shown in Figure 9

for du = 0.05 (corresponding to in Figure 5, Right), establishes

that the asymmetric branch on the subcritical range ρs < ρ <

ρp, which emanates from the symmetric steady-state branch, is

unstable. However, as observed from Figure 9, the upper portion of

the asymmetric branch for ρ > ρs is linearly stable.

We now explore how the pitchfork bifurcation point depends

on decreasing values of the diffusion coefficient ratio Dv/Du when

du = 0.09. When this ratio is unity, there was no hysteresis between

the symmetric and asymmetric steady-state solution branches (see

Table 1). We remark that a similar numerical experiment was

performed in Section 2.3 of Pelz and Ward [23] for a 1-D

compartmental-reaction diffusion model with GM kinetics with

dynamically reactive boundaries. In our 2-D setting, we observe from

the numerical results in Table 2 that a symmetry-breaking bifurcation

can occur on the rangeDv/Du < 1, but only up until some minimum

diffusion ratio threshold at which the pitchfork bifurcation point

given by the root of Equation (4.6) no longer exists. In addition,

we observe that reducing the diffusion ratio threshold Dv/Du below

unity for fixed du = 0.09 does not introduce new hysteresis behavior,

and the symmetry-breaking bifurcation remains supercritical.

Next, we set du = 0.08 where hysteresis occurs when

Dv/Du = 1, and we vary this diffusion ratio to determine

whether hysteresis can be eliminated. Our numerical results in

Figure 10 and Table 3 indicates that varyingDv/Du does not eliminate

the hysteresis between the symmetric and asymmetric steady-state

branches. However, the extent of the hysteresis decreases as the ratio

Dv/Du increases.

To obtain some analytical insight into the disappearance of the

pitchfork point as shown in Tables 2, 3 when the diffusivity ratio

Dv/Du decreases below a threshold, in Figure 11 we plot the function

Fα(ρ) ≡ αv/α
⊥
v,2 + α⊥u,2/(2αu) − 1 vs. ρ, representing the left-

hand side of the pitchfork bifurcation condition (Equation 4.6), for

several values of Dv/Du, and for either du = 0.08 (Figure 11, Left)

or du = 0.09 (Figure 11, Right). From Equation (4.6) a root of

Fα(ρ) = 0 corresponds to a symmetry-breaking bifurcation point

along the symmetric solution branch. From Figure 11 we observe

that the asymptote of Fα(ρ) as ρ → ∞ is positive when Dv/Du

is below a threshold, which eliminates the possibility of a pitchfork

bifurcation point.
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FIGURE 4

Full numerical PDE simulation results of Equation (2.3) with FlexPDE [50] for GM kinetics Equation (4.3). The bottom panels show the concentration of u.

Left: convergence to the symmetric branch for ρ = 5 before the supercritical pitchfork point ρp = 9.79168, for an initial condition close to the symmetric

branch. Right: convergence to the asymmetric branch selected by the eigenperturbation direction q2 = (1,−1)T for ρ = 15 and starting near the

symmetric branch. Parameters: Du = Dv = 5, σu = σv = 0.6,du = 0.09, ε = 0.03, and r = 0.5.

4.2. Rauch-Millonas reaction kinetics

Next, we consider the activator-inhibitor system proposed in

Rauch and Millonas [8] to universally model two-species signal

transduction reaction kinetics between cells. This Rauch-Millonas

(RM) intracellular kinetics of Rauch and Millonas [8] is given by

µ̇ = cu − quµ+ au1µ

bu1+µ
− au2µη

bu2+µ
≡ f (µ, η)

η̇ = cv + wvµ− qvη ≡ g(µ, η) .
(4.7)

Since g has the form in Equation (2.14), we identify that g1(µ) =
cv + wvµ and g2 = qv. We will choose a parameter set for which the

reaction kinetics when uncoupled from the bulk has a unique linearly

stable steady-state.

From Equation (2.16), all steady-states of the bulk-cell model for

a two-cell ring pattern are associated with the nonlinear algebraic

system

f (µe1, e
T
1

(

qvI +2v

)−1
(cv + wvµe1, cv + wvµe2)

T)

−eT12u(µe1,µe2)
T = 0 (4.8)

f (µe2, e
T
2

(

qvI +2v

)−1
(cv + wvµe1, cv + wvµe2)

T)

−eT22u(µe1,µe2)
T = 0 .

By using Equation (2.20), the symmetric steady-state solution

branch is obtained from the solution µe to

cu − quµe +
au1µe

bu1 + µe
−

au2µe

bu2 + µe

(cv + wvµe)

qv + αv
− αuµe = 0 , (4.9)

where αu and αv are given in Equation (2.19). Symmetry-breaking

bifurcation points are obtained by solving the zero-eigenvalue
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FIGURE 5

3-D Bifurcation diagram, computed from Equation (4.4), for symmetric and asymmetric steady-states of a two-cell ring pattern with ring radius r = 0.5

and two di�erent values of du with GM kinetics (4.3). Left: du = 0.08. Right: du = 0.05. For these values of du, the steady-states exhibit hysteresis, i.e., a

subcritical pitchfork bifurcation occurs from the symmetric equilibrium branch, with the emerging unstable asymmetric equilibrium branches regaining

stability at a secondary fold point. Observe that the extent of the hysteresis increases when du decreases. Parameters:

Du = Dv = 5, σu = σv = 0.6, ε = 0.03, and r = 0.5.

TABLE 1 Numerical values (rounded to 5th decimal place) of the subcritical (or supercritical) pitchfork bifurcation point ρp, the fold bifurcation point ρs, and

the associated values for the symmetric µe and one of the asymmetric (µe1, µe2) solution branches.

du 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.135

ρp 7.70971 7.66508 11.42015 8.62258 9.79168 11.81838 15.65552 24.82347 70.62460 > 1000 or

∄

µe 2.78094 2.54938 3.21380 2.28060 2.19994 2.14061 2.09668 2.06422 2.04050

ρs 6.27944 6.93251 6.82631 8.60260 - - - - - -

µe1 3.27136 3.09001 3.45845 2.56189 - - - - - -

µe2 1.12375 1.34489 0.87895 1.93057 - - - - - -

As du increases from 0.05, the range of ρ where hysteresis occurs decreases, until a supercritical pitchfork bifurcation occurs when du ≈ 0.85. Parameters: Du = Dv = 5, σu = σv = 0.6, ε = 0.03, r =
0.5.

crossing condition (Equation 2.30) together with Equation (4.9). By

solving for wv = wv(µe) in Equation (2.30), we calculate

wv(µe)

=
−qu +

au1
bu1+µe

− au1µe

(bu1+µe)2
− au2

bu2+µe

cv
qv+αv +

au2µe

(bu2+µe)2
cv

qv+αv − α
⊥
u,2

au2
bu2+µe

µe
qv+αv −

au2µe

(bu2+µe)2
µe

qv+αv +
au2µe

bu2+µe

1
qv+α⊥v,2

,

(4.10)

where α⊥u,2 and α⊥v,2 are defined in Equation (2.31). By using

Equation (4.10) to eliminate ωv in Equation (4.9) we obtain a

nonlinear algebraic equation that determines any symmetry-breaking

bifurcation value for µe along the symmetric solution branch. The

corresponding bifurcation value for wv is obtained from Equation

(4.10).

For the parameter set given in the figure caption, we show in

Figure 12, Left that, for the fixed value ρ = 15, there is a degenerate

wv-pitchfork bubble, which is characterized by the emergence of

asymmetric steady-state solutions at two values of wv. From the

Figure 12, Right we observe that in terms of ρ, and at a fixed wv,

the symmetry-breaking bifurcation is supercritical in ρ. For the

parameter set in Figure 12, Right, we observe from Figure 13 that the

eigenvalue λ determined by the root-finding condition σ2(λ) = 0,

with σ2 given in Equation (3.20), crosses through zero at the ρ-

pitchfork bifurcation point along the symmetric steady-state branch.

As a result, when wv = wP,2
v ≈ 7.08723, the symmetric steady-

state solution is linearly stable for ρ < ρp = 15, and is unstable

on the range ρ > ρp = 15 to eigenperturbations in the direction of

q2 = (1,−1)T .

4.3. FitzHugh-Nagumo reaction kinetics

Finally, we consider a ring pattern for the bulk-cell system

(Equation 2.3) with two cells and with FitzHugh-Nagumo (FN)

intracellular reaction kinetics [24]. The uncoupled intracellular

kinetics are

µ̇(t) = µ−q(µ−2)3+4−η ≡ f (µ, η) , η̇(t) = δzµ−δη ≡ g(µ, η) ,

(4.11)

with q > 0, δ > 0 and z > 0. Since g has the form in Equation (2.14),

we identify that g1(µ) = δz and g2 = δ.

Wewill choose a parameter set for which there is a unique linearly

stable steady-state of the intra-compartmental dynamics (Equation

4.11). From Equation (2.16), all steady-states of the bulk-cell model

for a two-cell ring pattern are obtained from the nonlinear algebraic

problem

f (µe1, δze
T
1 (δI +2v)

−1(µe1,µe2)
T)− eT12u(µe1,µe2)

T = 0

f (µe2, δze
T
2 (δI +2v)

−1(µe1,µe2)
T)− eT22u(µe1,µe2)

T = 0 .

(4.12)
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FIGURE 6

Full numerical simulation results of Equation (2.3) with FlexPDE [50] for GM kinetics (Equation 4.3). Left: for an initial condition near the symmetric branch

we observe convergence to the symmetric branch when ρ = 4, which is before the hysteresis region bounded by the fold point ρs ≈ 6.27945 and the

subcritical pitchfork point ρp ≈ 7.70971. Right: convergence to the symmetric branch for ρ = 7.2, which lies on the range ρs < ρ < ρp, when starting near

the symmetric branch. The bottom panels show the concentration of u. Parameters: Du = Dv = 5, σu = σv = 0.6,du = 0.05, ε = 0.03, r = 0.5.

The symmetric steady-state solution branch, as characterized by

Equation (2.20), is obtained from the root µe of the cubic equation

µe − q(µe − 2)3 + 4−
δzµe

δ + αv
− αuµe = 0 , (4.13)

where αu and αv are given in Equation (2.19). The symmetry-

breaking bifurcation condition (Equation 2.30) along the symmetric

steady-state solution branch yields that

1− 3q(µe − 2)2 −
δz

δ + α⊥v,2
− α⊥u,2 = 0

⇔ z(µe) =
δ + α⊥v,2
δ

(

1− 3q(µe − 2)2 − α⊥u,2
)

,

where α⊥u,2 and α⊥v,2 are defined in Equation (2.31). We substitute

z(µe) into Equation (4.13), and solve the resulting equation

numerically for µe. For ρ = 150, and with the parameters as in

the caption of Figure 13, we obtain that there are two supercritical

pitchfork bifurcation points zP,1 and zP,2 on the symmetric steady-

state branch. The linearly stable asymmetric steady-state branches

that exist on the range zP,1 < z < zP,2 between the two

pitchfork points are shown in the Figure 14, Left. When z = zP,2,

we observe from the bifurcation diagram in the Figure 14, Right,

together with the eigenvalue computations in Figure 15, that the

symmetry-breaking bifurcation is supercritical in terms of ρ.

Next, we illustrate that the bulk-cell model with FN kinetics can

also exhibit oscillatory instabilities for in-phase perturbations of the

symmetric steady-state. In Figure 16 we plot the bifurcation diagram

of µe1 vs. z for the same parameter set as in the caption of Figure 14

except that the bulk degradation rates have been decreased slightly to

σu = σv = 0.9. We observe that there are now two Hopf bifurcation

values zH,1 and zH,2 of z along the symmetric steady-state branch for
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FIGURE 7

Full numerical simulation results of Equation (2.3) with FlexPDE [50] for GM kinetics (Equation 4.3). Left: convergence to the asymmetric branch for an

initial condition near this branch when ρ = 7.2 lies in the hysteresis region between the fold point ρs ≈ 6.27945 and the subcritical pitchfork point

ρp ≈ 7.70971. Right: convergence to an asymmetric steady-state as selected by a small initial perturbation of the symmetric solution in the direction

q2 = (1,−1) when ρ = 15 > ρp. The bottom panels show the concentration of u. Parameters: Du = Dv = 5, σu = σv = 0.6,du = 0.05, ε = 0.03, and r = 0.5.

FIGURE 8

Plots of the numerically computed largest roots of σ1(λ) = 0 and σ2(λ) = 0 vs. ρ, as defined in Equation (3.20), that determine the linear stability properties

to either in-phase e = (1, 1)T or anti-phase q2 = (1,−1)T eigenperturbations of the symmetric steady-state solution, respectively. Left: for du = 0.09 we

have ρp ≈ 9.79168. Right: for du = 0.05 we have ρp ≈ 7.70971. Observe that in-phase eigenperturbations are always linearly stable, whereas anti-phase

eigenperturbations are linearly stable only on the range ρ < ρp before the pitchfork point ρp. Parameters: Du = Dv = 5, σu = σv = 0.6, ε = 0.03, r = 0.5.
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the in-phase mode that lie within the interval delimited by the two

pitchfork bifurcation points. In the Figure 16, Right, we plot the real

and imaginary parts of the complex-valued root of σ1(λ) = 0, as

computed from Equation (3.20), which shows that Re(λ) > 0 and

Im(λ) 6= 0 when zH,1 < z < zH,2. This leads to the possibility

of a synchronous oscillatory instability. As a result, on the range

zH,1 < z < zH,2, the symmetric steady-state solution branch is

unstable to both anti-phase and in-phase perturbations. However, as

seen from the Figure 16, Right, where we also plot the growth rate λ

for the anti-phase mode as obtained by setting σ2(λ) = 0 in Equation

(3.20), the anti-phase instability has a larger growth rate than the

in-phase instability.

FIGURE 9

Zero-crossings of det(N(λ)) = 0, as defined in Equation (3.18),

determine the linear stability properties of an asymmetric steady-state

solution with two cells. On the range ρp < ρ < ρs, before the

secondary fold point along the asymmetric branch, we observe that

λ > 0. This implies that the subcritical portion of the asymmetric

steady-state branch between the pitchfork point and the fold point is

unstable. Further along past the fold point the asymmetric branch

regains stability.

Parameters: Du = Dv = 5, σu = σv = 0.6,du = 0.05, ε = 0.03, r = 0.5.

4.4. Numerical experiments with
closely-spaced cells: GM kinetics

We now briefly explore, from full PDE simulations of Equation

(2.3), symmetry-breaking behavior leading to stable asymmetric

patterns that can occur for closely spaced cells when the ratio

ρ = dv/du is increased. For realistic modeling of pattern formation

properties of biological tissues one needs to consider the situation

where cells are closely spaced in the sense that the cell radii are

either comparable to the distance between the cells, or that there

are only narrow gaps between cells. Although the asymptotic theory

of Sections 2, 3 is no longer valid for such closely spaced cell

arrangements, the FlexPDE simulations of Equation (2.3) shown

below reveal a similar qualitative solution behavior as we have

analyzed for spatially segregated cells. More specifically, although

we no longer have an analytical theory to predict a bifurcation

diagram of all steady-state solutions, our full PDE numerical results

suggest that stable symmetric steady-states occur only when ρ is

below some threshold. When ρ exceeds some symmetry-breaking

threshold, stable asymmetric steady-states will be the preferred state.

Our numerical results suggest that the critical threshold of ρ that

is needed to establish this symmetry-breaking behavior for closely

spaced cells is smaller than that needed for spatially segregated cells,

if in fact such a threshold exists.

To illustrate this, in Figure 17 we take two closely spaced cells

centered near the origin that have a minimum separation of 0.002.

The degradation rates, cell radius, and the value of du used for

Figure 17 are the same as in Table 3, where bifurcation values were

given for the two-cell arrangement at different ratios of Dv/Du with

Du = 5 and for a ring radius r = 0.5. In the cell arrangement

in Figure 17, the only difference is that the two cells are now much

more closely spaced than in Table 3 and we fix Dv/Du = 0.3 and

Du = 5. For these parameter values, we observe from Table 3 that

TABLE 2 Decreasing the ratio Dv/Du does not trigger hysteresis when du = 0.09, but rather there is a minimum threshold of the di�usivity ratio where the

symmetry-breaking pitchfork bifurcation point exists.

Dv/Du 0.42 0.43 0.5 0.6 0.8 1 1.2 1.4

ρp > 1000 or ∄ 573.56743 38.45836 19.56926 12.06861 9.79168 8.69082 8.04185

µe 2.32310 2.29271 2.26170 2.22305 2.19994 2.18456 2.17360

ρf – – – – – – – –

µe1 – – – – – – – –

µe2 – – – – – – – –

The numerical values for the pitchfork point (ρp ,µe) on the symmetric steady-state branch are again rounded to the 5th decimal place. Parameters: Du = 5, σu = σv = 0.6, du = 0.09, ε = 0.03, r =
0.5.

TABLE 3 Increasing the di�usivity ratio Dv/Du when du = 0.08 does not eliminate hysteresis, as the symmetry-breaking bifurcation point remains subcritical.

Dv/Du 0.37 0.38 0.4 0.6 0.8 1 3 5 8

ρp > 1000 or

∄
197.98732 72.56533 14.30013 10.14347 8.62258 6.13144 5.79198 5.61640

µe 2.43797 2.42519 2.34462 2.30457 2.28061 2.21699 2.20432 2.19719

ρf 188.58078 71.25577 14.24676 10.11612 8.60260 6.12105 5.78264 5.60759

µe1 2.7386611 2.72431 2.63380 2.58881 2.56189 2.49043 2.47619 2.46819

µe2 2.063782 2.05297 1.98476 1.95085 1.93057 1.87672 1.86599 1.85996

The numerical values for the pitchfork point (ρp ,µe) on the symmetric equilibrium branch and for one of the fold points (ρs ,µe1 ,µe2) on the asymmetric branch are again rounded to the 5th decimal

place. Parameters: Du = 5, σu = σv = 0.6, du = 0.08, ε = 0.03, r = 0.5.
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FIGURE 10

E�ect of the di�usivity ratio Dv/Du of the two bulk species on the extent of the hysteresis when du = 0.08, as measured by the distance between the fold

bifurcation points and the subcritical pitchfork bifurcation point (Left) and by the distance of the two asymmetric equilibria µe1 and µe2 from each other

(Right). The di�usivity Du = 5 is fixed and the remaining parameters are as in Table 2. The dots are the numerically computed values using MatCont [51]

that are interpolated by the plotting function in Julia [53].

FIGURE 11

E�ect of the di�usivity ratio Dv/Du on the existence of the pitchfork point when du = 0.08 (Left) and du = 0.09 (Right). The numerical results show that

the asymptote of Fα (ρ) ≡ αv/α
⊥
v,2 + α⊥u,2/(2αu)− 1 is positive for smaller values of Dv/Du, as suggested by Tables 2, 3. Therefore, when Dv/Du falls below a

threshold, the pitchfork bifurcation condition Fα (ρ) = 0, which is equivalent to Equation (4.6), no longer holds for any ρ > 0.

FIGURE 12

3-D Bifurcation diagram, computed from Equation (4.8) using MatCont [51], for symmetric and asymmetric steady-states of a two-cell ring pattern with

ring radius r = 0.5 and with RM kinetics Equation (4.7). Left: 3-D Plot of (µe1,µe2) vs. the kinetic parameter wv in Equation (4.7) at a fixed ρ = dv/du = 15,

showing that asymmetric steady-states occur inside the degenerate pitchfork bubble delimited by wP,1
v ≈ 6.88285 and wP,2

v ≈ 7.08723. Note that the

bubble lobes are stretching into decreasing wv and that there exists hysteresis at wP,2
v . Right: In terms of ρ, a supercritical pitchfork bifurcation from the

symmetric branch occurs when wv = wP,2
v ≈ 7.08723. The asymmetric branches are linearly stable past this bifurcation threshold in ρ. Parameters:

Du = Dv = 1, σu = σv = 0.1, ε = 0.03, cu = cv = 1,qu = 1/100,qv = 7, au1 = 600, au2 = 6,bu
1 = 100,bu

2 = 1/10, and du = 0.14.

no symmetry-breaking bifurcations are possible for this diffusivity

ratio when the ring radius is r = 0.5. However, as suggested from

the results shown in Figure 17, when the cells are closely spaced there

is a symmetry-breaking pitchfork bifurcation point that occurs on the

range 3 < ρ < 8. We remark that, rather surprisingly, if we use the

symmetry-breaking bifurcation condition (Equation 4.6) from the

asymptotic theory for this case of two-closely spaced cells it predicts

that ρp ≈ 6.53, which lies within the range 3 < ρ < 8. However, we
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emphasize that the asymptotic theory is not valid for closely-spaced

cells.

Finally, in Figure 18 we show that the stable asymmetric steady-

state patterns can also occur for three closely-spaced cells when ρ

exceeds some threshold.

5. Discussion

We have analyzed symmetry-breaking behavior associated with

the PDE-ODE bulk-cell model (Equation 2.3) where identical two-

component intra-compartmental reactions occur only within a

disjoint collection of small circular compartments, or “cells,” of a

common radius within a bounded 2-D domain. In the bulk, or

extra-cellular, medium two bulk species with comparable diffusivities

and bulk degradation rates diffuse and globally couple the spatially

segregated intracellular reactions. The bulk species are coupled to the

intracellular species through an exchange across the compartment

boundaries, as modeled by a Robin boundary condition that depends

FIGURE 13

For the two-cell system with RM kinetics (Equation 4.7) and

parameters as in the caption of Figure 12 with wv = wP,2
v , we plot the

eigenvalue λ, satisfying σ2(λ) = 0 in Equation (3.20), vs. ρ that

determines the linear stability of the symmetric steady-state solution

branch to eigenperturbations of the form q2 = (1,−1)T . We observe

that the symmetric steady-state branch is unstable only for

ρ > ρp = 15. There is no root to σ1(λ) = 0 on this range.

on certain membrane reaction rates. In the limit of a small cell

radius, we have used a singular perturbation methodology to derive

a nonlinear algebraic system (Equation 2.13) characterizing all the

steady-states for the bulk-cell model (Equation 2.3). Moreover, the

linear stability properties of the steady-state solutions of the bulk-

cell model were shown to be determined by the nonlinear matrix

eigenvalue problem (Equation 3.12) of size 2m × 2m, where m

is the number of compartments. A root-finding condition on the

determinant of this matrix yields the discrete eigenvalues of the

linearization (Equation 3.1) around an arbitrary steady-state solution,

as defined by the set (Equation 3.13).

We have shown that the steady-state and linear stability theory

simplifies considerably for a symmetric cell arrangement, as

characterized by Definition (Equation 2.1), and when one of the

intracellular species has a linear dependence of the form Equation

(2.14). In this more restricted scenario, we have shown that a

symmetric steady-state solution, in which the steady-states of the

intracellular species are the same for each cell, will exist if the scalar

FIGURE 15

For the two-cell system with FN kinetics (Equation 4.11) and

parameters as in the caption of Figure 14 with z = zP,2, we plot the

numerically computed eigenvalue λ, satisfying σ2(λ) = 0 in Equation

(3.20), vs. ρ. Since λ > 0 only on the range ρ > ρp = 150, we conclude

that the symmetric steady-state solution is linearly stable to

anti-phase eigenperturbations of the form q2 = (1,−1)T only when

ρ < ρp = 150. Moreover, since the root to σ1(λ) = 0 satisfies λ < 0, we

conclude that the symmetric steady-state branch is always linearly

stable to in-phase eigenperturbations of the symmetric steady-state.

FIGURE 14

3-D Bifurcation diagram, computed from Equation (4.12) using MatCont [51], for symmetric and asymmetric steady-states of a two-cell ring pattern with

ring radius r = 0.5 and with FN kinetics (Equation 4.11). Left: 3-D Plot of (µe1,µe2) showing that asymmetric steady-states occur inside the supercritical

pitchfork bubble delimited by zP,1 ≈ 36.75458 and zP,2 ≈ 41.26889 when ρ = dv/du = 150. Right: Supercritical pitchfork bifurcation from the symmetric

branch occurs at ρp = 150 when z = zP,2. Linearly stable asymmetric branches exist past this threshold in ρ. Parameters:

Du = 1,Dv = 4, σu = σv = 1, ε = 0.03, r = 0.5,q = 1, δ = 0.1, and du = 0.04.
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nonlinear algebraic (Equation 2.20) has a solution. We emphasize

that since our bulk-cell model does not admit spatially homogeneous

steady-state solutions that can be analyzed by a simple Turing-type

linear stability approach [1], this symmetric steady-state solution

of the bulk-cell model (2.3) represents the base state in our

construction. Instabilities and bifurcations associated with this base

state are challenging to analyze owing to the fact that the base

state is not spatially uniform. Asymmetric steady-state solutions, as

determined from Equation (2.16), were shown to bifurcate from

the symmetric steady-state solution branch whenever the algebraic

criterion (Equation 2.29) is satisfied at some point on the symmetric

branch. For a symmetric cell arrangement, the linear stability

properties of the symmetric and asymmetric steady-state solution

branches are characterized by Equation (3.21) and the roots of the

nonlinear matrix eigenvalue problem (Equation 3.18), respectively.

We have implemented our steady-state and linear stability

theory for a specific symmetric cell arrangement in which two

cells are equally spaced on a ring concentric within a unit disk,

and where we have specified either Gierer-Meinhardt, Rauch-

Millonas, or FitzHugh-Nagumo intracellular reactions, which all

have the simplified form in Equation (2.14). By using parameter

continuation numerical software [51] to implement the asymptotic

theory, we have shown that the symmetric steady-state solution

branch can undergo symmetry-breaking pitchfork bifurcations,

leading to linearly stable asymmetric patterns, even when the two

bulk diffusing species have identical diffusivities and degradation

rates. Overall, we have shown that it is the magnitude of the

ratio of the reaction rates for the two bulk species to the cell

membranes that determines whether stable asymmetric patterns can

occur. This membrane reaction rate ratio threshold condition for the

emergence of symmetry-breaking bifurcations is in marked contrast

to the well-known large diffusivity ratio threshold condition for

pattern formation from a spatially uniform state that is typically

derived by a Turing stability analysis for two-component activator-

inhibitor RD systems. For FitzHugh-Nagumo and Rauch-Millonas

kinetics we have also shown that stable asymmetric patterns can

also emerge from a symmetric steady-state pattern at a fixed, but

large, membrane reaction rate ratio when a control parameter in

the intracellular kinetics is varied. Our theoretical predictions of

symmetry-breaking behavior leading to linearly stable asymmetric

patterns for a symmetric two-cell arrangement were confirmed

through full time-dependent PDE computations of Equation (2.3).

We now briefly relate our theoretical results to some qualitative

behavior that has been suggested in chemical and biological

applications. Firstly, compartmental-reaction diffusion models of the

form Equation (2.3) could potentially be useful for theoretically

modeling the collective behavior that occurs for a microemulsion

consisting of Belousov-Zhabotinsky (BZ) chemical reactants that

are confined within small aqueous droplets that is dispersed in

oil [54] (see also Epstein and Xu [55] and Budroni et al. [56]).

In this experimental set-up, polar BZ reactants and a catalyst

are confined within small immobile droplets, while two non-polar

intermediate species generated during the reaction can be transported

across the droplet boundaries. These intermediate species diffuse

across the domain, with comparable diffusivities, and provide the

mechanism for inter-drop coupling [54]. The recent experimental

study of Budroni et al. [56] has suggested that it is the relative

magnitude of the membrane reaction rates of these intermediates on

the droplet boundaries that plays a key role for determining pattern-

forming properties for BZ microemulsions. Secondly, with regards

to the transport of biological morphogens, it has been suggested in

Müller et al. [7] that a differential reaction rate ratio on the cell

boundaries for two morphogen species with comparable diffusivities

can yield the large effective diffusivity ratio that is needed for

pattern formation and symmetry-breaking in tissues. This membrane

attachment mechanism, which reduces the effective diffusivity of one

of the morphogens and is referred to in Müller et al. [7] as a binding-

mediated hindrance diffusion process, may be relevant in many

biological applications. Moreover, detailed intracellular mechanisms

in biological cells, such as signaling pathways and gene expression

rate constants, may also play a pivotal role in large-scale pattern-

forming properties of biological tissues [7]. By way of qualitiative

FIGURE 16

Left: Bifurcation diagram of µe1 vs. z, computed from Equation (4.12) using MatCont [51], for symmetric and asymmetric steady-states of a two-cell ring

pattern with the same parameters as in the Figure 14, Left except that now the degradation rates are decreased slightly to σu = σv = 0.9. For this

parameter set, there are Hopf bifurcation points associated with in-phase perturbations of the symmetric steady-state that emerge at z = zH,1 ≈ 34.65328

and z = zH,2 ≈ 38.02834 between the two symmetry-breaking pitchfork bifurcation points located at z = zP,1 ≈ 33.41022 and z = zP,2 ≈ 38.80742. Right:

the root λ of σ2(λ) = 0 vs. z (pink curve), as computed from Equation (3.20), shows that the symmetric steady-state solution branch is unstable to

anti-phase perturbations on the range zP,1 < z < zP,2. The plotted real and imaginary parts of the complex-valued root λh ≡ λr + iλi to σ1(λh) = 0, from

Equation (3.20), shows that Re(λh) > 0 on the range zH,1 < z < zH,2. On this range of z, a synchronous oscillatory instability of the symmetric steady-state

solution can also occur, but it has a smaller growth rate than that for the anti-phase mode.
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FIGURE 17

Full numerical simulation results of Equation (2.3) with FlexPDE [50] for GM kinetics (Equation 4.3) with two closely spaced cells centered on a ring of

radius r = 0.031 and with minimum cell separation of 0.002. The other parameters are the same as in Table 3. The only di�erence here is that the cells are

now much more closely spaced. The bottom two panels show the concentration of u. Left: convergence to a stable symmetric steady-state solution

when ρ = 3. Right: convergence to a stable asymmetric steady-state soluton for ρ = 8 when starting with a symmetric initial condition. Parameters:

Du = 5, Dv = 1.5, σu = σv = 0.6, du = 0.08, and ε = 0.03.

comparison, our theoretical analysis of the 2-D bulk-cell model

(Equation 2.3) for a very simple 2-cell pattern has revealed that a

large membrane reaction rate ratio, together possibly with changes in

a parameter in the intracellular kinetics, can trigger the emergence

of stable asymmetric steady-state patterns that bifurcate from a

symmetry steady-state. However, owing to the complexity of the

analysis needed for Equation (2.3), where certain Green’s matrices

were found to be central to the analysis, it appears rather intractable

analytically to isolate via a simple scaling analysis an effective

diffusivity for the bulk species that incorporates the membrane

reaction rates.

Although we have only applied our theoretical framework

to a simple two-cell arrangement, it is rather straightforward to

numerically implement the steady-state and linear stability theory

for a symmetric cell arrangement with a much larger number of

cells. For this scenario, the symmetric steady-state solutions are again

determined by the scalar nonlinear algebraic (Equation 2.20) and

the linear stability properties of this steady-state are readily studied

by computing the union of all the roots of the scalar problems

σj(λ) = 0, for j ∈ {1, . . . ,m}, in Equation (3.20) that comprise the

set (Equation 3.21) that approximates the discrete eigenvalues of the

linearization (Equation 3.1) of Equation (2.3) around the steady-state.

However, for an arbitrary spatial arrangement of a large number of

cells, one key impediment for implementing the linear stability theory

for steady-state solutions is with regards to numerically computing

the eigenvalues λ from a root-finding condition on the determinant

of the full 2m × 2m GCEP matrix M(λ) in Equation (3.12).

This matrix is non-Hermitian, is not sparse, and has an intricate
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FIGURE 18

Full numerical simulation results of Equation (2.3) with FlexPDE [50] for GM kinetics (Equation 4.3) with three closely spaced cells with cell centers located

on the vertices of an equilateral triangle centered at the origin. The ring radius is r = 0.2
√
3/6. Left: convergence to a symmetric steady-state when ρ = 5.

Right: convergence to an asymmetric steady-state when ρ = 10. Parameters: Du = Dv = 5, σu = σv = 0.6,du = 0.05, ε = 0.099. The cells have a minimum

separation of 0.002. The bottom two panels show the concentration of v. By plotting v rather than u, the bottom right panel clearly shows the asymmetry

in the three cells.

dependence on λ through the Green’s matrices. In contrast to the

availability of efficient numerical solution strategies for nonlinear

matrix eigenvalue problems with special structure, as was discussed

in Güttel and Tisseur [47], Betcke et al. [48], and Betcke et al.

[49], it appears to a significant open challenge to develop efficient

numerical methods to determine all such eigenvalues λ for which

M(λ) is a singular matrix whenm is large. Recall that if there are any

such eigenvalues in Re(λ) > 0, the steady-state for Equation (2.3)

is unstable.

A few other open problems related to our analysis are as

follows. Firstly, it would be interesting to analyze symmetry-breaking

bifurcation for Equation (2.3) on R
2 where identical cells of small

radii are centered at the lattice points of an arbitrary Bravais

lattice. In this periodic setting, it should be possible to analyze

symmetry-breaking bifurcations of a periodic steady-state solution

by using Floquet-Bloch theory, combined with the explicit analytical

formulae for the reduced-wave Bloch Green’s function as derived in

Iyaniwura et al. [57]. Secondly, it would be interesting to develop

an extension of our asymptotic approach to treat closely-spaced cell

configurations that are more relevant to modeling pattern-forming

properties in biological tissues. Our numerical results shown in

Section 4.4 have suggested that only a smallermembrane reaction rate

ratio is needed to initiate symmetry-breaking behavior for closely-

spaced cells than for arrangements with more spatially segregated

cells. To theoretically analyze pattern-forming properties of the bulk-

cell model with closely-spaced cells, an extension of the approach

developed in Iyaniwura and Ward [58] to analyze the mean first

passage time for a cluster of small traps may be fruitful. Thirdly,

it would be interesting to formulate and analyze a related bulk-cell

model where the chemical reactions occur on the boundaries of a

collection of small compartments, rather than in the interior of the

compartments. In this scenario, chemical species produced on the
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membrane can then detach and diffuse in the bulk medium. Such an

extension is relevant for analyzing collective behavior that occurs for

dynamically reactive solid pellets that are chemically coated and are

coupled through a bulk diffusion field (cf. Taylor et al. [59], Taylor

et al. [60], Tinsley et al. [61], and Tinsley et al. [62]). Finally, it would

be worthwhile to extend our 2-D analysis to a 3-D setting. For a

3-D bounded domain that contains a collection of small spherical

compartments, the analysis would be rather different than in 2-D

since the free space Green’s function has a rapid decay at infinity

instead of a logarithmic growth. This would suggest that the inter-

cell coupling effect would be, in general, much weaker in 3-D than

in 2-D.
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