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Malaria is a mosquito-borne disease spread by an infected vector (infected female

Anopheles mosquito) or through transfusion of plasmodium-infected blood to

susceptible individuals. The disease burden has resulted in high global mortality,

particularly among children under the age of five. Many intervention responses

have been implemented to control malaria disease transmission, including blood

screening, Long-Lasting Insecticide Bed Nets (LLIN), treatment with an anti-malaria

drug, spraying chemicals/pesticides on mosquito breeding sites, and indoor residual

spray, among others. As a result, the SIR (Susceptible—Infected—Recovered) model

was developed to study the impact of variousmalaria control andmitigation strategies.

The associated basic reproduction number and stability theory is used to investigate

the stability analysis of the model equilibrium points. By constructing an appropriate

Lyapunov function, the global stability of the malaria-free equilibrium is investigated.

By determining the direction of bifurcation, the implicit function theorem is used

to investigate the stability of the model endemic equilibrium. The model is fitted

to malaria data from Benue State, Nigeria, using R and MATLAB. Estimates of

parameters were made. Following that, an optimal control model is developed and

analyzed using Pontryaging’s Maximum Principle. The malaria-free equilibrium point

is locally and globally stable if the basic reproduction number (R0) and the blood

transfusion reproduction number (Rα ) are both less or equal to unity. The study of

the sensitive parameters of the model revealed that the transmission rate of malaria

frommosquito-to-human (βmh), transmission rate from humans-to-mosquito (βhm),

blood transfusion reproduction number (Rα ) and recruitment rate of mosquitoes (bm)

are all sensitive parameters capable of increasing the basic reproduction number (R0)

thereby increasing the risk in spreading malaria disease. The result of the optimal

control shows that five possible controls are e�ective in reducing the transmission of

malaria. The study recommended the combination of five controls, followed by the

combination of four and three controls is e�ective in mitigating malaria transmission.

The result of the optimal simulation also revealed that for communities or areas where

resources are scarce, the combination of Long Lasting Insecticide Treated Bednets

(u2), Treatment (u3), and Indoor insecticide spray (u5) is recommended. Numerical

simulations are performed to validate the model’s analytical results.
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1. Introduction

Malaria is a protozoan disease, and the intermediate host is a

female Anopheles mosquito infected with Plasmodium falciparum,

Plasmodium vivax, Plasmodium ovale, or Plasmodium malariae. In

addition to the bite of an infected female Anopheles mosquito,

malaria can also be transmitted by the donation of blood from

a donor who is infected with the disease [1]. The World Health

Organization (WHO) recommends screening blood donors for

malaria in malaria-endemic areas [2]. Few blood banks in Sub-

Saharan Africa have implemented malaria screening due to a lack of

data on the cost-effectiveness of screening technology [3]. Blood is a

special kind of organic fluid produced by living organisms that are

vital to their existence and everyday functioning [4]. Transfusions

of human blood will continue to be a clinically essential medical

treatment for a long time since, despite medical advancements,

humanity has not been able to manufacture a functioning substitute

for human blood [5]. Because of injuries, operations, anemia, and

problems during pregnancy, half of all people will require a blood

transfusion at some point in their lives. Although blood transfusions

have been used for centuries, they have also been linked to the spread

of disease when inadequate checks are made on blood donations

[6]. In Kitchen and Chiodini [7] and Hirigo et al. [8], it was

established that every drop of blood collected in blood banks be tested

for major Transfusion Transmitted Infections (TTIs) like Human

Immunodeficiency Virus (HIV), hepatitis B virus (HBV), hepatitis C

virus (HCV), and syphilis before transfusion.

According to available data, the global incidence and occurrence

of transfusion-transmitted infected blood with malaria is around

100 cases per year, with the majority of cases being limited to

endemic countries [9]. Having malaria in a donor blood sample

increases the risk of transfusion-transmitted malaria in Sub-Saharan

African nations [10]. Because malaria infection after transfusion

may be due to either spontaneous infection (infection through

bites from an infected female (Anopheles mosquito) or transfusion

transmission, distinguishing between the two is difficult in regions

where malaria is widespread. This explains why the number of

infected blood transfusions among malaria patients in endemic

countries is underreported. An expanding challenge brought on

by worldwide travel and immigration is the transmission of the

malaria parasite through blood donations. In malaria-endemic areas,

it is therefore more difficult to devise an optimal method to limit

the danger of transfusion-transmitted contaminated blood without

needless exclusion of blood donation, which remains a subject of

discussion.

About 76 percent of the Nigerian population lives in areas

with high malaria transmission and 24 percent in areas with low

malaria transmission [10]. The transmission season in the south

may last all year, whereas it is only 3 months or less in the north.

Because malaria is widespread in Nigeria, blood donors may be more

susceptible to infection. Although there are established practices for

malaria screening, which have been put on the test menus at blood

banks, there is a risk of non-screening, according to World Health

Organization [2]. Current strategies such as testing and screening of

donor’s blood in non-endemic countries were reviewed in Reesink

[11] and Reesink et al. [12]. The results of the study revealed that the

current measures are sufficient while also suggesting that surveillance

of transfusion-transmitted malaria is necessary for the future. Most

nations have established a stringent donor deferral system based on

an individual’s travel history. However, this policy is not optimal

because of the fact that many healthy donors differ, which may result

in donation loss because lengthy deferrals may discourage donors

from returning [7]. The ideal malaria control plan for a country or

region may therefore differ depending on the baseline malaria risk

experienced by the donor and the recipient population in relation to

the available resources [11].

Many studies have been conducted on the mechanisms of malaria

transmission. Agusto et al. [13] studied a deterministic system of

differential equations for the transmission of malaria. Their work

investigates optimal strategies for controlling the spread of malaria

disease using treatment, insecticide-treated bed nets, and the spray

of mosquito insecticide. Blayneh et al. [14], studied the dynamics

of a vector-transmitted disease using two deterministic models. A

further study investigates the effects of prevention and treatment

controls on malaria disease while keeping the implementation cost

at a minimum. In Adeniyi and Aderele [15], a mathematical model

for the dynamics of the Transfusion-TransmittedMalaria model with

optimal control was studied. A recent study by Zhao and Liu [16]

focused on dynamical behavior and optimal control of a vector-

borne diseases model on bipartite networks, while mathematical

modeling and projections of a vector-borne disease with optimal

control strategies: a case study of the Chikungunya in Chad was

discussed in Abboubakar et al. [17]. With the help of a seven-

dimensional ordinary differential equation and non-linear forces of

infection in the form of saturation incidence rates, Olaniyi and

Obabiyi [10] modeled the transmission of malaria between humans

and mosquitoes. It was shown that the presence of malaria-causing

parasites triggers the production of antibodies in both humans and

mosquitoes. The only way to combat a parasite invasion of the

circulatory system is for humans to produce more antibodies. The

affected person’s immunological condition, including their general

health and diet, also has a role in whether or not the disease

progresses. Using a deterministic mathematical model, the effects

of different sanitation strategies on malaria were analyzed in Oluyo

and Adeniyi [18] and Oluyo and Adeniyi [19]. The results showed

that the malaria model exhibits a backward bifurcation, suggesting

that other criteria, such as maintaining adequate sanitation, are

necessary for eradicating malaria beyond simply reducing Rm < 1.

Improved hygienic conditions lead to fewer mosquito bites and thus

fewer malaria cases. To better understand and combat malaria in

communities, the team at [20] created and analyzed a model of

the disease’s transmission dynamics. It was determined qualitatively

whether or not the model accounted for the timing of events. All

of the studies mentioned above did not consider malaria acquired

through transfusion, hence, the present study is aimed at studying

the dynamics of transfusion-transmitted and vector-borne malaria

while also investigating the efficacy of various intervention strategies

for preventing the spread of transfusion-transmitted and mosquito-

borne malaria. Some of these strategies are blood screening, Long-

Lasting Insecticide Bed Nets (LLIN), treatment with anti-malaria

drugs, spraying chemicals or pesticides on places where mosquitoes

breed, and indoor residual spray.

This paper is organized as follows; Section 2 entails the

mathematical formulation of the malaria transfusion transmitted

model. In Section 3, the mathematical analysis of the model

is sub-sectioned into Section 3.1 where the feasible region and
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well-posedness of the model are discussed, and Section 3.2, which

focuses on the equilibrium analysis of the model. The basic

reproduction number of the model is discussed in Section 3.3,

stability analysis of the malaria model is the focus in Section

4 while Section 5, presents the optimal control problem and its

solutions. The statistical data analysis is discussed in Section 6.

Numerical simulations, discussion of results, and concluding remarks

are presented in Section 7.

2. Mathematical formulation

The study uses a deterministic model to analyze the dynamics

of malaria disease transmission dynamics taking into account

transmissions via mosquitoes and blood transfusion. The overall

human and mosquito populations at any given time t are given by

Nh

(

t
)

and Nm

(

t
)

, respectively. Further decomposition of Nh

(

t
)

and

Nm

(

t
)

yield Nh(t) = Sh(t)+ Ih(t)+Rh(t) and Nm(t) = Sm(t)+ Im(t),

where Sh(t), Ih(t), Rh(t), Sm(t), and Im(t) denote the susceptible

humans, infected humans, recovered humans, susceptible mosquito,

and infected mosquito classes, respectively.

The force of transmitting malaria infection from an infected

mosquito to humans, λh(t) is given as the product of the transmission

rate βmh from an infected mosquito in Im(t) compartment to the

proportion of susceptible humans in Sh(t) compartment. This is

written mathematically as

λh(t) =
βmhIm(t)

Nh(t)
. (2.1)

The recruitment and natural death rates of humans are given as bh
and µh, respectively. Humans who recovered from malaria infection

progress to the susceptible class at rate δ with the recovery of humans

given as π . Human mortality due to malaria occurs at rate σ .

The force of infection from human-to-mosquito, λm(t) is the

multiplication of the transmission rate βhm from an infected humans

to a susceptible mosquito in Sm(t) class expressed as

λm(t) =
βhmIh(t)

Nh(t)
. (2.2)

Susceptible mosquitoes , Sm(t) are recruited at the rate bm while

both Sm(t) and Im(t) classes are depopulated by natural death at rate

µm.

To account for the force of infection as a result of blood

transfusion, we have the term p1αbhIh(t), where p1 is the probability

of effectively transfusing infected blood to a susceptible human, α is

the transfusion term.

Consequently, within the scope of our analysis from this point on,

the use of the time t dependency is suppressed. Given the submissions

above, the discussion is presented in the following system of non-

linear ordinary differential equations:

S
′

h
= (1− p1αIh)bh − (λh + µh)Sh + δRh,

I
′

h
= p1αbhIh + λhSh − A0Ih,

R
′

h
= πIh − A1Rh,

S
′

m = bm − (λm + µm)Sm,

I
′

m = λmSm − µmIm,

(2.3)

where A0 = (σ + π + µh), A1 = (δ + µh).

The model in Equation (2.3) above is based on the following

assumptions:

(i) Malaria can be transmitted via infected mosquitoes and

through transfusion of infected blood from a donor to a

susceptible human;

(ii) The probability of survival till the infected stage for both

humans and vectors is unity. Hence, the exposed compartments

for both humans and vectors are not considered;

(iii) The term p1αbhIh(t) is assumed to capture individuals who

become infected with malaria due to transfusion.

3. Model dynamics

Let the total human population at any time t be Nh such that

Nh = Sh + Ih + Rh. (3.1)

The derivative of Equation (3.1) w.r.t t is

N
′

h = S
′

h + I
′

h + R
′

h = bh − µhNh − σ Ih, (3.2)

since the term σ Ih is non-negative, then

N
′

h ≤ bh − µhNh. (3.3)

Thus, the solution of Equation (3.3) as t → ∞ yields

Nh ≤
bh

µh
. (3.4)

Similarly, the total mosquito population is Nm

Nm = Sm + Im. (3.5)

Thus, over time, the total mosquito population is

Nm ≤
bm

µm
. (3.6)

3.1. Positivity and boundedness of solutions

The model (Equation 2.3) will be analyzed in the region

� =
{

{(Sh, Ih,Rh, Sm, Im) ∈ R+5 : Sh+Ih+Rh ≤
bh

µh
, Sm+Im ≤

bm

µm

}

,

(3.7)

Thus in this region, system (Equation 2.3) is mathematically and

epidemiologically well-posed.

3.2. Equilibrium points

In this section, the general equilibrium point of the system

(Equation 2.3) is considered. This is achieved by solving the system
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(Equation 2.3) at steady states.Particularly, system (Equation 2.3)

have the general equilibrium denoted byM⋆ as:

M⋆ = 1.4











































S∗
h
=

A0A1bh(1−Rα )
(A2λ

∗
h
+A3)

,

I∗
h
=

A1bhλ
∗
h

A2λ
∗
h
+A3

,

R∗
h
=

πbhλ
∗
h

A2λ
∗
h
+A3

,

S∗m = bm
λ∗m+µm

,

I∗m =
bmλ∗m

µm(λ∗m+µm)
,

(3.8)

where

Rα =
p1αbh

A0
. (3.9)

Details of how M⋆ is obtained are given in the Appendix. To be

precise, the following feasible steady states are obtained:

(i) Malaria Free Equilibrium
(

MFE
)

denoted by M0. This depicts

the solution of system (Equation 2.3) corresponding to the

scenario where there is no presence of malaria disease (whether

mosquito or blood transfusion induced) in the population. The

feasibility of M0 depends on whether the thresholds Rα and R0
corresponding to the blood transfusion-induced reproduction

number and the basic reproduction number are less than unity

or otherwise. Hence,

M0 =
(

Sh0, Ih0,Rh0, Sm0, Im0

)

=

(

bh

µh
, 0, 0,

bm

µm
, 0

)

, (3.10)

where

R0 =

√

βhmβmhbmµh

µ2
mbhA0

(

1− Rα

) . (3.11)

In the following section, a detailed explanation of the thresholds

Rα and R0 is provided.

(ii) Malaria Endemic Equilibrium
(

MEE
)

written as M⋆ in

Equation (3.8) is a situation where malaria disease transmission

persists in the population and is only possible if Rα < 1 and

R0 > 1

Remarks 1. Detailed calculations on the determination of the

equilibrium points in
(

3.8
)

and
(

3.10
)

are given in the Appendix.

3.3. Analysis of the basic reproduction
number, R0

Rα and R0 are thresholds called the blood transfusion-

induced reproduction number and the basic reproduction number,

respectively. Rα and R0 represent the average number of secondary

infections caused by transfusing infected blood to a susceptible

human or a single infected mosquito when introduced into a

population of only susceptible. Rα captures the dynamics of the

model when malaria disease is transmitted via infected blood

transfusion while R0 represents the dynamic of the model whenever

malaria is propagated through an infected vector. The theory on the

calculation of the basic reproduction number R0 is popularly based

on the next-generationmethod explained in Diekmann et al. [21] and

Van den Driessche andWatmough [22] and implemented in Adeniyi

et al. [23, 24] and Chukwu et al. [25].

Studies in Olabisi and Olaniyi [19] and Buonomo and Lacitignola

[26] have shown that for disease eradication, reducing the basic

reproduction number below unity may not be sufficient, rather it may

depend on other parameters or thresholds such as Rα as we have in

this case. For a good insight into the thresholds Rα and R0, we shall

decompose the expressions for Rα and R0 to see how they both and

individually impact malaria transmission. It is easy to decompose R0
into:

R0 =

√

µh

bh

√

βmh
(

σ + π + µh

)

√

βhm

µm

√

bm

µm

√

1
(

1− Rα

) ,

which can be written compactly as

R0 =
√

Ri, i = 1, 2, ...5. (3.12)

We explain below how each factor of Equation (3.12) impacts the

basic reproduction number R0, thereby giving us an insight on the

disease control :

(i) The first quantity of Equation (3.12), R1 =
µh
bh
, i.e the ratio of

the human natural death rate to the human recruitment rate, is

normally less than unity since recruitment rate of humans bh is

always greater than natural death rate µh, thus the quantity R1
will not increase the reproduction number, R0.

(ii) The second quantity, R2 =
βmh

(

σ+π+µh

) is monotonically

decreasing with regards to humans malaria induced mortality,

σ plus the human recovery rate from malaria and the natural

mortality rate in humans, is always greater than zero. This

submission is true if the transmission of malaria frommosquito

to humans is less than one and the denominator of R2 increases.

As this may sound, increasing σ and µh is not realistic in a real-

life scenario, hence, the quantity R2 provides no control over

R0.

(iii) The term R3 =
βhm
µm

is a critical quantity that must be

controlled to ensure R0 is not increased. This is because the

human-to-mosquito transmission probability, βhm is always

greater compared to the vector natural death rate µm, thus

R3 > 1 which implies R3 will increase R0.

(iv) From other studies , R4 = bm
µm

is greater than unity since

bm > µm, thus R4 will produce a positive effect on R0. This

implies that decreasing the recruitment rate and increasing the

fatality rate of the mosquitoes will provide good control.

(v) Rα captures the contribution of humans infected with

malaria through blood transfusion. For Rα < 1, the quantity

R5 = 1
(

1−Rα

) > 1 impact R0 positively, therefore, the quantity

R5 should be controlled by ensuring Rα −→ 0.

The impact of each parameter in the basic reproduction number,

R0 also provides insight into which parameters should be controlled

in order to interrupt the transmission of malaria, and is discussed

below:

1. The transmission probability from mosquito to human, βmh as

shown in Figure 1A increases the basic reproduction number, R0.
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A B

C D

FIGURE 1

Simulation showing the impact of (A) transmission rate from mosquito-to-humans (βmh), (B) transmission rate from human-to-mosquito (βhm), (C)

transfusion induced reproduction number (Rα ), and (D) recruitment rate of mosquitoes (bm) on the basic Reproduction number (R0) with parameters set

given in Table 1.

Thus, it is important to mitigate this by ensuring that effective

strategies such as the use of insecticide spray and sleeping under

Long-Lasting Insecticide Treated Bednets (LLITBs) are in place to

reduce the contact between humans and mosquitoes.

2. βhm, denote the transmission probability of infection from

human-to-mosquito. The basic reproduction number, R0
increases as βhm increases (see Figure 1B) which suggest that this

parameter must be controlled. Just as in the of βmh, the use of

controls such as insecticide spray and the of LLINs should be

encouraged.

3. In Figure 1C, the impact of Rα on R0 is shown. Rα is

the reproduction number for malaria acquired through blood

transfusion. If Rα is allowed to increase, it will lead to an increase

in the basic reproduction number, R0, hence control such as

blood screening must be ensured to reduce the risk of transfusing

infected blood to susceptible humans.

4. The recruitment rate of susceptible mosquitoes, bm will

increase R0 as shown in Figure 1D. This is indeed the case

if mosquitoes are allowed to breed freely in the environment

and humans are exposed to malaria-infected humans, then

the chances that more susceptible mosquitoes may become

infected are very high, thus leading to the spread of malaria

disease through the mosquitoes’ quest for blood meals

from humans. Given this, it is important to control the
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A B

C D

FIGURE 2

Simulation showing the impact of (A) natural death rate of humans (B) human recovery rate from malaria (π ), (C) mortality rate of mosquitoes (µm), (D)

malaria induced death rate (σ ) with parameters set given in Table 1.

mosquito’s recruitment rate, bm to ensure R0 is brought below

unity.

5. π denotes the recovery rate of humans after treatment

from malaria bouts. The recovery rate π is critical

in the control of malaria disease. As shown in

Figure 2B, π will reduce the basic reproduction number,

R0.

6. µm, represent the natural mortality rate of mosquitoes.

As displayed in Figure 2C, an increase in µm results

in a decrease in R0. This is a clear indication that

strategies that will effectively increase the mortality

rate of the mosquitoes such as pesticide spray and

larvicide spray on mosquitoes and larva breeding sites are

suggested.

7. As shown in Figure 2D, the parameter σ which signifies

malaria-induced death rate decreases the basic reproduction

number R0 as σ increases, however, this is unrealistic and

hence, it cannot be used to control R0 and thus the disease

spread.

8. As shown in Figure 2A, increasing the natural

death rate µh of humans decreases R0 significantly,

this is not practical in a real-life scenario, thus,

µh does not provide any control R0 and disease

control.

In Figure 3, varying values of the transfussion term α is

simulated to see the impact on the susceptible humans, infected

humans, recovered humans, and infected mosquitoes. It can be

seen from Figure 3 that as α increases more individual become
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A B

C D

FIGURE 3

Simulation showing the impact of transfusion term alpha on (A) susceptible humans, (B) infected humans, (C) recovered humans, and (D) infected

mosquitoes, with parameters set given in Table 1.

susceptible to malaria leading to increase in the number of infected

humans recovered individuals. In Figure 3D, the number of infected

mosquitoes also increased as α increases.

Following the above discussion, the optimal control of the model

will be studied in Section 5 taking into account the impact of the

parameters on the basic reproduction number, R0.

4. Stability analysis of the model

4.1. Local stability analysis of malaria free
equilibrium, M0

When λ∗
h
= λ∗m = 0 in (3.8) yield the malaria-free equilibrium

denoted byM0,

M0 =
(

Sh0, Ih0,Rh0, Sm0, Im0

)

=

(

bh

µh
, 0, 0,

bm

µm
, 0

)

(4.1)

The Jacobian matrix of system (2.3) atM0 is

J
(

M0

)

=

















−µh −αp1bh δ 0 −βmh

0 −A0(1− Rα) 0 0 βmh

0 π −A1 0 0

0 −βhmµhbm
bhµm

0 −µm 0

0 βhmµhbm
bhµm

0 0 −µm

















(4.2)

It is easy to see that the eigenvalues of Equation (4.2) are λ1 = −µh,

λ2 = −A1 and λ3 = −µm with the other two obtained from the 2×2

matrix M namely:

M =

(

−A0(1− Rα) βmh
βhmµhbm
bhµm

−µm

)

. (4.3)

By Routh-Hurwithz condition [27], the eigenvalues of M are real

negative if (i)Tr(M) < 0 and (ii)Det(M) > 0. Simple manipulation

shows that

Tr(M) = −A0

(

1− Rα

)

− µm < 0 if Rα < 1, (4.4)
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and

Det
(

M
)

= µmA0

(

1− Rα

)

−
βmhβhmµhbm

bhµm
,

= µmA0

(

1− Rα

)

(

1−
βmhβhmµhbm

bhµ2
mA0

(

1− Rα

)

)

,

= µmA0

(

1− Rα

)(

1− R20
)

.

(4.5)

Thus, the two eigenvalues of M are negative. Hence, the

eigenvalues of Equation (4.2) are real and negative if R0 < 1 and

Rα < 1 thus establishing that the malaria free equilibrium, M0 is

locally asymptotically stable if R0 < 1 and Rα < 1, otherwise

unstable. The foregoing discussion is summarized in the following

theorem:

Theorem 1. The malaria free equilibrium M0 of system (Equation

2.3) is locally asymptotically stable if R0 < 1 and Rα < 1, otherwise

unstable.

Remark 1. R0 is the basic reproduction number representing the

average number of secondary infections caused by transfusing infected

blood to a susceptible human or a single infected mosquito when

introduced into a population of only susceptibles.

4.2. Global stability analysis of malaria free
equilibrium, M0

Suppose the stability of M0 does not depend on the initial size

of the infected population, then it is important to consider the global

stability ofM0 of the system (Equation 2.3). This is motivated through

the method of Lyapunov function [28]. The Lyapunov function

technique has been widely used by many researchers [10, 20] to prove

the global stability of equilibrium points.

Let us consider a Lyapunov function defined as follows:

L(Ih, Im) = µmIh + βmhIm, (4.6)

then the derivative of Equation (5.12) yield

L
′

(Ih, Im) = µmI
′

h + βmhI
′

m. (4.7)

Taking into account of the values of I
′

h
and I

′

m from Equation (2.3),

then Equation (4.7) lead to

L
′

(Ih, Im) = µm

[

βmhImSh

Nh
+ p1αbhIh − A0Ih

]

+βmh

[

βhmIhSm

Nh
− µmIm

]

(4.8)

After expanding and rearranging, then

L
′(

Ih, Im
)

= µmA0

(

p1αbh

A0
+

βmhβhmSm

µmA0Nh
− 1

)

Ih

+

(

µmβmhSh

Nh
− µmβmh

)

Im,

so that at DFE,M0 ⇒ Sh = Nh =
bh
µh

and Sm = bm
µm

. Thus,

L
′(

Ih, Im
)

= µmA0

(

p1αbh

A0
+

βmhβhmbmµh

µ2
mA0bh

− 1

)

Ih,

= µmA0

(

Rα +
(

1− Rα

)

R20 − 1
)

Ih,

= µmA0

(

Rα − 1
)(

1− R20
)

.

(4.9)

Hence, for R0 ≤ 1, and Rα ≤ 1, then L
′
(Ih, Im) ≤ 0. This implies

that the malaria-free equilibrium,M0 is globally asymptotically stable

if R0 ≤ 1 and Rα ≤ 1, otherwise unstable.

4.3. Stability analysis of the endemic
equilibrium M

∗ and bifurcation

If R0 > 1 when conditions that favor disease thrive in the

host population, then an endemic equilibrium may emerge. More

importantly, it is crucial and necessary to carefully study the stability

of the malaria endemic equilibrium M∗ by considering the direction

of bifurcation whether it is sub-critical or trans-critical. Bifurcation is

a phenomenon that describes a situation where both the disease-free

equilibrium and the endemic equilibrium co-exist. The method of

implicit function theorem [29] is invoked to investigate this scenario.

Firstly, let α = α∗ be a bifurcation parameter at R0 = 1, then

α = α∗ =
A0µ

2
mbh − βmhβhmbmµm

µ2
mb

2
h
p1

. (4.10)

Let the infected component of the system (Equation 2.3) be denoted

bym andm0 be the jacobianmatrix of the infected components of the

system (Equation 2.3) evaluated at (M0,α
∗) be defined respectively as

m =





p1αbh − A0
βmhSh

µh
βhmSm

µh
−µm





and

m0 =





−βmhβhmbmµh

bhµ
2
m

βmh

βhmbmµh
bhµm

−µm



 ,

With the following eigenvalues λ1 = 0 and λ2 = −
bhµ

3
m+βmhβhmbmµh

bhµ
2
m

at α∗. Thus, λ1 = 0 is a simple zero eigenvalue. Furthermore, denote

by w = (w1,w2)
T a right eigenvector associated with λ1 = 0. It

follows that

−
βmhβhmbmµh

bhµ2
m

w1 + βmhw2 = 0, (4.11)

−
βhmbmµh

bhµm
w1 + µmw2 = 0. (4.12)

It follows from Equation (4.11) that

w1 =
µ2
mbh

βhmbmµh
w2

Where w2 is a free right eigenvector i.e., w2 > 0, so that

w = (w1,w2)
T =

(

µ2
mbh

βhmbmµh
w2,w2

)T

. (4.13)

Similarly, the left eigenvector denoted by V = (V1,V2) is given by

−
βmhβhmbmµh

bhµ2
m

V1 +
βhmbmµh

bhµm
V2 = 0, (4.14)

βmhV1 − µmV2 = 0. (4.15)
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Hence,

V1 =
µm

βmh
V2,

so that

V = (V1,V2) =

(

µm

βmh
V2,V2

)

. (4.16)

According to Boldin [29], after dividing out the trivial

equilibrium solution, the local dynamics of the system (Equation 2.3)

around the disease-free equilibriumM0 is completely determined by

M =

2
∑

i,j,k=1,2

wi

(

∂mij(M0, 0)

∂yk
+

∂mik(M0, 0)

∂yj

)

VjVk

−2

2
∑

i,j,k=1,2

wi
∂mij(M0, 0)

∂zk
VjVk, (4.17)

Where w and V denote the right and left eigenvectors, respectively.

Note that z = (Sh, Sm) and y = (Ih, Im). The non-zero partial

derivatives of Equation (4.17) are

∂m11

∂Ih
= −(A0 − αp1bh),

∂m21

∂Ih
=

βhmbmµh

bhµm
,
∂m12

∂Im

= βmh,
∂m22

∂Im
= −µm. (4.18)

Thus, in view of Equation (4.18),M reduces to

M = 2w1V
2
1

∂m11

∂Ih
+ 2w2V

2
1

∂m21

∂Ih
+ 2w1V

2
2

∂m12

∂Im
+ 2w2V

2
2

∂m22

∂Im

= −2w1V
2
1 (A0−αp1bh)+2w2V

2
1

βhmbmµh

bhµm
+2w1V

2
2βmh−2w2V

2
2µm

= −2

(

µ2
mbhw2

βhmbmµh

)

(

µmV2

βmh

)2

(A0 − αp1bh)

+
2βhmbmµh

bhµm

(

µmV2

βmh

)2

w2 + 2

(

bhµ
2
mw2

βhmbmµh

)

V2
2βmh − 2w2V

2
2µm.

Thus, simplifying to give

M =
2µmw2V

2
2B

βhmβmhbmµhbh

(

A

B
− 1

)

, (4.19)

Where A = β2
mh

b2
h
µm + b2mµ2

h
βhm and B = βhmbh(µmbh +

βmhbmµh).

According to the Boldin [29], the direction of bifurcation is

completely dependent on the sign ofM, more importantly, if the ratio
A
B < 1, then the direction of bifurcation is supercritical (forward)

which implies that the endemic equilibrium M∗ of the system

(Equation 2.3) is locally asymptotically stable if R0 > 1. Further, if

the ratio A
B > 1 such that M > 0, then the direction of bifurcation

is subcritical (backward) which implies that the epidemiological

requirement of having R0 < 1 is necessary but no longer sufficient

for effective disease eradication.

Theorem 2. The endemic equilibrium M∗ of system (Equation 2.3)

undergoes: [i] supercritical (forward) bifurcation if A
B < 1 [ii]

subcritical (backward) bifurcation if A
B > 1.

5. Optimal control problem

Following the explanation of how some parameters of the

model can impact the basic reproduction number and how we can

mitigate against it, the following recommended malaria treatment

and preventative interventions are suggested to control malaria.

Depending on the level of malaria transmission in the area

determines the choice of interventions.

5.1. Blood screening

Rapid and accurate identification of malaria is essential for the

implementation of effective therapy to reduce related morbidity

and mortality. Accurate malaria detection is also essential for

epidemiologic screening and monitoring to guide malaria control

strategies, for testing the efficacy of antimalarial medications and

vaccines in research, and for blood bank screening.

5.2. Long lasting insecticide bed net

Insecticide-treated bed nets (ITNs) are a form of personal

protection that has been shown to reduce malaria-related illness,

severe disease, and mortality in endemic areas. Community-wide

studies in many African contexts have shown that the use of ITNs

reduces the death rate of children under the age of five by about 20

percent.

5.3. Treatment using anti-malaria drug

When used for both prevention and treatment, anti-malarial

medications can make a substantial contribution to the control of

malaria in endemic regions.

5.4. Spraying chemicals/pesticides on
mosquito breeding sites

Space spraying is the application of a liquid insecticide fog to an

outdoor region to kill adult insects. It has been utilized frequently in

public health and pest control programs, particularly as an emergency

response to malaria epidemics.

5.5. Indoor insecticide spray

Indoor residual spraying (IRS) is a critical method for controlling

and eradicating malaria by focusing on vectors. To aid in the

development of effective intervention strategies, it is critical to

understand the impact of vector control instruments on malaria

incidence and the spread of pesticide resistance. The World Health

Organization (WHO) recommended in 2006 that nations report on

the coverage and impact of indoor residual spray (IRS), but data

on IRS coverage remains limited and imprecise. IRS subnational

coverage in Sub-Saharan Africa for the four major pesticide classes

was estimated between 1997 and 2017.
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Our main focus in this study is to investigate how these

interventions impact the transmission of malaria disease thereby

bringing the reproduction number below unity. Consequently,

an optimal control model with time-dependent controls 0 <

u1(t), u2(t), u3(t), u4(t), u5(t) < 1 is formulated, where

u1 is the time control by screening the blood of donors before

transfusion.

u2 is the time preventive control using Long Lasting Insecticide

Treated Bed nets by susceptible individuals.

u3 is the time control due to the treatment of an infected

individual.

u4 is the time control using pesticides onmosquito breeding/larva

sites.

u5 is the time control using indoor insecticide spray.

Thus, the optimal control model is described by the following

nonautonomous system:

S
′

h =
(

1− u1
)(

1− p1αIh
)

bh − (
(

1− u2
)

λh + µh)Sh + δRh,

I
′

h =
(

1− u1
)

p1αbhIh +
(

1− u2
)

λhSh −
(

σ + u3 + µh

)

Ih,

R
′

h = u3Ih −
(

δ + µh

)

Rh,

S
′

m =
(

1− u4
)

bm − (
(

1− u5
)

λm − µ
(

u2, u4, u5
)

)Sm,

I
′

m =
(

1− u5
)

λmSm − µ
(

u2, u4, u5
)

Im.

0 < U < 1, for
(

u1, u2, u3, u4
)

∈ U (5.1)

where µ
(

u2, u4, u5
)

= µm +
(

u2 + u4 + u5
)

µmax.

We seek to find controls u1(t), u2(t), u3(t), u4(t), and u5(t)

that minimizes the total number of susceptible humans, infected

individuals, and infected mosquitoes while reducing their relative

costs. Thus, a minimizing objective functional J
(

u1, u2
)

is defined

such that

J
(

u1
(

t
)

, u2
(

t
)

, u3
(

t
)

, u4
(

t
)

, u5
(

t
))

=

∫ tf

0

(

W1Sh
(

t
)

+W2Ih
(

t
)

+W3Im
(

t
)

+ w1u
2
1

(

t
)

+ w2u
2
2

(

t
)

+w3u
2
3

(

t
)

+ w4u
2
4

(

t
)

+ w5u
2
5

(

t
)

)

dt, (5.2)

subject to the nonautonomous system (Equation 5.1), where the final

time is denoted by tf . The objective functional used here takes into

account the total susceptible humans, infected humans with malaria,

and the infected mosquitoes to the cost of implementing the controls

u1
(

t
)

, u2
(

t
)

, u3
(

t
)

, u4
(

t
)

, and u5
(

t
)

. In the literature [20], quadratic

objective functions have been used to measure the intervention costs.

Thus, a similar quadratic function is adopted here. A carefully chosen

positive coefficients W1, W2, W3, w1, w2, w3, w4, and w5 to balance

the weights. The controls u1
(

t
)

, u2
(

t
)

, u3
(

t
)

, u4
(

t
)

, and u5
(

t
)

are

bounded, Lebesgue integrable functions. The aim here is to find an

optimal control pair
(

u⋆
1, u

⋆
2, u

⋆
3, u

⋆
4, u

⋆
5

)

, such that

J
(

u⋆
1, u

⋆
2, u

⋆
3, u

⋆
4, u

⋆
5

)

= min
J
(

u1 ,u2 ,u3 ,u4 ,u5
)

(

u1, u2, u3, u4, u5 ∈ U
)

U,

=

{

u1
(

t
)

, u2
(

t
)

, u3
(

t
)

, u4
(

t
)

, u5
(

t
)

: 0 ≤ u1
(

t
)

, u2
(

t
)

, u3
(

t
)

, u4
(

t
)

, u5
(

t
)

≤ 1

}

.

(5.3)

where t ∈
[

0, tf
]

.

The necessary conditions that must be satisfied by the five

optimal controls and the associated state variables are derived. The

Pontryagins maximum principle [30] discussed in Flemings and

Rishel [31] will be used to establish the necessary conditions thatmust

be satisfied by optimal control and its associated states system.

5.6. Existence of an optimal control

The controls u1, u2, u3, u4, and u5 are linked to the objective

function and the adjoint variables by the following Hamiltonian:

H = A1Sh + A2Ih + A3Im + w1u
2
1 + w2u

2
2 + w3u

2
3 + w4u

2
4

+w5u
2
5 + θ1S

′

h + θ2I
′

h + θ3R
′

h + θ4S
′

m + θ5I
′

m. (5.4)

Where θi, i = 1, 2, .., 5 are the adjoint variables (otherwise called

co-state variables). The co-state variables are obtained by taking the

correct partial derivatives of the Hamiltonian with respect to the

associated state variable. In the following, the adjoint and the control

characterization are presented.

Theorem 3. Consider an optimal control u⋆
1, u

⋆
2, u

⋆
3, u

⋆
4, u

⋆
5, and

the coressponding state variable solutions
(

Sh, Ih,Rh, Sm, Im
)

of system

(Equation 5.1), then there exists adjoint variables θi ∈ ℜ5
+, i = 1, 2, .., 5

satisfying the following equation

dθk

dt
= −

∂H

∂uk
, (5.5)

Where k = Sh, Ih,Rh, Sm, Im and with the transversality conditions

θ1(tf ) = θ2(tf ) = θ3(tf ) = θ4(tf ) = θ5(tf ) = 0. The controls u⋆
1,

u⋆
2, u

⋆
3, u

⋆
4 and u

⋆
5 satisfy the following optimality conditions

u⋆
1 = −

bh(αIhp1θ1−αIhp1θ2−θ1)
2w1

,

u⋆
2 =

(

θ5Ihµmax+θ5(Rh+Sh)µmax+Shβmh(θ2−θ1)
)

Im+θ4Smµmax(Sh+Ih+Rh)
2(Sh+Ih+Rh)w2

,

u⋆
3 =

Ih(θ2−θ3)

2w3
,

u⋆
4 =

µmaxImθ5+µmaxSmθ4+bmθ4
2w4

,

u⋆
5 =

(

µmaxImθ5+(µmaxθ4+βhm(θ5−θ4))Sm
)

Ih+µmax(Imθ5+Smθ4)(Rh+Sh)
2(Sh+Ih+Rh)w5

.

(5.6)

Proof: Thus, the adjoint system is obtained as the differential

equations associated with the adjoint variables, determined by

differentiating theHamiltonian function with the corresponding state

variables.

θ
′

1 = −





(1− u2) βmhImSh
(

Sh + Ih + Rh
)2

−
(1− u2) βmhIm

Sh + Ih + Rh
− µh



 θ1

−



−
(1− u2) βmhImSh
(

Sh + Ih + Rh
)2

+
(1− u2) βmhIm

Sh + Ih + Rh



 θ2

−
(1− u5) βhmIhSmθ4
(

Sh + Ih + Rh
)2

+
(1− u5) βhmIhSmθ5
(

Sh + Ih + Rh
)2

− A1,
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θ
′

2 = −



− (1− u1) αp1bh +
(1− u2) βmhImSh
(

Sh + Ih + Rh
)2



 θ1

−



(1− u1) αp1bh −
(1− u2) βmhImSh
(

Sh + Ih + Rh
)2

− σ − µh − u3



 θ2

−u3θ3 +





(1− u5) βhm

Sh + Ih + Rh
−

(1− u5) βhmIh
(

Sh + Ih + Rh
)2



 Smθ4 −





(1− u5) βhmSm

Sh + Ih + Rh
−

(1− u5) βhmIhSm
(

Sh + Ih + Rh
)2



 θ5 − A2,

θ
′

3 = −





(1− u2) βmhImSh
(

Sh + Ih + Rh
)2

+ σ1



 θ1 −
(−1+ u2) βmhImShθ2
(

Sh + Ih + Rh
)2

+
(

δ + µh

)

θ3 +
(−1+ u5) βhmIhSmθ4
(

Sh + Ih + Rh
)2

−
(−1+ u5) βhmIhSmθ5
(

Sh + Ih + Rh
)2

, (5.7)

θ
′

4 = −

(

−
(1− u5) βhmIh

Sh + Ih + Rh
− µm − (u2 + u4 + u5) µmax

)

θ4

−
(1− u5) βhmIhθ5

Sh + Ih + Rh
,

θ
′

5 =
(1− u2) βmhShθ1

Sh + Ih + Rh
−

(1− u2) βmhShθ2

Sh + Ih + Rh

−
(

−µm − (u2 + u4 + u5) µmax

)

θ5 − A3,

With transversality condition (at zero final time, tf ) θk(tf ) = 0

for k = 1, 2, 3, 4, 5. Further, the optimality condition is obtained by

differentiating the Hamiltonian with respect to each of the controls

u1, u2, u3, u4, and u5 at a steady state, thus,

∂

∂u1
H = 2w1u1 −

(

−αIhp1 + 1
)

bhθ1 − p1αIhbhθ2 = 0,

∂

∂u2
H = 2w2u2 +

βmhImShθ1

Sh + Ih + Rh
−

βmhImShθ2

Sh + Ih + Rh
−µmaxSmθ4 − µmaxImθ5 = 0,

∂

∂u3
H = −Ihθ2 + Ihθ3 + 2u3w3 = 0,

∂

∂u4
H = 2w4u4 +

(

−Smµmax − bm
)

θ4 − µmaxImθ5 = 0,

∂

∂u5
H = 2w5u5 −

(

−
βhmIh

Sh + Ih + Rh
+ µmax

)

Smθ4

+

(

−
βhmIhSm

Sh + Ih + Rh
− µmaxIm

)

θ5 = 0. (5.8)

Given the above equations, we obtain the optimal condition:

u1 = −
bh(αIhp1θ1−αIhp1θ2−θ1)

2w1
,

u2 =
(

θ5Ihµmax+θ5(Rh+Sh)µmax+Shβmh(θ2−θ1)
)

Im+θ4Smµmax(Sh+Ih+Rh)
2(Sh+Ih+Rh)w2

,

u3 =
Ih(θ2−θ3)

2w3

u4 =
µmaxImθ5+µmaxSmθ4+bmθ4

2w4
,

u5 =
(

µmaxImθ5+(µmaxθ4+βhm(θ5−θ4))Sm
)

Ih+µmax(Imθ5+Smθ4)(Rh+Sh)
2(Sh+Ih+Rh)w5

.

(5.9)

Thus, (u1, u2, u3, u4, u5) satisfy the optimality conditions























































































u⋆
1 = max

{

0,min

(

1,−
bh(αIhp1θ1−αIhp1θ2−θ1)

2w1

)}

,

u⋆
2 = max

{

0,min

(

1,

(

θ5Ihµmax+θ5(Rh+Sh)µmax+Shβmh(θ2−θ1)

)

Im+θ4Smµmax(Sh+Ih+Rh)

2(Sh+Ih+Rh)w2

)}

,

u⋆
3 = max

{

0,min

(

1, Ih(θ2−θ3)

2w3

)}

,

u⋆
4 = max

{

0,min

(

1,
µmaxImθ5+θ4(Smµmax+bm)

2w4

)}

,

u⋆
5 = max

{

0,min

(

1,

(

µmaxImθ5+(µmaxθ4+βhm(θ5−θ4))Sm
)

Ih+µmax(Imθ5+Smθ4)(Rh+Sh)

2(Sh+Ih+Rh)w5

)}

.

(5.10)

The following theorem is used to show that there exists an optimal

control u⋆ for the optimal control problem.

Theorem 4. [32]. There exists an optimal control given the objective

functional J defined on the control set U and subject to the state system

with positive initial conditions at t = 0, u⋆
1, u

⋆
2, u

⋆
3, u

⋆
4 and u

⋆
5 such that

J
(

u⋆
1, u

⋆
2, u

⋆
3, u

⋆
4, u

⋆
5

)

= min

{

J
(

u1, u2, u3, u4, u5
)

: u1, u2, u3, u4, u5 ∈

U

}

holds when the following properties are satisfied:

(1) The permissible control set U is convex and closed

(ii) The state system is constrained by a linear function in the states and

control variables

(iii) The integrand of the objective functional J in Equation (5.2) is

convex with respect to the control.

(iv) The Lagrangian is bounded below by

a0

(

|u|2

)

a2
2

− a1,

for constants a0, a1 > 0 and a2 > 1.

Proof: Let the control set U =
[

0,Umax

]

, Umax ≤ 1, u ∈ U,

x =
(

Sh, Ih,Rh, Sm, Im
)

and G0

(

t, x, u
)

be the right-hand side of the
non-autonomous system (5.1) given by

G0
(

t, x, u
)

=















(

1− u1
)(

1− p1αIh
)

bh − (
(

1− u2
)

λh + µh)Sh + δRh
(

1− u1
)

p1αbhIh +
(

1− u2
)

λhSh −
(

σ + u3 + µh

)

Ih
u3Ih −

(

δ + µh

)

Rh
(

1− u4
)

bm − (
(

1− u5
)

λm + µ
(

u2, u4, u5
)

)Sm
(

1− u5
)

λmSm − µ
(

u2, u4, u5
)

Im















,

(5.11)

for u =
(

u1, u2, u3, u4, u5
)

∈ U. We next verify the four properties

in theorem 4:

(i) Given the control set U =
[

0,Umax

]

. By definition, U is closed.

Further, let v1, v2 ∈ U, where v1 and v2 are any two arbitrary points.

It follows from the definition of a convex set, that

λv1 + (1− λ)v2 ∈
[

0,Umax

]

, for all λ ∈
[

0,Umax

]

.

Consequently, λv1+(1−λ)v2 ∈ U, which implies the convexity ofU.
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(ii) Clearly, G0

(

t, x, u
)

can be decomposed as

G0

(

t, x, u
)

= G1

(

t, x
)

+ G2

(

t, x
)

u, (5.12)

where

G1

(

t, x
)

=

















(

1− p1αIh
)

bh − µhSh + δRh
λhSh −

(

σ + µh

)

Ih
−
(

δ + µh

)

Rh
bm − λmSm − µmSm

λmSm − µmIm

















, (5.13)

G2

(

t, x
)

=















−
(

1− p1αIh
)

bh λhSh 0 0 0

−p1αbhIh −λhSh −Ih 0 0

0 0 Ih 0 0

0 −µmaxSm 0 −
(

bm + µmaxSm
) (

λm − µmax

)

Sm
0 −µmaxIm 0 −µmaxIm −

(

λmSm + µmaxIm
)















.

(5.14)

The norm of Equation (5.12) is

||G0

(

t, x, u
)

|| ≤ ||G1

(

t, x
)

| + ||G2

(

t, x
)

||||u||,

≤ a0 + a1||u||,
(5.15)

Where a0 and a1 are positive constants obtained as follows:

Let the components of the upper bound for G1

(

t, x
)

using the

superposition approach be

g20 =





















(

bh + δRh
)2

β2
mh

I2mS
2
h

N2
h

0

b2m
β2
hm

I2
h
S2m

N2
h





















= b2h + 2bhδRh + δ2R2h +
β2
mh

I2mS
2
h

N2
h

+b2m +
β2
hm

I2
h
S2m

N2
h

.(5.16)

Let the bound on the state variables be K =

max
{

KSh ,KIh ,KRh ,KSm ,KIm

}

, then

g20 =

(

9δ2 + β2
mh

+ β2
hm

9

)

K2 + 2bhδK + b2h + b2m. (5.17)

By using the inequality concept

ax+ by ≤ max
{

a, b
}(

x+ y
)

, (5.18)

yields

g0 =
√

max
{

A1,A2,A3,A4

}(

K2 + K + b2
h
+ b2m

)

, (5.19)

where A1 =
9δ2+β2

mh
+β2

hm
9 , A2 = 2bhδ, A3 = A4 = 1.

Further, the sum of the squares of each component of G2

(

t, x
)

is

g21 = 2b2h

(

1− p1αIh

)2

+ 2
β2
mh

I2mS
2
h

N2
h

+ 2I2h + µ2
maxS

2
m

+

(

bm + µmaxSm

)2

+

(

βhmIhSm

Nh
− µmaxSm

)2

+2µ2
maxImax +

(

βhmIhSm

Nh
+ µmaxIm

)2

. (5.20)

Note that the upper bound for the state variables i.e.,

Sh = Ih = Rh =
bh
µh

and Sm = Im = bm
µm

. By replacing each

variable by its upper bound in Equation (5.20) leads to

g1 =
√

A5b
4
h
+ A6b

3
h
+ A7b

2
h
+ A8b2m, (5.21)

where A5 =
2p21α

2

µ2
h

, A6 = −
4p1α
µh

, A7 = 2

(

9+9µ2
h
+β2

mh

9µ2
h

)

, and A8 =

9µ2
m+54µ2

max+18µmµmax+2β2
hm

9µ2
m

.

Applying the concept introduced in Equation (5.18) yields

g1 =
√

max
{

A5,A6,A7,A8

}(

b4
h
+ b3

h
+ b2

h
+ b2m

)

. (5.22)

(iii) Recall the integrand of the objective function defined in Equation

(5.2) written as

H
(

t, x, ui

)

= GW

(

t, x
)

+ gw
(

t, ui
)

, (5.23)

for i = 1, 2, ...5, GW

(

t, x
)

= W1Sh +W2Ih +W3Im, and gw
(

t, ui
)

=
∑5

i,=1 wiui. It is sufficient to prove that gw
(

t, ui
)

=
∑5

i,=1 wiui is

convex on ui i.e., we need to show that

gw

(

t,
(

1− λi
)

v1 + λiv2

)

=≤
(

1− λi
)

gw
(

t, v1
)

+ λigw
(

t, v2
)

, (5.24)

for v1, v2 ∈ U and λi ∈
[

0,Umax = 1
]

. By definition, it implies that























gw
(

t, v1
)

=
∑5

i,=1 wiv1,

gw
(

t, v2
)

=
∑5

i,=1 wiv2,

gw
(

t,
(

1− λi
)

v1 + λiv2
)

=
∑5

i,=1 wi

(

(

1− λi
)

v1 + λiv2

)

.

(5.25)

Thus in view of (5.25), Equation (5.24) becomes

gw

(

t,
(

1− λi
)

v1 + λiv2

)

−
(

1− λi
)

gw
(

t, v1
)

− λigw
(

t, v2
)

= −wi

(

1− λi
)(

v1 − v2
)2

≤ 0,

since λi ∈
[

0,Umax = 1
]

, this then implies that the integrand

H
(

t, x, ui
)

of the objective functional J is convex.

(iv) The fourth property is proved as follows:

H
(

t, x, ui
)

= GW

(

t, x
)

+

5
∑

i,=1

wiui,

≥

5
∑

i,=1

wiui,

a0

( 5
∑

i,=1

ui

)

a2
2

− a1.

where a0 = min
{

wi

}

, a1 > 0, and a2 = 2. This completes the

proof.
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TABLE 1 Parameters and their estimates.

Symbols Description Estimates (per month) Range Source

π Recovery rate of infected human after treatment 0.7585 (0, 0.997) Estimated from data

σ Malaria induced death rate 0.0008 (0, 0.01) Estimated from data

p1 Probability that a human is infected through blood

transfusion

0.5979 (0.2, 1) Estimated from data

α Transfusion term 0.6626 (0, 1) Estimated from data

δ Rate of progression to susceptible group 0.7615 (0.25, 1) Estimated from data

bh Human recruitment rate 0.00011 (0, 0.05) [33]

bm Mosquito recruitment rate 0.071 (0, 0.1) [33]

µh Natural death of human 0.0015 (0, 0.05) Demographic data

µm Natural death of mosquito 0.067 (0, 0.1) [34]

βmh Transmission rate from mosquito to human 0.3 (0, 0.8) [34]

βhm Transmission rate from human to mosquito 0.09 (0, 0.2) [34]

5.7. Parameter estimation

The parameters of the model were estimated directly from the

real monthly data collected on malaria cases from Benue State in

Nigeria. Some of the parameters are estimated, some were assumed

and some were adopted from the literature. The results of the

estimated parameters and other parameters are displayed in Table 1.

The parameters are estimated based on the relationship already

established among the variables from the dynamic system in Equation

(2.3) at a steady state. It should be noted that Sh, Ih, Rh, Sm, and Im
are time dependent variables, t = 1, 2, . . ., n. It should be noted that

2 > 0, where2 is the parameter space at any given time. The natural

death rate for humans, µh is directly obtained from demographic

data, and it is given by

µ̂h =
1

12

1

µ0
, (5.26)

Whereµ0 = 55.12 is the average life expectancy of Nigeria at the time

the data was collected. Note that µh was calibrated to a monthly rate.

Thus the value of µ0 is 0.0015, which implies that the natural death

rate is approximately 15 out of 10,000 persons monthly. In simple

terms, on average 15 out of 10,000 people die every month naturally.

Without loss of generality, we can denote Sh(t) by just Sht and the

same for other variables. The recovery rate of infected humans after

treatment, π is estimated by

π̂ =

∑n
t=1 Rht

∑n
t=1 Iht

, (5.27)

Where t, t = 1, 2, ..., n is time measured in months and n is the

number of months covered. The variables Rht and Iht are the number

of recovered humans and the number of infected humans at time t

respectively.

Malaria induced death rate of infected humans, σ is estimated by

σ̂ =

∑n
t=1 Dht

∑n
t=1 Iht

. (5.28)

The variable Dht is the number of malaria induced deaths at time t.

The probability that a human is infected through blood transfusion,

p1 is given by

p̂1 =

∑n
t=1 Iht

∑n
t=1 Eht

, (5.29)

Where Eht is the number of exposed humans to malaria through

exposure to an infected mosquito bite or via infected blood

transfusion. The transfusion rate, α is given by

α̂ =

∑n
t=1 Iht

∑n
t=1 Tht

, (5.30)

Where Tht number of humans whose blood was tested and screened

for malaria. Based on Equations (5.29), (5.30), it should be noted that

E(t) > T(t) for all t, so that α > p1. This is enforced because the

blood transfusion rate should be greater than the probability that a

human is infected through blood transfusion. Recall from Equation

(2.3) that

S
′

h = (1− p1αIh)bh − (λh + µh)Sh + δRh,

at steady state, we have

0 = (1− p1αIh)bh − (λh + µh)Sh + δRh.

Solving for δ gives

δ̂ =
1

nR̄



(λ̄ht + µh)

n
∑

t=1

Sht − bh + αbhp1

n
∑

t=1

Iht



 , (5.31)

Where δ̂ is the estimate of the rate of progression to the susceptible

group, δ; R̄ is the period average for the number of recovered

humans, and the term αbhp1
∑n

t=1 Iht account for the force of

infection as a result of blood transfusion, p1 is the probability of

effectively transfusing infected blood to a susceptible human, α is

the transfusion term, bh is the recruit rate of humans, and λ̄ht is

the average force of transmitting malaria infection from an infected

mosquito-to-human, and it is given in Equation (2.1).

Frontiers in AppliedMathematics and Statistics 13 frontiersin.org

https://doi.org/10.3389/fams.2023.1105543
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Adeniyi et al. 10.3389/fams.2023.1105543

6. Statistical data analysis

6.1. Exploratory data analysis

The data analyzed is a time series of secondary data on the

monthly incident of malaria in Benue State collected from the Benue

StateMinistry of Health from June 2013 to September 2016, spanning

40 months of data points. All the values of the variables are monthly

and the parameters estimated are per month. Figures 4–7 are plotted

in this study directly based on the Benue State malaria available data.

Figure 4 shows that the incidence of malaria in Benue State

depicts a seasonal variation. The incidence of malaria is always high

at a particular time of the year (June to October) and always low from

December to March. This variation is seen over the 4 years under

study. Figure 5 shows the cumulative incidence of malaria. All the

variables do not show any sign of flattened curves, except for deaths.

Figure 6 depicts the distribution of monthly incidents of malaria

in Benue State. The histograms show that the susceptible population

is asymptotically uniformly distributed, the exposed population is

negatively skewed, the tested population is approximately normally

distributed, the infected and total infected have multiple local

maximum points and death is positively skewed.

Figure 7 shows the spread of the malaria incident in Benue State.

The boxplots show that all the variables are highly spread as can be

seen in the values of their standard deviations in Table 1.

6.2. Variables predicted

Some of the variables used in the model are predicted using the

parameters and the formulated models at a steady state. The ones

where the data are available were not predicted and are shown in

Table 1, but the ones whose real data are not available were predicted

as displayed in Table 2. The results of the predicted variables are

displayed in Table 3.

Table 1 shows the initial parameters used to fit the dynamic

model. The initial values are the values in the initial month of the

data collected. It should be noted that the data are monthly data.

6.3. Model fitting

The model fitting was performed using a genetic algorithm (GA)

[35] for our function optimizer, usingMATLAB; the GA helps us find

the correct region of attraction, which provides the starting values

for the parameters to be estimated in the fmincon function in the

Optimization Toolbox of MATLAB. Hence, we shall be combining

two optimization algorithms for our data fitting, a GA and the

fmincon algorithm in MATLAB to get a more accurate estimate. Our

model fitting is implemented for a malaria data set of Benue State,

Nigeria from June 2013 to September 2016 (see Figure 8).

7. Numerical simulations and discussion
of results

This section is devoted to numerically illustrating the theoretical

results obtained in the model analysis. Table 1 present the parameter

values and their sources.Where the parameter values are not available

from literature or estimation, realistic values were assumed in the

simulation. In the following, we simulate different combinations of

treatment and preventive control measures to investigate their impact

onmalaria transmission.We have excluded simulating single controls

following the recommendation of WHO [36] that a combination of

controls is recommended to control/interrupt malaria transmission.

Thus, we shall simulate to investigate the following scenarios:

(i) Possible combinations using two (2) controls only.

(ii) Possible combinations using three (3) controls only.

(iii) Possible combinations using four (4) controls only.

(iv) Possible combinations using all five (5) controls.

To perform the simulation, we assumed that the weight

functions Wi, i = 1, 2, ..5, associated with the controls are

unity. Also, the initial values for the state variables and

parameter values are given in Tables 1, 3, respectively. The

Supplementary Figures 7.1–7.26 represent the various scenarios

described below can be seen on the Supplementary material.

We next discuss the various scenarios arising from the

simulations:

7.1. Optimal blood screening (u1) and long
lasting insecticide treated bednets (u2)

Using this strategy, we optimize the objective function using the

controls u1 and u2 when u3 = u4 = u5 = 0, it can be seen

from Supplementary Figure 7.1 that without the controls, there is a

sharp decline in the number of susceptible humans that progresses

to the infected humans. This is indeed the case as we have a high

increase in the number of infected mosquitoes. In the presence of

controls u1 and u2, susceptible humans maintained a constant level

after about 50 months while the number of infected humans and

infected vectors are reduced significantly after 50 months. It can also

be observed from Supplementary Figure 7.1 that little or no humans

are recovered.

7.2. Optimal blood screening (u1) and
treatment (u3)

In this case, we simulated only u1 and u3 while other

controls remain zero. Specifically, it can be noticed from

Supplementary Figure 7.2 that the intervention strategies lead

to a decrease in the number of both infected humans and mosquitoes

as against an increase observed in the uncontrolled case, while at the

same time, susceptible humans maintained a steady level and more

humans recovered.

7.3. Optimal blood screening (u1) and
pesticide/chemicals spray (u4)

Using this strategy, Supplementary Figure 7.3 shows that the

adopted strategy does not have an impact on susceptible, infected,

and recovered humans, respectively. It can also be observed from
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FIGURE 4

Monthly incident of malaria in benue.

Supplementary Figure 7.3 that the combination of the controls u1
and u4 had little impact on the infected mosquito population, which

explains why this strategy does not provide control on susceptible,

infected and recovered humans.

7.4. Optimal blood screening (u1) and indoor
insecticide spray (u5)

With this strategy, it was observed in Supplementary Figure 7.4

that there is a significant difference in Ih and Im using controls u1 and

u5 compared to Ih and Im without control. This strategy also shows

a significant difference in optimal Susceptible Sh compared to Sh in

the uncontrolled case. Since there is no treatment strategy (u3 = 0)

in place, this strategy does not have control over recovered humans.

7.5. Optimal LLITBs (u2) and treatment (u3)

In Supplementary Figure 7.5, this strategy, when applied,

shows a significant decrease in the number of infected humans

and infected mosquitoes as against an increase observed in the

uncontrolled case. Also, in the uncontrolled case, susceptible

individuals stabilize for around 50 months while in the

uncontrolled case, susceptible individuals are further depleted

increasing the number of infected humans Ih. The strategy, also

revealed that it is potent for recovered humans as shown in

Supplementary Figure 7.5.

7.6. Optimal LLITBs (u2) and
pesticides/chemicals spray (u4)

Here, the controls u2 and u4 are used to optimize the objective

function with other controls u1 = u3 = u5 = 0. The

implementation of this strategy revealed in Supplementary Figure 7.6

that the number of infected humans and infected mosquitoes

differs significantly from the uncontrolled case. The figure further

showed that there is no significant impact on recovered individuals

since treatment u3 = 0 is not considered in this strategy. This

strategy shows a close difference between controlled and uncontrolled

susceptible humans.
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FIGURE 5

Monthly cumulative incident of malaria in benue.

7.7. Optimal LLITBs (u2) and indoor
insecticide spray (u5)

In this scenario, the controls u2 and u5 are used to

optimize the objective function, with other controls set to zero.

Supplementary Figure 7.7 shows that this strategy has little effect

on susceptible humans becoming infected. It can be seen that the

number of susceptible humans in both controlled and uncontrolled

cases is very close. This strategy also provides no control over

the recovered humans. In Supplementary Figure 7.7, there is little

difference in the number of infected humans between the controlled

and uncontrolled cases. Further, the number of infected mosquitoes

is reduced for the controlled case when compared to the uncontrolled

case.

7.8. Optimal treatment (u3) and
pesticides/chemicals spray (u4)

The objective function is optimized in this case by u3 and

u4 while other controls u1, u2, and u5 are set to zero. In

Supplementary Figure 7.8, by using this strategy, there is a significant

difference in the number of susceptible humans in the controlled

case compared to the uncontrolled case. This strategy also shows

that there is a significant difference in the number of infected

mosquitoes compared to the uncontrolled case. Similarly, using

this strategy, there is a sharp difference in the number of infected

humans with fluctuations before finally settling down around

60 months. This account for the considerable difference in the

number of recovered humans using this strategy. It is also observed

in Supplementary Figure 7.8, the recovery of individuals occurs

with oscillations before finally settling to a steady state around

60 months.

7.9. Optimal treatment (u3) and indoor
insecticide spray (u5)

This strategy involves the optimization of the objective function

using u3 and u5 while other controls are set to zero. In

Supplementary Figure 7.9, it is shown that there is a significant

difference in the number of susceptible individuals in the controlled

case compared to the uncontrolled case. This strategy shows that it

is effective for recovered humans as there are few or no individuals

left to recover from the disease. The number of infected humans and

infected mosquitoes is significantly reduced in the controlled case as

against when there is no control.

7.10. Optimal pesticides/chemicals spray
(u4) and indoor insecticide spray (u5)

The objective function is optimized using the controls u4 and u5
with u1 = u2 = u3 = 0. The result of this strategy as shown in
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FIGURE 6

Distribution of monthly incident of malaria in benue.

Supplementary Figure 7.10 revealed that it impact the reduction of

infected mosquitoes significantly as compared to the uncontrolled

case. With control, the number of infected individuals dropped

significantly to about 500, 000 infected individuals as against 2Million

infected individuals in the uncontrolled case. However, this strategy

does not have any impact on recovered individuals. The simulation

in Supplementary Figure 7.10, revealed that in the uncontrolled case,

more susceptible humans progress significantly to the infected class

when compared to the controlled case.

7.11. Optimal blood screening (u1), LLITBs u2

and treatment (u3)

The combination of the controls u1, u2, and u3 are used

to optimize the objective function while keeping u4 and u5
to be zero. Using this intervention strategy, it can be seen in

Supplementary Figure 7.11, for the controlled case, the number of

infected humans and infected mosquitoes is reduced significantly

while a considerable increase is observed when control is not in place.

It can be seen in Supplementary Figure 7.11, that for the strategy, the

recovered class display oscillations which may suggest that disease

transmission may increase/decrease during certain months of the

year. With control in place, the number of susceptible individuals is

maintained at a steady level as against the sharp decline in the number

of susceptible when there is no control.

7.12. Optimal blood screening (u1), LLITBs u2

and pesticide/chemical spray (u4)

The objective function is optimized using the controls u1, u2, and

u4 with u3 = 0 and u5 = 0 is not effective to aid human recovery from

the disease, however, a significant decrease is observed in the number

of infected humans and infected mosquitoes when this strategy is

implemented as compared when there is no control. This strategy

can keep the number of susceptible humans at a steady level while

the number decreases significantly when there is no control in place.

7.13. Optimal blood screening (u1), LLITBs u2

and indoor insecticide spray (u5)

The controls u1, u2 and u5 are used to optimize the

objective function while setting u3 and u4 to zero. From

Supplementary Figure 7.13, it can be seen that there is little difference

in the number of susceptible individuals between the controlled

and uncontrolled cases, while the strategy does not affect number
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FIGURE 7

Spread of monthly incident of malaria in benue.

of recovered humans. There is little difference in the number

of infected humans with control and when control is not in

place. With control, it is observed in Supplementary Figure 7.3

that the number of infected mosquitoes is reduced by half while

the number of infected mosquitoes is doubled in the absence

of controls.

7.14. Optimal blood screening (u1),
treatment u3, and pesticides/chemicals
spray (u4)

The objective function in this case is optimized using u1, u3
and u4 with u2 = 0 and u5 = 0. Supplementary Figure 7.14,

shows that the strategy has significant control on susceptible

humans and infected mosquitoes, respectively. It can also be

seen that the control has a significant effect on the number

of infected humans and recovered humans, respectively.

The oscillations observed in the controlled cases for both

infected and recovered humans may be a result of the

varying transmission of the disease during certain months of

the year.

7.15. Optimal blood screening (u1),
treatment u3, and indoor insecticide spray
(u5)

In this instance, only the controls u1, u3 and u5 are used to

optimize the objective function. In Supplementary Figure 7.15, the

strategy shows that the number of susceptible and recovered humans

is increased compared to the uncontrolled case. It is also observed

using this strategy, decreases the number of infected humans and

vectors for the controlled case as against the increase observed when

there is no control.

7.16. Optimal blood screening (u1),
pesticides/chemicals u4 spray, and indoor
insecticide spray (u5)

The objective function is optimized using combination

of controls u1, u4, and u5 with u2 = u3 = 0. As shown

in Supplementary Figure 7.16, the strategy has little impact

on susceptible humans while it has no impact on recovered
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FIGURE 8

Model fitting using GA and the fmincon algorithm.

humans. It can be seen in Supplementary Figure 7.16, that the

strategy has an impact in reducing the number of infected

mosquitoes as against the uncontrolled case. The number of

infected humans in the controlled case is about half of the

uncontrolled case.

7.17. Optimal LLITBs (u2), treatment u3, and
pesticides/chemicals spray (u4)

This strategy optimizes the objective function

using the combination of the controls u2, u3, and

u4. In Supplementary Figure 7.17, this strategy has

a significant impact in controlling the number of

susceptible humans, infected humans, recovered humans,

and infected mosquitoes compared to the uncontrolled

case.

7.18. Optimal LLITBs (u2), treatment u3, and
indoor insecticide spray (u5)

The combination of the controls (u2), (u3), and (u5) with

(u1 = u4 = 0) are used to optimize the objective function

in this instance. From Supplementary Figure 7.18, this strategy

has a significant impact on controlling malaria disease. Using

this strategy, the number of infected humans and mosquitoes is

significantly reduced with more individuals recovering from the

disease after treatment. In the controlled case, the progression

of susceptible humans is significantly reduced compared to the

uncontrolled case.

TABLE 2 Predicted variables summary statistic.

Symbols Description Monthly
mean

Std
error

Range

Rh Recovered

humans

13,124 741.2 (3,724, 21,740)

Nh Total human

population

5,326,174 21,458.9 (5,091,749,

5,556,041)

Im Infected

mosquitoes

33,475 134.9 (32,001,

34,919)

Sm Susceptible

mosquitoes

10,104,630 40711.1 (9,659,888,

10,540,726)

TABLE 3 Initial values of all variables of interest.

Date Sh Ih Rh Sm Im

June 2013 5,084,288 3,737 3,724 9,659,888 32001.31

7.19. Optimal LLITBs (u2), treatment (u3), and
indoor insecticide spray (u5)

The objective function in this case is optimized using controls

(u2), (u4), and (u5) when u1 and u3 are zero. The simulation

using this strategy revealed that it has very little impact in

controlling malaria disease transmission. Specifically, it can be seen

in Supplementary Figure 7.19 that the number of infected humans

and mosquitoes is still high despite the control with no humans

recovered. It can be observed that only a few susceptible humans are

protected from getting infected as there is little difference between the

controlled and uncontrolled cases for susceptible humans.
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7.20. Optimal treatment (u3),
pesticide/chemicals spray (u4), and indoor
insecticide spray (u5)

We optimize the objective function using the combination

of the controls u3, u4 and u5 with u1 and u2 assumed to

be zero. The simulation result in Supplementary Figure 7.20

shows that this strategy is highly effective in controlling

malaria disease transmission. With this strategy in place,

it can be seen in Supplementary Figure 7.20 that the

number of infected humans and mosquitoes is significantly

reduced while a significant number of humans recovered

from the disease. The simulation also indicates that more

individuals are less susceptible to malaria as a result of

this strategy.

7.21. Optimal blood screening (u1), LLITBs
(u2), treatment (u3), and pesticide/chemicals
spray (u4)

The objective function is optimized using the controls

u1, u2, (u3), and u4 with u5 = 0. We observe from

Supplementary Figure 7.21 that the number of recovered humans

and susceptible individuals differ considerably compared to when

there is no control. Furthermore, Supplementary Figure 7.21,

reveals that the number of infected humans and infected

mosquitoes is lower when compared with the case

without control.

7.22. Optimal blood screening (u1), LLITBs
(u2), treatment (u3), and indoor insecticide
spray (u5)

With this strategy, the controls u1, u2, (u3), and u5 are

used to optimize the objective function with u4 = 0. For this

strategy, shown in Supplementary Figure 7.22, we observe a

significant difference in the number of susceptible humans,

infected humans, recovered humans, and infected mosquitoes

with optimal strategy compared to susceptible humans,

infected humans, recovered humans, and infected mosquitoes

without control.

7.23. Optimal LLITBs (u2), treatment (u3),
pesticide/chemicals spray ((u4), and indoor
insecticide spray (u5)

With this strategy, the objective function is optimized using the

combination of the controls u2, (u3),((u4), and u5 while setting u1
to zero. Observe from Supplementary Figure 7.23 that this optimal

strategy shows a significant difference in the number of susceptible

individuals, infected humans, and infected mosquitoes as against the

uncontrolled case.

7.24. Optimal blood screening (u1), LLITBs
(u2), treatment (u3), pesticide/chemicals
spray ((u4), and indoor insecticide spray (u5)

In this case, all the five controls u1, u2, u3,u4, and u5 are

used to optimize the objective function. With this strategy, it is

observed in Supplementary Figure 7.24 that the control strategies

resulted in a significant decrease in the number of infected humans

and mosquitoes as against an increase in the number of infected

humans and mosquitoes when no control is applied. Similarly, there

is an increase in the number of recovered humans when controls

are in place compared to the decrease in the number of required

humans in the absence of no control. With optimal strategy, the

number of susceptible humans differs considerably compared to the

uncontrolled case.

In Supplementary Figures 7.25, 7.26, the control profiles are

displayed. In Supplementary Figure 7.25, the control profile using

blood screening, u1 became about 20% effective after 130months

which was soon increased to around 39% effective in another 45

months before declining. The control u2, became about 15% effective

for over 150months before declining. For the first 170 months, u3
was 15% effective before experiencing a sharp decline for about 20

months and thereafter picked up again. About 40% effectiveness

was achieved in the control of malaria using control u4 and u5
before steadily declining after 60months and 90months, respectively.

In Supplementary Figure 7.26, the profiles for all the control are

presented. It can be seen that controls u4 and u5 perform optimally,

this is closely followed by u1 while both u2 and u3 are next.

From the foregoing discussion, it can be seen from our

simulations that the combination of using all the five (5)

controls (u1, u2, u3, u4, u5), the combination of four (4) controls

[(u1, u2, u3, u5) and (u2, u3, u4, u5)], and combination of three (3)

controls [(u2, u3, u5) and (u3, u4, u5)] have the highest impact

on malaria disease control. A further look into the suggested

combinations shows that controls u2, u3 and u5 are common to

all the combinations, that is the combination (u2, u3, u4, u5)) where

resources are scarce may be sufficient to control the spread of malaria.

The above scenarios of the controls can be best interpreted to

mean that for malaria disease eradication, more combinations of

the controls are suggested depending on the area and availability

of resources. This submission is in line with World Health

Organization’s (WHO) position that only one control strategy is not

sufficient to interrupt malaria transmission [36].

8. Conclusion

A mathematical analysis of the blood transfusion-transmission

dynamics of malaria disease has been rigorously studied in this

work. The malaria model under investigation revealed that there

exists a relationship between the reproduction number for malaria

(R0) and the reproduction number for malaria induced through

blood transfusion Rα . The study further revealed that the basic

reproduction number is sensitive to parameters such as the

transmission rate from mosquito-to-humans βmh, transmission rate

from humans-to-mosquito βhm blood transfusion reproduction

number Rα , recruitment rate of the mosquitoes bm. The malaria

disease-free equilibrium, M0 is locally globally asymptotically stable

if both R0 and Rα are less than or equal to unity. The implicit
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function theorem was used to investigate the local stability of

the malaria endemic equilibrium M⋆. The result revealed that

M⋆ may undergo a supercritical (forward) bifurcation if the

quantity A
B < 1 or a subcritical (backward) bifurcation if the

quantity A
B > 1. Consequently, an optimal control problem

using both time-dependent preventive and treatment controls to

mitigate the disease was studied using the Pontryagins Maximum

Principle. The results revealed that the combination of all the five

(5) controls (u1, u2, u3, u4, u5), combination of four (4) controls

[(u1, u2, u3, u5) and (u2, u3, u4, u5)], and combination of three (3)

controls [(u2, u3, u5] and u3, u4, u5)] are recommended to mitigate

against malaria transmission. In areas where resources are scarce,

our study revealed that using the combination of u2, u3, and u5 is

sufficient to effectively interrupt the transmission of malaria disease.

Indeed, our results also agree with earlier studies in Blayneh et al.

[14] and Agusto et al. [13] on malaria control, however, our results

present five possible control strategies that are sufficient to minimize

the transmission of malaria. Subsequently, exploratory data analysis

(EDA) was performed on the malaria data from Benue State Nigeria.

The model was fitted to data and it can be seen that our model gave a

good fit.

In conclusion, the present study has provided us with a

mathematical understanding of malaria dynamics taking into

account transmission via blood transfusion and mosquitoes. As a

suggestion for future research, it will be of interest to study the

cost-effectiveness analysis of the controls studied in this work.
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