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Shimizu–Morioka’s chaos
synchronization: An e�cacy
analysis of active control and
backstepping methods

Absana Tarammim* and Musammet Tahmina Akter

Department of Mathematics, Chittagong University of Engineering & Technology (CUET), Chattogram,

Bangladesh

This research study inspects the e�ectiveness of synchronization methods such

as active control and backstepping control from systematic design procedures

of a synchronized Shimizu–Morioka system for the same parameter. It aimed to

achieve synchronization between the state variables of two identical Shimizu–

Morioka chaotic systems by defining the proposed varieties of the error dynamics

coe�cient matrix. Furthermore, this study also aimed to designed an active

controller that enables the synchronization of these systems. The use of designed

recursive backstepping nonlinear controllers was based on the Lyapunov function.

Furthermore, it also demonstrated the stability of the synchronization of the

nonlinear identical Shimizu–Morioka system. The new virtual state variable and

establishment of Lyapunov functionals are used in the backstepping controller

to stabilize and reduce errors between the Master (MS)/Drive (DS) systems.

For comparison, the complexity of active controllers is verified to be such

that the designed controller’s e�ectiveness based on backstepping is attainable

in engineering applications. Finally, numerical simulations are performed to

demonstrate the e�ectiveness of the proposed synchronization strategy with the

Runge–Kutta (RK-4) algorithm of fourth order through MatLab Simulink.

KEYWORDS

Shimizu–Morioka system, backstepping control, synchronization, Lyapunov function,

active control

1. Introduction

Mathematically, chaotic systems-originated trajectories are characterized by local

unpredictability and widespread boundlessness [1]. A chaotic system must be nonlinear [2,

3]; that is, a nonlinearmathematical modelmust represent it because of local unpredictability

of a linear system which implies the unboundedness of its solutions. The ability of nonlinear

models [4] to explain complex behavior with a limited set of variables and parameters is

one of their advantages. Due to these characteristics, the nonlinear mathematical model

[5, 6] has to describe a chaotic system with characteristics that are sensitive to the initial

condition. It is well known that a chaotic system is a nonlinear deterministic system with

essential properties, such as a slight change in the initial conditions leading to extraordinary

differences in the system state, bounded aperiodic long-time behavior, and also chaotic

system’s deterministic motion, butterfly effect, and trajectories repeatedly passing through

any given point in the phase space. In nonlinear areas, the researchers are motivated

to study the complexity of prospective areas of engineering applications such as lasers

and plasma technologies, physical systems [7], mechanical and chemical engineering [8],

secure communications [9], telecommunications [10], ecological systems [11], and system
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engineering. Chaotic patterns show up in the mountain stream,

cloud patterns, ocean currents, air turbulence, mechanics, laser

physics, biophysics, chemistry [12], biology [13], blood flow in

fractal blood vessels, medicine, electronic circuits [14], astronomy

[15], epidemiology, and ecosystems.

Two chaotic system trajectories starting close to each other will

eventually diverge due to all of the chaotic system’s properties.

In the chaos literature [16], synchronizing two chaotic systems

appears to be a complicated problem because of the butterfly

effect, which causes two identical chaotic systems to exponentially

diverge in their trajectories after starting with nearly the same initial

conditions [17]. Chaos is not chaos inMathematics [18]; everything

is in exact order behind the scenes, such as still deterministic, and

even minor errors create significant errors very quickly, and thus a

numerical approximation has been virtually impossible for a long

time [19]. These characteristics are critical in trouble as chaotic

systems cannot be globally synchronized. However, a nonlinear

system that exhibits chaotic behavior may follow unintended

trajectories, thus one of the leading research areas for the nonlinear

system deals with how to control chaotic systems [20].

Chaos synchronization is an attractive science and technology

phenomenon involving various real-life processes, and in a

physical system, it appears challenging. In the 1990s [21],

Pecora and Carroll [22] explored synchronization techniques

for two chaotic systems with known parameters and different

initial conditions. Researchers began studying chaotic systems’

synchronization procedures broadly and intensively around this

time. The master system-drive (MS-DS) system or response-

slave (RS-SS) formalization is used in the majority of chaos

synchronization techniques. The goal of synchronization, if one

chaotic system is designated as the MS and another chaotic system

as the DS, is to use the output of the MS to control the DS, so that it

asymptotically tracks the output of the master system.

Since Lorenz discovered the first chaotic systems with a

strange chaotic attractor [23], other chaotic systems began to

be studied, namely, the Henon map, Rössler chaotic attractor

[24], Chua’s chaotic attractor in double scroll [25], Chen chaotic

attractor [26], and Lü chaotic attractor. Shimizu and Morioka

[27] introduced continuous-time chaotic systems, becoming

one of the significant chaotic systems. Some articles have

extensively investigated its dynamical behaviors and properties

of a Shimizu–Morioka system [28]. It is an autonomous

3D chaotic system, and a quadratic term and a multiplier

exist for the nonlinearity required for folding trajectories. The

Shimizu–Morioka system with a suitable choice of parameters

includes a chaotic attractor that is butterfly-shaped and that

displays a Lorenz-like system. This system exhibits a bifurcation

representing that of the Lorenz attractor but it is not similar

in topological structure. To better understand the dynamics of

the Lorenz system, let us consider the Shimizu–Morioka system

[29].

In forceful control systems [30], the active control and

backstepping method are frequently accepted due to their

inherent advantages of easy understanding, exterior instabilities,

thoughtlessness to parameter uncertainties, having a quick

response time, and good momentary performance. Bai and

Lonngren [31] introduced the active control method for chaos

synchronization. There are no derivatives in the controller, and the

amplitude of the oscillations is small, or the Lyapunov exponents

are not essential for active control methods on other conventional

control approaches. As it is possible to specify and modify control

objectives, as well as to specify andmitigate multiple challenges, the

sequential control function is ideal for usage in active control [32].

The active control method is more effective in nonidentical chaotic

systems. A nonlinear controller strategy algorithm and observer

exist for handling mismatched perturbation and disturbances [33–

35]; this feature exists in the backstepping control method. In the

backstepping control method, the control function is designed to

enhance the robustness of the control system, solve the inequitable

problem, and switch the frequency interferences without avoiding

cancellations of beneficial nonlinearities where synchronization

between chaotic systems [36] is rendered complete through a single

controller. Therefore, the backstepping method can be reliable to

perform transiently and is globally stable in nonlinear systems

[37, 38].

The active control and backstepping methods of chaotic

systems’ synchronization analysis are mature enough today and

allow for a broad usage of nonlinear models in science and

technology when the system parameters are known to stabilize

the chaotic systems [39, 40]. To achieve this purpose, we use

both methods to synchronize the identical Shimizu–Morioka

system as a real-world example [41]. The basic idea of active

control [42] is to eliminate all errors in the error dynamics,

which indicates that if two chaotic signals track one-another’s

trajectories with further time going to infinity, then the two

chaotic signals will be synchronized. Owing to analyzing the

effect of eigenvalues [43], choosing arbitrary coefficient matrices

to achieve synchronization in active control techniques bececomes

necessary. This method investigates the stability of arbitrary

coefficient matrix formalism with the existence of parameter

values, which can adjust the required synchronization time.

Additionally, the backstepping strategy is a type of synthetic

process in the controller that recursively links the choice of a

Lyapunov function to a constructive process [44]. To stabilize

the system of reformatted time steps with descriptions of the

modern approach, the Lyapunov function is to be selected, and the

control function is designed at the very end. For the global chaos

synchronization of identical Shimizu–Morioka systems, we derive

new results based on active control [45] and backstepping methods

[7, 12].

We successfully developed both methods for effectively

controlling chaotic systems. In this article, we show that

using active controllers, recursive backstepping controllers

for global asymptotic synchronization between two chaotic

systems can be designed. The main novelty of this research

is that the eigenvalues of the coefficient matrix of error state

variables are adjustable to achieve the desired synchronization

time in the suggested active synchronization control strategy.

The active control technique requires sequential controllers

in all of the equations in the system, but the backstepping

approach just needs a single sequential controller. The second

method provides a useful contrast, in that it offers superior

performance while being much easier to implement. We believe

that the recommended control strategies will assist in bringing
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certain chaotic or hyperchaotic systems into synchronization,

given that the majority of chaotic systems in nature have

distinct structures.

The control of chaos in the Shimizu–Morioka system is

investigated using the active and backstepping control methods

and compares the simulation results in the effectiveness of the

two strategies. This article is organized as follows. At first, in

Section 1, we explain the conceptual basis of our article. The

Section 2 describes the Shimizu–Morioka system with chaotic

dynamical behavior. From section 3, we originate the theory and

formulation for the active control procedure of the Shimizu–

Morioka system with known parameters. Section 4 presents the

backstepping synchronization of the identical Shimizu–Morioka

chaotic systems with known parameters. A comparison of the

outcomes of numerical simulations is covered in Section 5 which

deals with a comparison of the numerical simulation results. The

key results of this article are summarized in Section 6.

2. Dynamical analysis of the
Shimizu–Morioka chaotic system

The Shimizu–Morioka chaotic system (Equation 1) is a novel

system that we examine in this article, in which chaotic dynamical

behavior is described by Shil’nikov [27]:

ẋ = y

ẏ = x− ay− xz

ż = −bz + x2

(1)

Where a, b are constant parameters around state variables

x, y, z. The Shimizu–Morioka autonomous three-dimensional

system exhibits a chaotic behavior with considered parameters a =
0.81 and b = 0.375.

Three separated equilibrium points, (0, 0, 0), (
√
b, 0, 1), and

(−
√
b, 0, 1), exist in the system (Equation 1) if b ≥ 0. There is only

one individual equilibrium point. (0, 0, 0) for b < 0 [46].

For numerical simulations, we use the chaotic system’s initial

values of Equation (1) which are Xi(0) = (0.1, 0.2, 0.1); ∀(X =
(x, y, z), i = 1) And Xj(0) = (−0.5, 0.4, 0.5); ∀(X =
(x, y, z), j = 2). Figures 1, 2 clarify the two-dimensional projections

of the Shimizu–Morioka Systems (Equation 1) on (x, y), (y, z),

and (z, x) space projections for various initial values. As the

behavior of a chaotic system depends strongly on its initial

conditions, the systems (Equation 1) illustrate significantly different

trajectories for MS and DS chaotic autonomous systems. Although

MS and DS began with approximately the same values in

phase space, their paths gradually diverged. Notwithstanding

the fact that every MS–DS system has a unique attractor in

phase space.

The times gone by before reaching synchronization states for

the Master system (x1, y1, z1) and the Drive system (x2, y2, z2) are

shown in Figure 3.

Figure 4 represents the error complexities in the uncontrolled

state, while Figures 5, 9 portray the error state behavior in the

controlled state.

3. The general form of the active
control approach in master-drive
procedure

When MS–DS systems have identical parameters,

synchronization via active control is effective. Assume the

existence of an (MS–DS) system as

ẋ = M1x+ g(x) (2)

ẏ = M2y+ g(y)+ u(t) (3)

Where x = (x1, y1, ..., z1)
T ∈ Rn and y = (x2, y2, ..., z2)

T ∈
Rn are the state vectors of the two systems. (M1,M2) ∈ Rn ×
Rn are constant matrix, which designated the coefficient matrix

with negative eigenvalues and g(x), g(y) is a sequential nonlinear

function and the control function u(t) = (ui(t)) ∈ Rn, which

depends on state variables and needs to be calculated where i =
(1, 2, ..., n).

Definition:

In some ways, the two equivalent chaotic system (Equations 2,

3) are globally asymptotically synchronized. If a suitable controller

u(t) fulfills the condition limt→ ∞ ‖Y(t) − X(t)‖ = limt→ ∞ ‖ei‖ =

0, ∀ei(0) ∈ Rn.

According to the MS–DS system, scheme (Equations 2, 3) are

calculated using the error function defined by ei = yi − xi.

Then, the synchronization error is stated as follows

ė = ẏ− ẋ = (M2 −M1)e+ Ŵ(x, y)+ u(t) (4)

WhereM2 −M1 = M3 is the coefficient matrix of order (n× n) of

the error system (Equation 4) and Ŵ(x, y) = g(y)− g(x) [47].

Controller u(t) may get rid of the nonlinear section, if system

(Equation 4) is not present (e). That is,

u(t) = v(t)− Ŵ(x, y) (5)

Assumption [48]

Control function formulation is defined as follows:

u = (M2 −M1)y(t)− (M2 −M1)x(t)− Ŵ(x, y)+ v(t)

Where M2 − M1 = M3 ∈ Rn×n is the coefficient matrix of system

(Equation 4) [47].

v(t) = −M4e(t) = −M4(y(t)− x(t)) = −M4e(t)

Where the linear proposed controller matrix M4 ∈ Rn×n controls

the strength of the master system’s controller, which is defined by the

subcontroller function v(t).

Since v(t) = −M4e(t) is a scalar matrix with error variables, by

combining (Equations 5, 4) we get

ė = M3e+ v(t) (6)

When v(t) is a scalar matrix with error variables and v(t) =
−M4e(t) is a constant matrix, Equation (6) becomes

ė = (M3 +M4)e (7)
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FIGURE 1

The chaotic attractor of the Shimizu–Morioka dynamical system on the x− y, y − z, and z− x plane, which are shown in the 2D phase portrait for the

Master system.

Proposition [47]

λi < 0 is the condition for diagonal matrix (M3 + M4), where

λi is the eigenvalue of matrix (M3 + M4), state vectors of system

(Equation 7) asymptotically converge to zero, and as a result of which

MS (Equation 2) tracks the DS (Equation 3) .

ForM1 = M2 andM1 6= M2, x(t) and y(t) are demonstrated to

show the states of two identical and nonidentical chaotic systems.

The chaotic synchronization problem can be assumed to be a

suitable controller u ∈ Rn, stabilizing the synchronization error at

the origin. This indicates that for all t ≥ t0 ≥ 0, where t0 is the time

of control activation, the controller sends the synchronization error

trajectories back to the origin.

3.1. Active control synchronization’s
e�ectiveness in the Shimizu–Morioka
system

The MS and DS of Shimizu–Morioka systems are defined as

follows in this context: The MS of the Shimizu–Morioka system is

designated by

ẋ1 = y1

ẏ1 = x1 − ay1 − x1z1

ż1 = −bz1 + x21

(8)

The DS of the Shimizu–Morioka system is designated by

ẋ2 = y2 + u1

ẏ2 = x2 − ay2 − x2z2 + u2

ż2 = −bz2 + x22 + u3

(9)

In the system (Equation 9), we characterize sequential controllers:

ui(t); ∀ui = (1, 2, 3) which must be regulated. To estimate the error

functions, Equations (8), (9) are subtracted from one another. For

the control function obtained, we have to calculate the error state

(ex; ∀x = x, y, z) by combining theDS (Equation 8) andMS systems

(Equation 9) using

ex = x2 − x1; ey = y2 − y1; ez = z2 − z1; (10)

Let us derive the error dynamics equations for applying the active

control design methods:

ėx = ey + u1

ėy = ex − aey − x2z2 + x1z1 + u2

ėz = −bez + ex(x2 + x1)+ u3

(11)

For controlling nonlinearity, the control functions are re-described

as (vi; ∀i = 1, 2, 3) in the system (Equation 12):

v1 = u1

v2 = u2 − x2z2 + x1z1

v3 = u3

(12)
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FIGURE 2

The chaotic attractor of the Shimizu–Morioka dynamical system on the x− y, y − z, and z− x plane, which are shown in the 2D phase portrait for the

Drive system.

The control function (ui; ∀i = 1, 2, 3) is designated in this formed

u1 = v1

u2 = v2 + x2z2 − x1z1

u3 = v3

(13)

The error dynamics system (Equation 11) changes state

ėx = ey + v1

ėx = ex − aey + v2

ėz = −bez + ex(x2 + x1)+ v3

(14)

The error variables (ex; ∀x = x, y, z) are defined by linearizing

error system (Equation 11) with control effort (vi; ∀i = 1, ..., 3). If

the control function follows the instructions (ex; ∀x = x, y, z) → 0

as time (∀ t → ∞), then the system’s stabilization is complete.

To control the error dynamics (Equation 11) following the active

control approach for the control functions (vi; ∀i = 1, 2, 3), one

can use a variety of arbitrary scalar sets to create a constant matrix

A, such that

[v1, v2, v3]
T = A[ex, ey, ez]

T (15)

Where A is a constant matrix. Here, it is examined how the chaotic

system’s coefficient matrix’s eigenvalues [43] influence the results,

which are modifiable to get the required synchronization time.

To stabilize the error system’s state, the matrix A must all have

eigenvalues following conditions (λi < o). The selection of the

matrix is Ai where (i= 1,2,3), in the following procedure:

Case 1. In this case, we take A1 matrix as follows:

A1 =







−1 −1 0

−1 −a 0

−(x2 + x1) 0 −b







and the control function is

u1 = −ex − ey

u2 = −ex − aey + x2z2 − x1z1

u3 = −(x2 + x1)ex − bez

(16)

With the corresponding eigenvalues being λ1 = (−1,−2a,−2b).

Case 2. In this case, we take A2 matrix as follows:

A2 =







−a −1 0

−1 −a− b 0

−(x2 + x1) 0 0







and the control function is

u1 = −aex − ey

u2 = −ex − (a+ b)ey + x2z2 − x1z1

u3 = −(x2 + x1)ex

(17)

With the corresponding eigenvalues being λ2 = (−a,−2a−b,−b).

Case 3. In this case, we take A3 matrix as follows:

A3 =







−b −1 0

−1 −1 0

−(x2 + x1) 0 −1
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FIGURE 3

Shown are the states x, y, z before synchronization in dynamical change. (A) The state of x1, x2 in MS-DS system with deactivated control function. (B)

The state of y1, y2 in MS-DS system with deactivated control function. (C) The state of z1, z2 in MS-DS system with deactivated control function.

and the control function is

u1 = −bex − ey

u2 = −ex − ey + x2z2 − x1z1

u3 = −(x2 + x1)ex − ez

(18)

With the corresponding eigenvalues bing λ3 = (−b,−1−a,−1−b).

Finally, we chose the A1 matrix for reduced synchronization

time in the comparative analysis. Because when we chose A2 and

A3 matrix for chaos control of Shimizu–Morioka, it takes longer

time than A1 matrix, which is shown in Figures 6A–C.

Now, we prove the control system (Equation 16):

For a given matrix A1, we can construct the matrix B from the

system (Equation 13)

B =







0 1 0

1 −a 0

(x2 + x1) 0 −b







If we fix (Equation 15) into Equation (14), we can explore

ė = Be+ A1e = We

WhereW = (B+ A1) is a diagonal matrix.







ėx
ėy
ėz






=







0 1 0

1 −a 0

(x2 + x1) 0 −b













e1
e2
e3






+ A1







e1
e2
e3







W =







−1 0 0

0 −2a 0

0 0 −2b







For this specific selection of constant matrix (A1; ∀λ1 =
−1,−2a,−2b), according to the linearity system’s stability theory,

this condition i.e. (ex; ∀x = x, y, z) → 0 as time (∀ t → ∞),

is fulfilled by synchronization laws. As a result, two systems are

synchronized under the control system (Equation 20) if all the

eigenvalues λi of the matrixW satisfy the condition (λi < o). From

the system (Equation 15) by operating A1 matrix, we get values of
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FIGURE 4

Shown are the error states (ex, ey , ez) before synchronization in dynamical change.

FIGURE 5

Shown are the error states (ex, ey , ez) after synchronization in dynamical change.

(v1, v2, v3) as follows:

v1 = −ex − ey

v2 = −ex − aey

v3 = −(x2 + x1)ex − bez

(19)

From systems (Equations 13, 19):

u1 = −ex − ey

u2 = −ex − aey + x2z2 − x1z1

u3 = −(x2 + x1)ex − bez

(20)

3.2. Simulation and results

The MatLab Simulink is applied to the RK-4 algorithm to

generate numerical results with a 0.01-time grid. We proceed with

the MS (Equation 8) and DS (Equation 9) procedures under the

following initial circumstances:

Xi(0) = (0.1, 0.2, 0.1); ∀(X = (x, y, z), i = 1) (21)

and

Xj(0) = (−0.5, 0.4, 0.5); ∀(X = (x, y, z), j = 2) (22)

We used numerical simulations to prove the dynamical change

of error states regulated by control functions. Figure 5 represents

the error systems (Equation 11) under the controller (Equation

20) for stimulation time t = 100 s; it is apparent that because of

activated control signals (ex; ∀x = x, y, z) → 0 as time (∀ t → ∞).

For zero convergence of error states it is necessary to ensure MS

(Equation 8) as well as DS (Equation 9) synchronization. To verify

the synchronization act, we calculate the synchronization ratio

from Figure 6 and we get the average error on the state variables

of error dynamics as follows

e =
√

e2x + e2y + e2z

and Figure 7 demonstrates the time history of the synchronization

state variables of the MS (Equation 8) and DS (Equation 9) systems,

which are (x1, x2), (y1, y2), and (z1, z2) at time t = 0 control signals

are activated. Moreover, Figure 8 illustrates the action control’s

response time from Equation (20) to achieve chaos synchronization

between the Master-Drive system. Controllers modify inputs to set

the system’s output to the desired results. A specific general form of
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FIGURE 6

The dynamical change of the synchronized average error when we chose arbitrary matrix (A1,A2,A3) for the control function. (A) To carry out the

zoom of the dynamical change of the synchronized average error for constant matrix A1. (B) Zoom of the dynamical change of the synchronized

average error for constant matrix A2. (C) Zoom of the dynamical change of the synchronized average error for constant matrix A3.

active control and backstepping methods may conduct this control

operation [32]. Thus, conclusions contain observations.

The identical chaotic systems exhaust the AC process; the

purpose of this section Figure 7 is to depict the time series of

the state vectors of the synchronized trajectories. The MS’s state

trajectories converged to the DS’s state trajectories by applying

a control effort (Equation 20). The DS system’s ability to track

the MS system and respective state variables of Equations (8), (9)

demonstrate similar behaviors in all upcoming states [49, 50].

4. The general form of the
backstepping control approach in
master–drive procedure

The backstepping method is regulated by a recursive

formulation, which ensures the global asymptotic stability of the

system (Equation 23). In the backstepping strategy, Lyapunov’s

theory is formulated by breaking the proposed model (Equation

24) into a sequence of new system states using subordinate

variables of systems (Equation 24). We integrate new variables into

the transformation sequence, consisting of the system’s subordinate

state variables, identical parameters, and stabilizing variables, for

creating a control function. By running the sequential step of

a model in the backstepping strategy, the Lyapunov function

Vm,m = (1, 2, ...n) stabilized the mth subsystem. As soon as

ζk−1 was designed, the virtual control input ζk stabilized the mth

equations ∀m ∈ (x, 1, 2, ...k) [5, 51, 52]. A general nonlinear system

is formatted as follows [53]:

ẋ = f (x)+ g(x)ζ1

ζ̇1 = u
(23)

Where ζ1 ∈ R and x ∈ Rn are the control input and state of the

system, and the nonlinear functions are gathered in (f , g). The BC

scheme is given as follows to stabilize systems (Equation 24), using
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FIGURE 7

The dynamical change of the states x, y, z after synchronization. (A) The dynamical change of the synchronized states (x1, x2). (B) The dynamical

change of the synchronized states (y1, y2). (C) The dynamical change of the synchronized states (z1, z2).

the strict feedback form recursively [53]:

ėx = f (ex + g(x, ex)ζ1

ζ̇1 = f1(x, ex, ζ1)+ g1(x, exζ1)ζ2

· · ·
˙ζk−1 = fk−1(x, ex, ζ1, ..., ζk−1)+ gk−1(x, exζ1, ..., ζk−1)ζk

ζ̇k = fk(x, exζ1, ..., ζk)+ gk(x, exζ1, ..., ζk)u

(24)

Where ex, ζ1, ζ2, ..., ζk are error of state variables and u is the final

control function [5].

Step 1:

The stable process of the first of one system (Equation 24) is

described as follows:

ėx = f (x, ex)+ g(x, ex)ζ1 (25)

Here, we originate the dynamics state of variable κ1, which is

regulated by κ1 = e1 for creating virtual controller ζ1 under the

consideration of Lyapunov functions.

κ̇1 = f (κ1, ζ1, ζ2, ..., ζk)

Lyapunov function-1:

V1(κ1) = QκT
1
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FIGURE 8

The dynamical change of the synchronized states of control e�ort ui. (A) u1, (B) u2, and (C) u3.

Where Q = 1
T > 0. The dynamic change of V1 is

V̇1 = f (κ2
1 , κ1κ2)

Then, V̇1 = −QκT
1 < 0 in Rn.

The virtual control ζ1 = α1(κ1) ensures that the system

(Equation 25) becomes asymptotically stable by estimating α1(κ1),

while κ2 is a controller because of V1 > 0 ⇒ V̇1 < 0 [44].

Step 2:

The stable process of the second of one system (Equation 24) is

described as follows:

ζ̇1 = f1(x, ζ1)+ g1(x, ζ1)ζ2 (26)

The new virtual variable κ2 is defined by ζ1 and α1(z1) as:

κ2 = ζ1 − α1(κ1) (27)

Now, let us consider that the κ̇1, κ̇2 are subordinate coordinates of

a new error subsystem:

κ̇1 = f (κ1, ζ1, ζ2, ..., ζk)

κ̇2 = f (κ1, κ2, ζ2, ..., ζk)− α̇1(κ1)
(28)

Lyapunov function-2:

V2(κ1, κ2) = V1(κ1)+ QκT
2

Therefore, the dynamical change of V2 is:

V̇2 = f (κ2
1 , κ

2
2 , κ2κ3)

Then, V̇2 = −QκT
1 − QκT

2 < 0 in Rn.

While κ3 is a controller, the virtual control ζ2 = α2(κ1, κ2)

ensures that the system labeled (Equation 26) is asymptotically

stable by estimating α2(κ1, κ2).

Step n:

The ongoing dimensional step defines the error variable κn:

κn = ζk − αn−1(κ1, κ2, κ3, ..., κn) (29)
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FIGURE 9

Tracking error ex, ey , ez.

FIGURE 10

The error model with a virtual variable for backstepping without activated control.

FIGURE 11

The error model with the virtual variable for backstepping with activated control.
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FIGURE 12

Average error e.

FIGURE 13

Control e�ort u.

The new virtual variable subsystems are given as follows:

κ̇1 = f (κ1, ζ1, ζ2, ..., ζk)

κ̇2 = f (κ1, κ2, ζ2, ..., ζk)− α̇1(κ1)

κ̇3 = f (κ1, κ2, κ3, ζ3, ..., ζk)− α̇2(κ1, κ2)

· · ·
· · ·
κ̇n = f (κ1, κ2, κ3, ..., κn)− ˙αn−1(κ1, κ2, κκ3, ..., κn)+ u

(30)

Lyapunov function-n:

Vn(κ1, κ2, κ3, ..., κn) = Vn−1(κ1, κ2, κ3, ..., κn−1)+ QκT
n

Hence, the dynamical change of Vn is:

V̇n = f (κ2
1 , κ

2
2 , κ3, ..., κn−1κn)

Then, V̇1 = −Q1κ
T
1 − Q2κ

T
2 − ... − Qnκ

T
n < 0 in Rn,

where Qi = T−1, ∀(i = 1, · · · , n) > 0, and T > 0

which are scalars. According to the Lyapunov stability theory,

the subsystem (Equation 29) is asymptotically stable when V̇2 =

−QκT
1 − QκT

2 < 0. While u is a controller, the virtual control

αn−1(κ1, κ2, κ3, ..., κn) ensures that the whole system (Equation 24)

is asymptotically stable by estimating αn−1(κ1, κ2, κ3, ..., κn), which

generally depends on x and ζ1, ζ2, ..., ζk, is gradually accomplished

in n steps. As a result of the previous procedures, the system

(Equation 23) is enormously stable worldwide for all initial

conditions xi(0) ∈ Rn.

4.1. Backstepping control synchronization’s
e�ectiveness in the Shimizu–Morioka
system

The MS of the Shimizu–Morioka systems:

ẋ1 = y1

ẏ1 = x1 − ay1 − x1z1

ż1 = −bz1 + x21

(31)
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FIGURE 14

Dynamical change of the states x, y, z after synchronization. (A) Dynamical change of (x1, x2). (B) Dynamical change of (y1, y2). (C) Dynamical change

of (z1, z2).

is given in terms of the DS as

ẋ2 = y2

ẏ2 = x2 − ay2 − x2z2 + u

ż2 = −bz2 + x22

(32)

Here, u is a single control input to be identified

subsequently. We originated the error system concerning

time for applying the backstepping control strategy using

the error states, explanation (Equation 10) by combining

(Equations 31, 32).
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FIGURE 15

E�ectiveness of the synchronization times for (A) the AC approach and (B) the BC approach with the controller turned on for (0 ≤ t ≤ 100).

ėx = ey

ėy = ex − aey − x2z2 + x1z1 + u

ėz = −bez + ex(x2 + x1)

(33)

Following the sequence of the entire systems (Equation 24), the

error system (Equation 33) is mentioned previously as:

ėz = −bez + ex(x2 + x1)

ėx = ey

ėy = ex(1− z2)− aey − x1ez + u

(34)

This project designated as control input u to ensure the stability

of the error system (Equation 34). According to Section 4, the

3D nonlinear chaotic system will be governed by a three-step

recursive strategy. To simplify the system (Equation 34), we divided

it into three smaller units, each of which included a single virtual

control function and a virtual variable. The formulation continues

following the sequential equation of the system (Equation 34)

from the first to the last subsystem until the transformation of the

coordinates from (ėx, ėy, ėz) to (κ̇1, κ̇2, κ̇3).

Step-1:

When ez is a controller and the first Lyapunov function is

defined by a new virtual variable κ1 = ez , for creating the virtual

control α1, which ensures that the first equation of Equation (34)

is asymptotically stable by estimating the virtual control α1. The

purpose of controller ez is to drive (ex, ey, ez) = (0, 0, 0) i.e.

(x1; y1; z1) = (x2; y2; z2). Lyapunov function [44]-1:

V1(κ1) =
1

2
(κ1)

2 (35)

V̇1 is regulated by κ̇1 in the following ways:

V̇1 = κ1κ̇1 = κ1(−bez + ex(x2 + x1))

When ex = α1(ez) is used to define the second new virtual variable

κ2 = ex − α1, we obtain

V̇1 = κ1(−bez + (κ2 + α1)(x2 + x1))

V̇1 = −b(κ1)
2 + κ1κ2(x2 + x1)+ κ1(x2 + x1)α1

(36)

There exists α1 = 0 ,

V̇1 = −b(κ1)
2 + κ1κ2(x2 + x1) (37)
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Consequently, V̇1 < 0. In the following step, the term κ1κ2(x2+x1)

in Equation (37) will be eliminated.

Step-2:

The second virtual variable is governed by the system’s

(Equation 34) second equation, in which α1 = 0 exists.

κ̇2 = ėx − α̇1

κ̇2 = ey

When ey is a controller and the second Lyapunov function is

defined by the new virtual variable κ3 = ey − α2. We derived

stabilization function α2, which ensures that the second of Equation

(34) is asymptotically stable, by estimating α2.

Lyapunov function-2:

V2(κ1, κ2) = V1(κ1)+
1

2
(κ2)

2

V̇2 = V̇1(ez)+ κ2κ̇2

(38)

When we use the time derivative of κ2 in V̇2, then the dynamical

change of V2 takes place as follows::

V̇2 = V̇1(ez)+ κ2ey

V̇2 = −b(κ1)
2 + κ1κ2(x2 + x1)+ κ2(κ3 + α2)

V̇2 = −bκ2
1 − κ2

2 + κ2κ3 + κ2(κ2 + κ1(x2 + x1)+ α2)

(39)

The stabilization function α2 is chosen as:

α2 = −κ2 − κ1(x2 + x1) (40)

Furthermore by substituting α2, V̇2 gets converted into:

V̇2 = −bκ2
1 − κ2

2 + κ2κ3 (41)

In light of this, V̇1 < 0. In the following step, the term κ2κ3

from Equation (41) will be eliminated.

Assumption

If we follow the sequence of Equation (30) and the control effort

exists in the third equation, then we get

α2 =
κ1 + ex(1− z2)− (a− 1)α1

x1

If

α2 =
f (x, ex, κ1)

x

Then, the solution of state variable (x, y, z) → ∞
Step-3:

The third virtual variable is governed by the third equation of

systems (Equation 34), in which α2 = −κ2−κ1(x2+x1) exists. The

third virtual variable is now:

κ̇3 = ėy − α̇2

κ̇3 = −bex(1− z2)− aey − x1ez + u− α̇2 (42)

Lyapunov function-3:

V3(κ2, κ3) = V2(κ2)+
1

2
(κ3)

2

V̇3(ez , κ2, κ3) = V̇2(ez , κ2)+ κ3κ̇3

(43)

V̇3 is regulated by κ̇3 in the following ways:

V̇3 = −bκ2
1 − κ2

2 + κ2κ3 + κ3κ̇3

V̇3 = −bκ2
1 − κ2

2 + κ2κ3 + κ3[−bex(1− z2)

− aey − x1ez + u− α̇2]

V̇3 = −bκ2
1 − κ2

2 − aκ2
3 + κ3(κ2 − aα2 + (1− z2)

ex − x1ez − α̇2 + u)

(44)

If the following preference for the control variable u:

u = −κ2 + aα2 − (1− z2)ex + x1ez + α̇2 (45)

so that,

V̇3 = −bκ2
1 − κ2

2 − aκ2
3 < 0

(i.e., ˙V3 < 0, since a, b > 0) and according to the LaSalle-

Yoshizawa theorem [16, 54], it is necessary to make it clear that

all solutions of Equation (34) satisfy the conditions (ex; ∀x =
x, y, z) → 0 as time (∀ t → ∞) . Thus, systems (Equations 31, 32)

are globally synchronized with the control function u. Furthermore,

the set of new virtual variables is a new error model shown in

(κ1, κ2, κ3) coordinates in Equation (46), and now let us analyze the

entire space of (κ̇1, κ̇2, κ̇3) :

κ̇1 = −bκ1 + ex(x2 + x1)

κ̇2 = ey

κ̇3 = ex(1− z2)− aey − x1ez + u− α̇2

(46)

4.2. Simulation and results

The MatLab Simulink is applied to the RK-4 algorithm to

generate numerical results with a 0.01-time grid. We proceed with

the system (Equation 34) for completing the backstepping design

simulation procedures under controller (Equation 45). Now, we

proceed with fixing the parameter values of a = 0.81, b = 0.375, as

shown in Figures 9–14, where initial circumstances:

Xi(0) = (0.1, 0.2, 0.1); ∀(X = (x, y, z), i = 1) (47)

and

Xj(0) = (−0.5, 0.4, 0.5); ∀(X = (x, y, z), j = 2) (48)

The dynamical change of error state (ex, ey, ez) and new

subsystem (κ1, κ2, κ3) with activated control function is shown in

Figures 9–14.

The validity of a new subsystem under backstepping control

with system equilibrium (0, 0, 0) is examined in Figure 12, along

with the magnitude of system synchronization (Equation 34).
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According to Equation (34), the average error propagation is

calculated as follows:

e =
√

e2x + e2y + e2z

The MS–DS system is globally synchronized following an initial

momentary time period of approximately t = 2.5s. This is also

supported by Figure 15B, where the exponential convergence of the

synchronization superiority is determined by the error propagation

on average error states:

Figure 15 shows the time response of the control law.

Figure 14 shows the synchronized states of MS–DS of the

Shimizu–Morioka system devastating BC process by the activated

controller. Thus, it is necessary the effectiveness of the DS is

necessary to track the MS with similar characteristics for all

future states.

5. Comparing AC and BC strategies

Figures 15A, B demonstrate edge comparisons of the effects

of two different approaches on the synchronization time of a

given identical MS–DS Shimizu–Morioka chaotic system. Average

error (e) is utilized to dynamically analyze the synchronization

excellence when the control function is stimulated at t = 0,

as shown in Figure 15. At t ≥ 2.5, the control is given by the

backstepping controller; however, at t ≥ 4.5, active controllers are

used to observe the E0(0, 0, 0) equilibrium point with a 2 s time

delay [55–57]. It can be determined that the backstepping design

is more successful in achieving control of the Shimizu–Morioka

chaotic system by comparing the active control and backstepping

strategy procedures at the same particular time [58]. In AC and

BC control, a 3-dimensional autonomous system, the BC formula

reduces the number of controllers from 3 to 1, and active control

work sequentially. As a result, backstepping control outperforms

the active control, thereby reducing controller complexity and cost.

6. Conclusion

This article demonstrates how a single controller operating

in a backstepping and following a sequential controller for active

control can easily control chaos in a Shimizu–Morioka chaotic

system. All theoretical analyzes are validated using simulation

results. Furthermore, numerical simulations are used to compare

the performance of the projected control approaches. We have

shown that the backstepping controller regulates the control

of the Shimizu–Morioka chaotic system better than the active

controllers, which represents the effectiveness of the backstepping

control method. The effects of the two techniques are represented

graphically together with a time history (Figures 1–14). Listed are

the descriptions:

• The active control design includes sequential controllers and

the backstepping design creates one controller by defining the

Lyapunov function.

• In both methods, the error dynamic is the tendency toward

zero as time goes to infinity, hence the chaos synchronization

of the Shimizu-Morioka chaotic system is asymptotically

stable.

• The states of MS (master system) and DS (drive system)

exhibit similar activities in both instructions.

• The results demonstrated that tracking the backstepping

strategy takes much less time than the active control method

for detecting the dynamics of transitory errors. Backstepping

only needs one controller, and in a few steps, it reaches

global stability and asymptotic synchronization. Backstepping

outperforms other strategies and is simpler to design.
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