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Severe burn injuries often lead to skin contraction, leading to stresses in and around

the damaged skin region. If this contraction leads to impaired joint mobility, one

speaks of contracture. To optimize treatment, a mathematical model, that is based

on finite element methods, is developed. Since the finite element-based simulation

of skin contraction can be expensive from a computational point of view, we use

machine learning to replace these simulations such that we have a cheap alternative.

The current study deals with a feed-forward neural network that we trained with 2D

finite element simulations based on morphoelasticity. We focus on the evolution of

the scar shape, wound area, and total strain energy, a measure of discomfort, over

time. The results show average goodness of fit (R2) of 0.9979 and a tremendous

speedup of 1815000X. Further, we illustrate the applicability of the neural network

in an online medical app that takes the patient’s age into account.

KEYWORDS

machine learning, post-burn scar contraction, morphoelasticity, feed–forward neural
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Introduction

Long-term contraction in burn injuries can lead to reduced joint mobilities. During this

phenomenon, the wound reduces in size and deforms because of myofibroblasts (dermal cells)

that contract. If the contraction of a scar leads to impairment of joint mobility, this is called

scar contracture. Patient- and burn-specific factors influence contraction, such as the patient’s

age and gender, and the burn’s size, depth, and location. These differences between burns and

patients lead to the growing interest in personalized healthcare. Without medical care, a patient

may have difficulty exercising or with simple daily activities, which we wish to prevent.

The theory of the physiological evolution of burned skin contains quantitative connections

that are represented in mathematical relations. To give insight into significant elements

influencing the contraction, we use detailed models such that we can tune these elements.

We can use Monte Carlo simulations to assess the parameter’s uncertainties, allowing for

patient-specific predictions necessary for the clinic. However, high-dimensional mathematical

models are expensive, a downside since many model-based predictions are needed to achieve

personalized healthcare. Hence, we must use and develop alternatives to predict Monto Carlo-

based post-burn contractions.

Neural networks can reflect complex relationships within a limited evaluation time after

suitable training [1], which has been beneficial for years in the clinic. For example, Tran et al.

have used computer vision to classify skin burns [2] and to classify tumors [3]. Furthermore,
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Brinati et al. have used neural networks to find diseases, such as the

COVID-19 disease, in blood samples [4].

Our mathematical framework models deep skin burns in which

the skin’s dermis has burned. This framework focuses on post-burn

contraction in this deep layer of the skin. The displacement of the

dermis generates strains. Briefly, the model includes the structure

of nine connected, non-linear partial differential equations. Four

equations represent biochemical quantities, such as cell densities

(two types), the concentration of signaling molecules, and collagen

density. The other five equations track the entries of the strain matrix

and the components of the velocity vector. The interaction between

model variables reduces the wound/scar size, which we relate to the

damaged tissue’s relative surface area (RSA) density. Next to the

RSA, we define the total strain energy (TSE) density, a measure

of patient discomfort. In addition to our previous work in Egberts

et al. [5], where we only predicted the evolution of the RSA, in

this study, we train neural networks to predict the TSE and the

wound/scar boundary. Others also used such surrogate models. For

example, Cai et al. used three machine learning methods named

K-nearest neighbor (KNN), XGBoost, and multi-layer perceptron

(MLP) for parameter estimation of left ventricular myocardium [6].

The prediction of stress-strain curves for materials can be speeded-

up by a convolutional neural network [7]. Further, neural networks

can surpass other, non-intelligent acceleration techniques on both

acceleration and accuracy [8]. In particular, Navratil et al. compare

neural networks to other methods to accelerate the physics-based

simulations in oil reservoir modeling and show a possible speedup

of 2000X. In addition, neural networks reduces the average sequence

error by two orders of magnitude.

This study explores using neural networks to replace the

expensive finite-element predictions of post-burn contraction and

patient discomfort. We apply the neural networks to the two-

dimensional mathematical model because this two-dimensional

model is expensive from a computational point of view.We construct

a large dataset using our numerical approach by a Bayesian-like

variation of parameter values. Then, we feed this dataset to feed-

forward neural networks with two hidden layers. The resulting

optimized networks are then implemented in an online application

that illustrates possible future use.

In this article, Section 2 presents the mathematical model and

its numerical implementation, and Section 3 presents the neural

network. Subsequently, Section 4 presents the results and the

illustrative (medical) application. Finally, Section 5 presents the

conclusions, and Section 6 presents the discussion and further work.

The mathematical model

Our study uses the two-dimensional biomorphoelastic model for

the post-burn contraction described in Koppenol et al. [9]. This

model resembles post-burn contraction by dealing with chemical

feedback that induces the skin’s permanent displacement and the

remaining effective Eulerian strain. The model takes the chemical

feedback utilizing four chemical variables: the fibroblasts (N), the

myofibroblasts (M), the signaling molecules (c), and collagen (ρ).

Post-burn healing is initiated by releasing growth factors and

cytokines (signaling molecules) that influence cell proliferation,

myofibroblast differentiation, chemotaxis, and the synthesis and

decay of collagen. For the cells, we consider migration toward

the gradient of the signaling molecules [10] by a minimal model

for chemotaxis [11], and cell density-dependent Fickian diffusion

(random walk). The equations for the cell densities also contain a

logistic-like cell proliferation term:

DN

Dt
+ N(∇ · v) = −∇ ·

(

−DF(N +M)∇N + χFN∇c
)

+

rF

[

1+
rmax
F c

aIc + c

]

[1− κF(N +M)]N1+q − kFcN − δNN, (1)

DM

Dt
+M(∇ · v) = −∇ ·

(

−DF(N +M)∇M + χFM∇c
)

+

rF

[

[1+ rmax
F ]c

aIc + c

]

[1− κF(N +M)]M1+q + kFcN − δMM. (2)

Here, DF represents the (myo)fibroblast diffusion coefficient, and χF

is the chemotactic parameter, rF is the cell division rate, rmax
F is the

maximum factor of cell division rate enhancement because of the

presence of the signaling molecules, aIc is the concentration of the

signaling molecules that cause half-maximum enhancement of the

cell division rate, κF(N + M) represents the reduction in the cell

division rate because of crowding [12], q is a fixed exponent, kF is

the signaling molecule-dependent cell differentiation rate constant of

fibroblasts into myofibroblasts, and δN , δM represent the apoptosis

rates of the fibroblasts and myofibroblasts, respectively.

The signaling molecules only migrate because of (fickian)

diffusion, and collagen is not subject to active migration. In

both equations, (myo) fibroblasts are responsible for the secretion,

and matrix metallo proteinases (MMPs) are responsible for

the breakdown:

Dc

Dt
+c(∇·v) = ∇·(Dc∇c)+kc

[

c

aIIc + c

]

[N+ηIM]−δc
[N + ηIIM]ρ

1+ aIIIc c
c,

(3)

Dρ

Dt
+ρ(∇ ·v) = kρ

[

1+
[

kmax
ρ c

aIVc + c

]]

[N+ηIM]− δρ

[N + ηIIM]ρ

1+ aIIIc c
ρ.

(4)

Here Dc is the fickian diffusion coefficient of the signaling molecules,

kc is the maximum net secretion rate of the signaling molecules,

ηI is the ratio of myofibroblasts to fibroblasts in the maximum

secretion rate of the signaling molecules and collagen, aIIc is the

concentration of the signaling molecules that causes the half-

maximum net secretion rate of the signaling molecules, δc is the

proteolytic breakdown rate parameter of the signaling molecules, ηII

is the ratio of myofibroblasts to fibroblasts in the secretion rate of

the MMPs and 1 + aIIIc c represents the inhibition of the secretion

of the MMPs. Further, kρ is the collagen secretion rate, kmax
ρ is

the maximum factor of secretion rate enhancement because of the

presence of the signaling molecules, aIVc is the concentration of

the signaling molecules that cause the half-maximum enhancement

of the secretion rate of collagen and δρ is the degradation rate

of collagen.

Further, the model introduces the dermal displacement (u), the

displacement velocity (v), and the infinitesimal effective strain tensor

(ε). The equation for the displacement velocity is:

ρt

(

Dv

Dt
+ v(∇ · v)

)

− ∇ · σ = f = ∇ ·
(

ξMρ

R2 + ρ2
I

)

, (5)
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where σ represents the dermal stress and f represents the cell traction-

caused body force acting on the dermis. This equation represents the

balance of momentum. Here ρt represents the total mass density of

the dermal tissues, ξ is the generated stress per unit cell density and

the inverse of the unit collagen concentration, and R is a body force-

inhibiting constant. From a mechanical point of view, we assume the

tissue to be isotropic and homogeneous, except for a dependency

of the stiffness on the local collagen density [13]. The visco-elastic

relation for the dermal stress is:

σ = µ1sym(∇v)+ µ2(tr(sym(∇v))I)+
E
√

ρ

1+ ν

[

ε + tr(ε)
ν

1− 2ν
I

]

,

(6)

where µ1,µ2 are the shear and bulk viscosity, respectively, E
√

ρ

represents Young’s modulus (stiffness), and ν is the Poisson’s ratio.

Finally, the equation for the effective Eulerian strain is:

Dε

Dt
+ (tr(ε)− 1)sym(∇v) = −G = −ζ

[N + ηIIM]c

1+ aIIIc c
ε, (7)

where Dε

Dt
= Dε

Dt + εskw(L) − skw(L)ε is the Jaumann time

derivative, and G is a growth contribution tensor. In the case of

burns, it considers permanent deformation (in this case contraction)

and permanent strains as a result of the changes in the chemical

constitution of collagen. In the case of tissue of tumor development,

it considers the actual growth. The parameter ζ is the rate of

morphoelastic change.

Considering the boundary conditions, let ∂�x the boundary of

the computational domain. Then, for all time t and for all x ∈ ∂�x:

N(x, t) = Neq, M(x, t) = Meq, c(x, t) = ceq, and v(x, t) = 0.

(8)

It is unnecessary to specify any boundary conditions for ρ and

ε because of overdetermination since we use v(x, t) = 0 on

the boundary.

We solve the mathematical model utilizing the finite element

method with linear basis functions. We apply the backward Euler

method for time integration. We account for non-linearity by using

inner Picard iterations. Further initial conditions and numerical

methods are not essential for this work and are explained in detail

in our earlier study [5].

Relative surface area and total strain energy

During wound healing, fibroblasts differentiate into

myofibroblasts that exhibit contractile properties. Myofibroblasts

express α-SM actin in microfilament bundles or stress fibers [14]

that interact with the cell’s surrounding tissue. If myofibroblasts

disappear because of cell death, this contractile mechanism dies with

the cell, and hence, the scar is not subject to this active myofibroblast

contraction anymore. In the mathematical model, the scar remodels

to equilibrium once the applied stress (active contraction) is released,

and during this remodeling, the scar retracts. Therefore, the injured

tissue’s relative surface area (RSA) changes. One typical feature is

the RSA density is its minimum value that corresponds with the

maximum contraction during healing. After this moment, the RSA

density converges to an asymptotic value, another typical feature

of the RSA, as the scar remodels. The asymptotic RSA value shows

the intensity of contraction after scar remodeling that might show a

possible contracture.

The RSA density was compared to the average of clinical

measurements of the RSA of placed unmeshed skin grafts after both

early and late excision of burned skin data from Hadidy et al. [15]

in Koppenol et al. [9]. For particular combinations of values for ζ

and aIIIc that directly relate to the tensor G (Equation 7), a good fit

between the numerical method and the clinical data was obtained.

We would like to train the neural network on clinical (non-synthetic)

data, however, these data have privacy issues and it is not easy to find

enough of that data.

Contracting wounds and scars lead to stress and strain on the

skin, which can hypothetically lead to irritation (pain) and tingling

sensations. The stress we refer to is the total strain energy we

assume to measure patient discomfort. The total strain energy (TSE)

is defined by the integral over the strain energy density (per unit

volume) [16]. A typical feature of the TSE density is its maximum, i.e.,

the maximum post-burn discomfort that a patient might experience.

A neural network for post-burn scar
contraction

The morphoelastic model for post-burn contraction has many

patients- and wound-specific parameters for which we want to

evaluate the uncertainty. However, considering this uncertainty using

numerical simulations is costly because the model is highly non-

linear. Therefore, we train neural networks to replace these (slow)

simulations introduced in this section as an alternative.

Formulation

In our simulations, we use the computational domain �x =
(−10, 10)2 cm2 where the subset

∣

∣

x
4

∣

∣ +
∣

∣

y
4

∣

∣ ≤ 1 (a rotated square)

defines the initial wounded area. To reduce computation times, we

perform computations on a quarter of this domain using symmetry.

For the boundary conditions on the symmetry axes, let Ŵs
x =

{(x, y) : x = 0, 0 ≤ y ≤ 10}
⋃

{(x, y) : y = 0, 0 ≤ x ≤ 10}. Then, for all
x ∈ Ŵs

x, we have JN/M/c · n = 0, v · n = 0 and (σ · n) · τ = 0, where n

is the outward pointing normal vector and τ is the tangential vector.

For the discretization of the domain, we use an adapted version of the

KOKOmesh generator [17] to have a fine tuning of the mesh around

the boundary of the wound (see Figure 1). For more information

about our meshing strategy, we refer to our earlier study [5].

The 25 independent parameter values make up the length of

the input vector x that result in output variables y. Here, y ≈
f (x; θ) is either the non-dimensional RSA, the non-dimensional

TSE, or the shape of the wound/scar boundary, determined by

the numerical finite element-based model that simulates for 365

days using an adaptive time step. The data are post-processed to

contain daily predictions and normalized between 0 and 1. The

objective is to learn f (x; θ) ≈ y, with θ the learnable parameters

of the feedforward networks. Our networks have two hidden layers,

each with 100 neurons, and the rectified linear unit [18]. We use

the sigmoid function on the output layer because the data bounds

between 0 and 1. Remark that the RSA and TSE have 25 input

and 365 output neurons. The number of output neurons for the

wound/scar boundary is 42 × 365 because 21 points are used to

describe the boundary.
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FIGURE 1

Initial mesh for the FEM (finite element method) discretization. We also show the initial wound boundary (in white).

Training, validating and testing

During the training of the neural networks, we use the Adamax

algorithm with the standard backpropagation algorithm to minimize

the mean squared error (MSE) loss [19]. The choice for Adamax

follows from the learning rate range tests that we performed to

determine the greatest learning rate value such that the networks are

trained without discrepancy. For these tests, we vary learning rates

between 0.0001 and 1 and then run for 150 epochs in batches of

64 samples. On average, the tests take around 7.2 min on a 64-bit

Windows 10 Pro system with 16 GB RAM and a 3.59 GHz AMD

Rizen 5 3600 6-Core Processor. Given the results, we choose initial

learning rates of 0.015 for the RSA and the wound/scar boundary,

respectively, and 0.004 for the TSE, with a standard decaying factor

of 0.99. We stop training if the validation MSE loss shows no

improvement in 50 epochs. We use the early stopping regularization

to avoid model overfitting.

Data

The input dataset we use to train and test the neural networks

has size n× 25× 365 consisting of n = 5, 000 numerical simulations.

We set acceptable values for each input parameter that varies between

simulations and patients; therefore, the dataset is well-varied. We

draw parameter samples from uniform statistical distributions based

on the ranges. The model’s stability condition [20] kc < δc ρ aIIc
defines acceptable samples. We use a domain of 10 cm2 with a

uniform triangulation with 968 nodes. Using Min-Max scaling, we

split the dataset in train- and test sets, with an 80/20% train-test split.

Performance measures

We include the goodness-of-fit (R2) statistic that we maximize

to minimize the L2 norm (square error loss), the average relative

root mean squared error (aRRMSE), and the average relative

error (aRelErr).

Results

The neural networks predict the RSA, the TSE, and the

wound/scar boundary. Figure 2 shows the best and the worst

predictions for the MSE, the worst prediction relative errors, and

the relationship between the predicted and target values in the RSA

test set. Figure 2A shows the optimal prediction, where the RSA

prediction mostly overlaps the RSA target for the first 130 days and

underestimates slightly during the wound healing remodeling phase.

In the worst-case scenario, shown in Figure 2B, the neural network

shows a delay during contraction and retraction and overestimation

during remodeling. Theminimum shifted to day 58, compared to day

52 in the RSA target. During remodeling, the overestimation is about

1% less contraction. The worst prediction relative error increases to

9.4% and converges to about 1.39% for the last predicted value, as

shown in Figure 2C. The error peaks around day 30, during steep

contraction, while the relative error around themoment of maximum

contraction is <1%. Finally, Figure 2D shows the (target, prediction)

distribution follows the y = x line. Outliers are because of the worst

prediction. The spread in the range 0.75 ≤ x ≤ 0.95 shows that

the neural network could have trouble predicting contraction values

between these values.
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FIGURE 2

Results for the relative surface area (RSA) prediction by the neural network. The figure shows the best (A) and worst (B) predictions, the worst prediction

relative error (C), and the prediction-target relation (D).

Figure 3 shows the best and the worst predictions for MSE, the

worst prediction relative error, and the relationship between the

predicted and target values in the TSE test set. In the best-case

scenario, the TSE prediction mostly overlaps the TSE target, except

for the maximum TSE around day 50, as Figure 3A shows a slight

overestimation. In the worst-case scenario, shown in Figure 3B, the

prediction by the neural network is almost indistinguishable from the

TSE target value. Figure 3C shows the relative error of the worst TSE

prediction and shows a maximum increase to 0.53% on day 23, which

is negligible. Finally, Figure 2D shows that the (target and prediction)

distribution follows the y = x line. The spread in the lower range

shows that the neural network could have trouble predicting small

TSE values and that larger values occur sporadically.

The RSA only provides information about the general contraction

and lacks any information about localized contractions. Using

the displacement of the wound/scar edge, we can also visualize

the contraction and retraction of the wound/scar. Visualizing this

movement is intuitively more straightforward to interpret than

numeric values. Figure 4 shows the results of the neural network we

trained to predict the wound/scar boundary. Here, we display targets

and predictions on days 5, 25, 50, 75, and 365, with the targets in

blue and the predictions in red. The days are shown in the average

relative error for the best and worst predictions.We can see that in the

case of the best prediction (upper graphs), the prediction follows the

target closely. For the worst prediction (lower graphs), the prediction

shows a slight deviation from the target boundary (less contraction)

in the early phase of contraction, before maximum contraction has

not been reached yet (day 25). Here, the predicted wound boundary

is larger than the target boundary, which is also in line with the trend

in Figure 2B. Further, the graphs show that the neural network can

closely predict the wound/scar boundary.

In Table 1, we show the performances of the neural networks. We

see that we obtained R2 ≥ 0.9969 for all networks, which fits within

the 95% interval of confidence. The aRRMSEs are 0.0787, 0.0864,

and 0.0825 for the RSA, the TSE, and the wound/scar boundary,

respectively, showing excellent performance according to Despotovic

et al. [21]. The aRelErrs are only 0.018, 1.4919, and 0.0020%,

confirming that the neural networks can predict the RSA, the TSE,

and the wound/scar boundary. Subsequently, the networks predict

1,000 samples in only 0.2744 s (i.e., 0.2744 ms/sample). In contrast,

the numerical simulations take, on average, 498 s per sample. Hence,

we obtain a speedup of 1815000X, showing a remarkable acceleration.

Taken together, these results confirm our observations.

Focusing on specific characteristics during post-burn healing

makes interpreting the neural network performances easier and is

interesting in the clinic. These characteristics are the minimum

and the asymptotic RSA values and the maximum TSE value,

for which the performances are shown in Table 2. The R2 of the

minimum and asymptotic RSA values and the maximum TSE value

are 0.9989, 0.9965, and 0.9990, respectively. Compared to the overall
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FIGURE 3

Results for the total strain energy (TSE) prediction by the neural network. The figure shows the best (A) and worst (B) predictions, the worst prediction

relative error (C), and the prediction-target relation (D).

FIGURE 4

Results from the neural network for the wound/scar edge. The upper graphs show the best predictions, while the lower graphs show the worst ones. In

each graph, the blue line shows the target, and the red dashed line shows the neural network prediction.

performance scores, the score for the asymptotic RSA is lower,

though still above 99%, and the scores for minimum RSA and the

maximum TSE are higher than the overall performance scores. The

mean average errors (MAEs) are 0.0016 for the minimum RSA,

0.0009 for the asymptotic RSA, and 0.0029 for the maximum TSE,

which are within 1% of the ranges (fifth column) of the minimum
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and maximum values. Further, these MAEs are within 1% of the

average values (sixth column). These results support the networks’

performances. The networks can recognize the minimumRSAwithin

51–83% and the asymptotic RSA within 81 and 95%. We note that

the most significant absolute error of the asymptotic RSA value

prediction is <1.17%. In conclusion, our neural networks can predict

these characteristics at different stages during healing and in ranges

of parameter values.

Application of the neural network

We prefer using a neural network instead of the numerical finite

element method to quickly access the Monte Carlo simulations. We

created a computational application to show the potential of the

networks trained in this study. The app shows the effects of the

uncertainties for the RSA, the TSE, and the wound/scar boundary

and offers probabilities of contractures. To find age-related parameter

values, we use interpolation in literature data based on our earlier

study [5]. In short, the application reads the patient’s age and then

decides the parameter distributions. For illustration, the app shows

other patient and wound-specific options that the app does not

consider yet. The application that considers the burn of the rotated

square, post-processes the Monte Carlo simulations and visualizes

the results. After publication, the app can be downloaded from

4TU.Centre for Research Data.

Conclusions

The numerical approaches to post-burn contraction are less

suitable for applications that require numerous simulations in

a clinical environment since they are computationally expensive.

Therefore, we study neural networks that serve as a low-

cost alternative modeling strategy. After training, these neural

networks provide compelling predictions for a post-burn scar. Our

TABLE 1 Performance of the neural networks.

Performance
measure

RSA value TSE value Boundary value

R2 0.9983 0.9984 0.9969

aRRMSE 0.0787 0.0864 0.0825

aRelErr 0.0018 1.4919 0.0020

Training time 33 s 245 s 295 s

Validation time 0.000069 s 0.000058 s 0.000147 s

networks give aRellErr = 0.0018, 1.4919, and 0.0020% and R2 =
0.9983, 0.9984, and 0.9969 for the RSA, the TSE, and the wound/scar

boundary. Further, the networks accurately predict theminimum and

asymptotic RSA values and the maximum TSE values. The minimum

RSA reports MAE = 0.0016 and R2 = 0.9989; for the final RSA, it

reports MAE = 0.0009 and R2 = 0.9965; and for the maximum TSSE,

it reports MAE = 0.0029 and R2 = 0.9990.

Furthermore, this machine learning approach gives a 1815000X

speedup. This speedup allows for the Monte Carlo-based example

application we developed and published. Our application considers

the patient’s age, demonstrating its effect on post-burn contraction

and patient discomfort. Clinicians can tailor complication-dependent

therapies if they can access such an application that predicts

complications after a burn efficiently and reliably. Clinicians can

then predict probabilities of success under various treatments and

pathological circumstances. Given that the neural networks are

effective and inexpensive, we can also use such an application

for parameter studies and patient-oriented healthcare to optimize

burn treatment.

Discussion and further work

Even though our neural networks can reproduce numerical data,

there are plenty of discussion topics for numerical and machine

learning models.

Our model is a minimalistic simplification of reality, which we

want to keep the same since more complicated models are not

necessarily better than so-called simple ones. The current model

describes clinical observations smartly, though the model still needs

to be completed. Let yc represent clinical measurement, y denote

the simulations by the finite element method, and f (x; θ) represent
the predictions by the neural network model. Then, we realize

that the total error between the neural network model and clinical

observations is determined by

‖yc − f (x; θ)‖ = ‖yc − y+ y− f (x; θ)‖ ≤ ‖yc − y‖ + ‖y− f (x; θ)‖.

Hence the overall error is bounded by the sum of the modeling

error and the neural network error. In a future model, we want to

implement the distinct collagen types and integrate the functioning

of the immune system, which are significant factors influencing

post-burn healing and scar formation. Besides the wound shape,

three-dimensional models are capable of dealing with the depth of

the wound. However, the numerical computational complexity is

a drawback because of a decreasing mesh quality and the curse

of dimensionality. These drawbacks can be solved by rotational

symmetry and isogeometric analysis.

TABLE 2 Performances of the neural networks for specific characteristics during post-burn healing.

Characteristic R2 MAE Min Max Range Average

Minimum RSA 0.9989 0.0016 0.5107 0.8335 0.3228 0.6944

Asymptotic RSA 0.9965 0.0009 0.8067 0.9545 0.1477 0.9032

Maximum TSE 0.9990 0.0029 0.0658 0.9198 0.8540 0.2976

These characteristics are the minimum and asymptotic relative surface area (RSA) values and the maximum total strain energy (TSE) values. Shown are the goodness-of-fit (R2), the mean average

error (MAE), and the minimum, maximum, range, and average of the reported values.
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Because machine learning computations provide such a speedup,

we expect this to be the way to integrate simulations into

medical practice. Once we have further developed the numerical

concepts, a practitioner can scan the burn, for example, using

laser Doppler to map the blood flow in the wound. This scan

contains the form (geometry) of the injury and its severity (in

terms of blood flow). Such a scan can also include noise that we

can filter using image processing, which may be kernel-based or

machine-learning based.

Convolutional neural networks that work with images of the

initial burn can fit the wound. For this, we need to extract contours

and other features, which we can do with pixel-based statistics, shape

similarity [22], and shape matching [23]. Further, the prediction of

post-burn contraction is less complicated for standard geometries,

such as squares and circles. We can use factors such as shape indices

to integrate with these standard geometric objects. The edge error

can measure such a mapping error [24]. In reality, burns do not heal

at the same rates. Also, contractures can develop again after applied

treatments dissolve these. In these instances, we need predictions over

other periods. Hence, we need a network that can work with variable

input and output, and therefore, we can use hybrid approaches (e.g.,

long-term memory). However, we still need a sizeable clinical dataset

to train such a model.

Next to adapting the mathematical model and consider different

neural network approaches, we plan to combine these finite

element simulations with real patient-specific data to predict, to

adapt and to improve therapies for burn injuries next to the

common sense of clinicians. For this, we will collect clinical

datasets from anonymized patients, including patient-observed

data (POSAS).
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