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The predator-prey model has been extensively studied, but only studies models in

a certain environment, where all parameters and initial values involved in themodel

are assumed to be certain. In real practice, some parameters and initial values are

often uncertain. To overcome this uncertainty problem, a model can be made by

using a fuzzy theoretical approach. In this paper, we develop a numerical scheme

for solving two predator-prey models with a Holling type II functional response by

considering fuzzy parameters and initial populations. The behavior of the model

was studied qualitatively using the 5th order Runge-Kutta method of which was

modified for the fuzzy system using the Zadeh extension principle. The numerical

simulation results show that, when the initial populations of prey and predators

are fuzzy, the behavior of the fuzzy model would be qualitatively the same as the

crisp model. Finally, we conclude that the resulting fuzzy behavior represents a

generalization of crisp behavior. This gives more realistic results since the solution

is obtained by explicitly considering the problem of uncertainty.

KEYWORDS

predator-prey fuzzy model, Holling type II functional response, fuzzy parameter, fuzzy

initial population, Zadeh extension principle, 5th order Runge-Kutta method

1. Introduction

The predator-prey model is a model of the interaction between two species expressed

in the form of a system of differential equations that describes the dynamic relationship

between prey and predators [1]. This model was first introduced by Lotka and Volterra, so it

is known as the Lotka-Volterra predator-prey model. In this model, the dynamic behavior of

a simple predator-prey model is studied. Various applications of the predator-prey system,

such as those in Supriatna and Possingham [2, 3] and several other modifications of

the predator-prey model have been made by incorporating additional biological processes

into the classic Lotka-Volterra predator-prey equation, including functional response

modifications [4].

In ecological systems, the degree of predation depends on the functional response.

A functional response considers the number of prey that the predator has successfully

consumed per unit time. It is also introduced to describe changes in the rate of prey
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consumption by predators when prey density varies [4]. The

most common and well-known functional response is the type-

II Holling functional response. The Holling type II functional

response describes the increasing rate of predator’s consumption

when the density of prey is low. Meanwhile, when the prey density

is high, the predator’s consumption is constant. In this case, it

represents a phenomenon that the predator takes very little time

to find the prey, and when the prey consumption rate reaches the

highest level, the predator becomes easily full.

In recent years, various studies on predator-prey models

with type-II Holling functional responses have been carried out,

including in in Dawes and Souze [4], Jana and Kar [5], Ma

et al. [6]. Those studies consider a predator-prey model in a

definite environment, where all parameters affecting population

size and initial values involved in the model are assumed

to be crisp. However, in reality, each parameter and initial

value is uncertain, unclear, or incomplete. This uncertainty is

caused by inaccuracies made during the process of observation,

measurement, experimentation, and so on. To overcome this

problem, a model can be made using different approaches such

as the stochastic approach, the fuzzy approach and the fuzzy-

stochastic approach. A crisp ODE system could be more suitable

to be converted into a fuzzy differential equation system whenever

the parameters or the initial values are uncertain and have a degree

of perseptional values.

In recent decades, the application of fuzzy theory has been

widely used as a very effective tool in mathematical modeling to

solve real problems that take into account uncertainty. In this

approach, uncertain variables and parameters are represented by

intervals and fuzzy numbers. In the study of fuzzy differential

equations, the term fuzzy differential equations can be in the

form of differential equations with fuzzy coefficients, differential

equations with fuzzy initial values or fuzzy boundary values [7–12].

The stability of the fuzzy dynamic system in a dynamic population

is studied through fuzzy differential equation and fuzzy initial value

problem [13]. Various numerical solutions for systems of fuzzy

equations have also been introduced in Ahmad and Hasan [10],

Jayakumar et al. [14], Nayak and Chakraverty [15], Behroozpoor

et al. [16], Tapaswini and Chakraverty [17], and Tapaswini and

Chakraverty [18].

The fuzzy predator-prey model was first introduced in da

Silva Peixoto et al. [19], where a classic deterministic predator-

prey model was formulated using a fuzzy rule-based system. The

development of fuzzy differential equations has resulted in new

discoveries of fuzzy predator-prey models, including those made

by Ahmad and Hasan [10], Pandit and Singh [20], Ak and Oru

[21], Ahmad and De Baets [22], Narayanamoorthy et al. [23], Omar

et al. [24], and Pal et al. [25]. The authors in Ahmad and Hasan

[10], Ahmad and De Baets [22], and Omar et al. [24] used the

Euler and 4th order Runge-Kutta method through the principles of

Zadeh extension. While the authors in Ak and Oru [21], used the

concept of generalized fuzzy derivatives. Other authors in Pandit

and Singh [20], used Hukuhara derivative. Moreover, the authors

in Narayanamoorthy et al. [23], used the fractional modified Euler

method. On the biological perspective, there are some authors who

have studied fuzzy predator-prey models with functional responses

such as [20, 23, 24, 26]. They all studied a predator-prey model

with fuzzy initial conditions. Fuzzy predator-prey models with

functional responses have also been studied by Pal et al. [27], Yu

et al. [28], Pal et al. [29], Meng and Wu [30], Mahata et al. [31],

and Pal et al. [32], who presented fuzzy predator-prey harvesting

models. Their work studied two species of predator-prey harvesting

models by considering fuzzy parameters. Among those work, the

authors in Mallak et al. [26], studied a fuzzy predator-prey model

with an arctan functional response using the Hukuhara derivative

approach, to describe the satiation predator’s consumption.

Our research discusses predator-prey models with Holling

type II functional responses by considering fuzzy parameters and

fuzzy initial populations. The motivation is that we would like

to see how different is the dynamics of the sytems compared to

their counterpart crisp predator-prey systems. To proceed we will

present some preliminaries regarding the fuzzy number theory

and fuzzy differential equation background in Sections 2 and 3

followed by the 5th order Runge-Kutta numerical scheme for fuzzy

differential Section 4. In Section 5, we discuss the equilibria and

their stabilities condition for two predator-prey models with fuzzy

parameters and fuzzy initial values followed by the applications of

the 5th order Runge-Kutta numerical scheme to those predator

prey models in Section 6. Finally some discussion and conclusion

are presented in Sections 7 and 8, respectivelly.

2. Preliminaries

Some of the basic concepts used in this paper, such as fuzzy

number, the α-level of the fuzzy number, and the Zadeh extension

principle, will be introduced in this section.

2.1. Fuzzy theory

Definition 2.1 [33]. Let U be a non-empty set, and A is a subset

of U. The characteristic function of A is given by

χA (x) =

{

1, if x ∈ A

0, if x /∈ A

for each x ∈ U.

Definition 2.2 [33]. A fuzzy subset F of the non-empty set U is

defined by a function ϕF :U → [0, 1], which is called themembership

function of F.

Definition 2.3 (α-level) [33]. α-level of the fuzzy subset A of U

is the classical set [A]α defined by

[A]α =
{

x ∈ U :ϕA (x) ≥ α,α ∈ (0, 1]
}

.

Support of A is supp A = {x ∈ U :ϕA (x) > 0} = [A ]0.

Core of A is core A = {x ∈ U :ϕA (x) = 1} = [A ]1.

Definition 2.4 (Fuzzy Number) [7]. A fuzzy subset A is called a

fuzzy number if the defined universal set is the set of all real numbers

R and satisfies the following conditions:

(i) All α-level A is not empty for 0 ≤ α ≤ 1

(ii) All α-levels of A are open intervals of R
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(iii) supp A = {x∈ R :ϕA (x) > 0} is bounded.

The set of all fuzzy numbers is denoted by F (R), and the

α-level of the fuzzy number A is denoted by [A]α = [aα
1 , a

α
2 ].

Definition 2.5 [33]. A fuzzy number A is called a triangular

fuzzy number if its membership function has the following equation:

µA(x) =



















0, if x < a,
x−a
b−a

, if a ≤ x ≤ b,
c−x
c−b

, if b ≤ x ≤ c,

0, if x > c

and α-level of A is, [A]α =
[

a+ α
(

b− a
)

, c− α(c− b)
]

, for

one α ∈ [ 0, 1].

2.2. Zadeh extension principle

Zadeh’s extension principle is one of the basic ideas that

encourage the expansion of non-fuzzy mathematical concepts to

become fuzzy. This method was proposed by Zadeh to extend the

concept from classical set theory to fuzzy set theory.

Definition 2.6 (Zadeh Extension Principle) [7]. Let X and Y

being two universal sets and f :X → Z are classical functions. The

extension of f is a function f̂ (A) ∈ F(Z), A∈ F(X) such that

ϕ
f̂ (A)

(z) =

{

ϕA (x) , if f−1 (z) 6= ∅

0, iff−1 (z) = ∅

where f−1 (z) =
{

x
∣

∣f (x) = z
}

.

Theorem 2.1 [7]. if f :Rn → R
n is a continuous function, then

f̂ :F (Rn)→ F (Rn) is well-defined, continuous, and

[

f̂ (A)

]α

= f ([ A]α)

for each α ∈ [0, 1 ].

Definition 2.7 [33]. Suppose f :R× R → R is a continuous

function. If A and B are two fuzzy numbers, then the extension f̂ via

A and B, is a fuzzy subset f̂ (A,B) of Rwith themembership function

given by:

ϕ
f̂ (A,B)

(z) =











sup min [ϕA (x) ,ϕB

(

y
)

, if f−1 (z) 6= ∅

f−1(z)

0, if f−1 (z) = ∅

where f−1 (z) =
{(

x, y
)
∣

∣f
(

x, y
)

= z
}

and
[

f̂ (A,B)

]α

= f ([A]α , [B]α) =
{

f (x, y)
∣

∣x ∈
[

aα
1 , a

α
2

]

, y ∈ [bα
1 , b

α
2 ]

}

.

3. Fuzzy di�erential equation

The initial value problem is given to be

{

x
′
(t) = f (t, x (t)) ,

x (t0) = x0,
(1)

where f is continuous and x0 ∈ R
n. Suppose the initial

condition x0 is uncertain and is modeled by a fuzzy set, then the

problem (1) converted into a fuzzy differential equation

{

x
′
(t) = f (t, x (t)) ,

x (t0) ∈ X0,
(2)

where f : [t0, T]×F (Rn)→ F (Rn), X0∈ F(Rn).

Suppose also Lt (x0) = x(t, x0) is the solution to the problem

(1), then by applying extension principle for Lt (x0) = x(t, x0)

obtained L̂t (X0) = X(t,X0), which is the solution of the fuzzy

problem (2).

Definition 3.1 (Equilibrium Point) [13]. A fuzzy number

X∈ F (Rn) is the equilibrium point of (2) if

L̂t
(

X
)

= X, for each t ≥ 0

or equivalent to

[L̂t
(

X
)

]
α
= [X]

α
, ∀α ∈ [0, 1].

Theorem 3.1 [13]. If x is the equilibrium point of the classical system

(1), then χ[x] is the equilibrium point of the fuzzy system (2) where

χ[x] is a characteristic function of x.

Theorem 3.2 [13]. Suppose x is the equilibrium point of the

deterministic initial value problem (2), then

(a) x stable if and only if χ[x] is stable for the fuzzy initial value

problem (2).

(b) x is asymptotic table, if and only if χ[x] is stable asymptotically

for the fuzzy initial value problem (2).

In many cases, a deterministic solution to problem (2) is

often difficult to obtain, therefore the author considers the method

introduced in [10] which modifies the 5th order Runge-Kutta

method for the fuzzy model as follows.

4. Runge-Kutta 5th order numerical
scheme

In this section, we will study a two-dimensional fuzzy

differential equation system with the form:

{

X
′
(t) = f (X,Y) , X (t0) = X0

Y
′
(t) = g (X,Y) , Y (t0) = Y0

(3)

where f , g :R2 → R is continuous function, and X0,Y0 ∈

F (R )

By modifying the 5th order Runge-Kutta method, the solution

to the fuzzy initial value problem (3) would be:

{

Xi+1 = Xi +
1
6 (K1 + 4K4 + K5)

Yi+1 = Yi +
1
6 (L1 + 4L4 + L5)

(4)
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where

K1 = h · f (Xi,Yi)

L1 = h · g(Xi,Yi)

K2 = h · f

(

Xi +
1

3
K1,Yi +

1

3
L1

)

L2 = h · g

(

Xi +
1

3
K1,Yi +

1

3
L1

)

K3 = h · f

(

Xi +
1

3
K2,Yi +

1

3
L2

)

L3 = h · g

(

Xi +
1

3
K2,Yi +

1

3
L2

)

K4 = h · f

(

Xi +
1

2
K3,Yi +

1

2
L3

)

L4 = h · g

(

Xi +
1

2
K3,Yi +

1

2
L3

)

K5 = h · f (Xi + K4,Yi + L4)

L5 = h · g (Xi + K4,Yi + L4 ) .

Since the arguments Xi and Yi on the right-hand side are

iterative, we can define a new function as follows:

{

Fh(Xi,Yi) = Xi +
1
6 (K1 + 4K4 + K5)

Gh(Xi,Yi) = Yi +
1
6 (L1 + 4L4 + L5)

(5)

so that (4) becomes

{

Xi+1 = Fh(Xi,Yi)

Yi+1 = Gh(Xi,Yi)
(6)

Fh and Ghare fuzzy number-valued functions, then

Fh
(

[Xi]
α , [Yi]

α
)

=
[

min
{

Fh (u, v)
∣

∣uǫ
[

xα
i,1, x

α
i,2

]

, vǫ
[

yα
i,1, y

α
i,2

]}

,

max{Fh(u, v)|uǫ
[

xα
i,1, x

α
i,2

]

, vǫ[yα
i,1, y

α
i,2]}

]

and

Gh

(

[Xi]
α , [Yi]

α
)

=
[

min
{

Gh (u, v)
∣

∣uǫ
[

xα
i,1, x

α
i,2

]

, vǫ
[

yα
i,1, y

α
i,2

]}

,

max{Gh(u, v)|uǫ
[

xα
i,1, x

α
i,2

]

, vǫ[yα
i,1, y

α
i,2]}

]

Let [Xi+1]
α =

[

xα
i+1,1, x

α
i+1,2

]

and [Yi+1]
α =

[

yα
i+1,1, y

α
i+1,2

]

,

then we get















xα
i+1,1 = Fh

(

xα
i,1 , y

α
i,1

)

= min{Fh(u, v)|uǫ
[

xα
i,1 , x

α
i,2

]

, vǫ[yα
i,1 , y

α
i,2]}

xα
i+1,2 = Fh

(

xα
i,2 , y

α
i,2

)

= max
{

Fh (u, v)
∣

∣uǫ
[

xα
i,1 , x

α
i,2

]

, vǫ
[

yα
i,1 , y

α
i,2

]}

yα
i+1,1 = Gh

(

xα
i,1 , y

α
i,1

)

= min{Gh(u, v)|uǫ
[

xα
i,1 , x

α
i,2

]

, vǫ[yα
i,1 , y

α
i,2]}

yα
i+1,2 = Gh

(

xα
i,2 , y

α
i,2

)

= max{Gh(u, v)|uǫ
[

xα
i,1 , x

α
i,2

]

, vǫ[yα
i,1 , y

α
i,2]}

(7)

To approximate the solution (3) at each α-level, the partition

t0 < t1 < t2 < · · · < tN−1 < tN = T is created on the interval

[t0,T], with ti = t0 + ih, i = 0, 1, 2, . . . , N and the length of the

partition h = T−t0
N > 0.

5. Predator-prey fuzzy model with
type II Holling functional response

In this section, two predator-prey models with type II Holling

functional response will be studied to construct a fuzzy model.

The first model was built from the deterministic model introduced

by Jha et al. [34]. In this model, all parameters and the initial

population are assumed to be certain, whereas in reality the

parameter values and the initial population number cannot be

known with certainty. In the next section, the model is expressed

in a fuzzy model, where the initial population and uncertain

parameters are expressed in fuzzy numbers. Thismodel is expressed

in Equations (4.1), (4.2), and (4.3) which is called model I.

The second model is a modification of model I by considering

harvesting. First of all, the deterministic model of model I is

modified by adding a harvesting factor for both predator and prey.

This model is then expressed in a fuzzy model, where the initial

population and parameters are considered uncertain. This model

is expressed in Equations (4.4), (4.5), and (4.6) which is called

model II.

Model I: A predator-prey model with a type II Holling

functional response introduced in Jha et al. [34] is given as:

{

x
′
(t) = ax

(

1− x
K

)

−
bxy

(A+x) , x (t0) = x0

y
′
(t) = −cy+

dxy
(A+x) , y (t0) = y0

(8)

where x and y are prey and predator population density at time

t, K is environmental carrying capacity, a is prey intrinsic growth

rate, b is prey predation rate, c is the predator mortality rate, d is

the predator conversion, and A is the constant saturation factor of

the predator. All model parameters are assumed to be positive.

If (x,y) is an equilibrium points of (8), by setting the derivatives

equal to zero, we get the equilibrium points are (0, 0) , (K, 0) , and

(x, y), where x = Ac
d−c

, y = a
b (A+ x)

(

1− x
K

)

, and (x,y) is positive

when d > c. The stability at these points is

(i) The system unstable at (0,0)

(ii) The system is asymptotically stable at (K,0), if K < Ac
d−c

(or

K > Ac
d−c

if d < c)

(iii) The system is asymptotically stable at (x, y), if K <
a(A+ x)2

by
.

Suppose the initial population of prey and predators are

uncertain, i.e., X0 and Y0 become fuzzy initial populations of prey

and predators, respectively, at t0. Then by applying the fuzzy initial

value problem, where the initial population is a fuzzy number, the

fuzzy predator-prey model of the system (8) becomes

{

x
′
(t) = ax

(

1− x
K

)

−
bxy

(A+X)
, x (t0) = X0

y
′
(t) = −cy+

dxy
(A+x) , y (t0) = Y0

(9)

where X0,Y0∈ F(R2).

Based on Theorems (3.1) and (3.2), the fuzzy equilibrium point

of the system (9) is χ{0,0}, χ{K,0}, and χ{

Ac
d−c

, a
b
(A+x)

(

1− x
K

)} exists

if d > c. The stability at these points is:

(i) The equilibrium point χ{0,0} is unstable

(ii) The equilibrium point χ{K,0} is asymptotically stable if K <
Ac
d−c

(or K > Ac
d−c

if d < c)

(iii) The equilibrium point χ{

Ac
d−c

, a
b
(A+x)

(

1− x
K

)}

asymptotically stable if K <
a(A+ x)2

by
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Suppose it is assumed that the parameter a is also uncertain. By

changing the variable X in (9) into X = (X1,X2) = (X, a), then the

fuzzy model (9) becomes











X1
′
(t) = X1X2

(

1− X1
K

)

− bX1Y
(A+X1)

, X1 (t0) = X10

X2
′
(t) = 0, X2 (t0) = a

Y
′
(t) = −cY + dX1Y

(A+X1)
, Y (t0) = Y0

(10)

where X0,Y0, a∈ F(R).

Model II. If it is assumed that both prey and predator

populations in system (8) are the target of harvesting efforts, then

system (8) becomes

{

x
′
(t) = ax

(

1− x
K

)

−
bxy

(A+x) − p1Ex , x (t0) = x0

y
′
(t) = −cy+

δxy
(A+x) − p2Ey , y (t0) = y

(11)

where E denotes the catch effort, and p1, p2, respectively, shows

the coefficient catching power of prey and predator, where the

function piEx adoption from Das et al. [35].

If (x,y) is an equilibrium points of (11), by setting the

derivatives equal to zero, we get the equilibrium points are

(0, 0) ,
(

−
K(p1E−a)

a , 0
)

, and (x, y)

where x = −
A(p2E+c)
p2E−d+c

, y =

Ad(E2Kp1p2−EKap2−EKp1d+EKp1c−EAap2+Kad−Kac−Aac)
Kb(p2E−d+c)

2 exists if

E < d−c
p2

and E
(

EKp1p2 − Kap2 − Kp1d + Kp1c− Aap2
)

>

Kac+ Aac− Kad. The stability at these points is

(i) The system is stable at (0,0) if E > a
p1

(ii) The system is asymptotically stable at
(

−
K(p1E−a)

a , 0
)

, if

E < a
p1

Suppose the initial population of prey and predators are

uncertain, i.e., X0 and Y0 becomes the initial fuzzy population of

prey and predators, respectively, at t0, then the fuzzy predator-prey

model obtained from the system (11) would be

{

X
′
(t) = aX

(

1− X
K

)

− bXY
(A+X)

− p1EX , X (t0) = X0

Y
′
(t) = −cY + dXY

(A+X)
− p2EY , Y (t0) = Y0

(12)

where X0,Y0∈ F(R).

Based on Theorems (3.1) and (3.2), the fuzzy equilibrium

points of the system (12) are χ{0,0}, χ{

−
K(p1E−a)

a ,0
}, and

χ{

−
A(p2E+c)
p2E−d+c

,
Ad(E2Kp1p2−EKap2−EKp1d+EKp1c−EAap2+Kad−Kac−Aac)

Kb(p2E−d+c)2

} exists

if E < d−c
p2

, and E
(

EKp1p2 − Kap2 − Kp1d + Kp1c− Aap2
)

>

Kac+ Aac− Kad. The stability at these points is:

(i) The equilibrium point χ{0,0} is stable if E > a
p1

(ii) The equilibrium point χ{

−
K(p1E−a)

a ,0
} is asymptotically stable

if E < a
p1
.

6. Numerical simulation

In this section, we will explore the solution both of the above

model for some case different according to the conditions of

stability at each point of equilibrium using the 5th order Runge-

Kutta method. Numerical simulations were carried out to compare

the behavior of the crisp system and the fuzzy system.

Model I: For model I, Numerical simulation is divided into

two cases. It is assumed for both cases the values of the parameters

a = 0.5, b = 0.254, K = 1, 000, and A = 500. Parameters c and d

in this model are assumed as follows:

(i) c = 0.125 and d = 0.325

(ii) c = 0.325 and d = 0.125

Suppose the initial population of prey and predators is X0 =

1, 100 and Y0 = 900.

Case (i):

For the case (i) where d > c and K <
a(A+x)2

by
obtained

three equilibrium points: (0.0), (1,000, 0), and (312.5, 1099.594).

Equilibrium points (0, 0) and (1,000, 0) are unstable, and at

points (312.5, 1099.594) are asymptotically stable. The results of

the numerical simulation of case (i) are presented in Figures 1,

2A. Figure 1A shows a stable system toward the equilibrium point

(312.5, 1099.594). The phase plane graph for case (i) is presented in

Figure 2A.

Let the initial population X0 and Y0 uncertain

be defined as a triangular fuzzy number with

[X0]
α = [1, 050+ 50α, 1, 150− 50α] and [Y0]

α =

[850+ 50α, 950− 50α]. Based on theorems 3.1 and 3.2,

the fuzzy equilibrium points are obtained: χ{0,0}, χ{1,000, 0},

and χ{312.5, 1099.594}, where the equilibrium point χ{0,0} and

χ{1,000, 0} is unstable, and the equilibrium point χ{312.5, 1099.594}

is asymptotically stable. The numerical simulation results for the

fuzzy model in case (i) are presented in Figures 1, 2B. Figure 1B

shows the fuzzy system is stable toward the equilibrium point

χ{312.5, 1099.594}. The fuzzy phase plane graph for case (i) is

presented in Figure 2B.

Let other than X0 and Y0, parameter a is also uncertain

and is expressed in triangular fuzzy numbers with [a]α =

[0.4+ 0.1α, 0.6− 0.1α] , then the behavior of the system shown in

Figure 3.

The simulation results can be seen that by adding a parameter

as a fuzzy number, the dynamic behavior of the fuzzy system

qualitatively shows the same results when only the initial

populations of prey and predators are fuzzy, and this is in

accordance with the behavior of the crisp system.

Case (ii):

For the case (ii) where d < c and K > Ac
d−c

, three equilibrium

points are obtained: (0.0), (1,000, 0), and (−812.5,−1114.973). The

point (−812.5, −1114,973) is ignored because it has a negative

value, the stability of the equilibrium point is: at point (0,0) is

unstable and at point (1,000, 0) is asymptotically stable. The results

of the numerical simulation of case (ii) are presented in Figures 4,

5A. Figure 4A shows the system is stable toward the equilibrium

point (1,000, 0). The phase plane graph for case (ii) is presented in

Figure 5A.

Suppose the initial population is uncertain and defined as

a triangular fuzzy number as in case (i). Based on theorems

3.1 and 3.2, the fuzzy equilibrium points are obtained: χ{0,0},

and χ{1,000, 0}, where at the equilibrium point χ{0,0} is

unstable and at the point χ{1,000, 0} asymptotically stable.
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FIGURE 1

Population growth over time from case (i) of model I. (A) Crisp. (B) Fuzzy.

FIGURE 2

Phase Plane of case (i) of model I. (A) Crisp. (B) Fuzzy.

FIGURE 3

(A) Population growth over time. (B) Phase plane fuzzy for case (i) of model I with parameter a and population X0, Y0 is fuzzy.
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FIGURE 4

Population growth over time for case (ii) of model I. (A) Crisp. (B) Fuzzy.

FIGURE 5

Phase Plane for case (ii) of model I. (A) Crisp. (B) Fuzzy.

FIGURE 6

(A) Population growth over time. (B) Phase plane fuzzy for case (ii) of model I with parameter a and population X0, Y0 are fuzzy.
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FIGURE 7

Population growth over time for case (i) of model II. (A) Crisp. (B) Fuzzy.

FIGURE 8

Phase Plane for case (i) of model II. (A) Crisp. (B) Fuzzy.

The numerical simulation results for the fuzzy model in case

(ii) are presented in Figures 4, 5B. Figure 4B shows the fuzzy

system is stable toward the equilibrium point χ{1,000, 0}.

The fuzzy phase plane graph for case (ii) is presented in

Figure 5B.

Let other than X0 and Y0, parameter a is also uncertain and

is expressed in triangular fuzzy numbers as in case (i), then the

behavior of the system is shown in Figure 6.

The results of the numerical simulation are presented

in Figures 1–6 shows that for both cases of model I, the

solution graph with the fuzzy approach differs quantitatively, but

qualitatively gives the same results as the graph from the crisp

system when only the initial population is fuzzy, but slightly

different when one of the parameters and the initial population

is fuzzy.

Model II: For model II, Numerical simulation is divided into

two cases. It is assumed for both cases the values of the parameters

and the initial population are the same as for model I: a = 0.5,

b = 0.254, K = 1, 000, and A = 500. And other parameters in this

model are assumed as follows:

(i) c = 0.325, d = 0.125, p1 = 1, p2 = 2, and E = 0.275

(ii) c = 0.125, d = 0.325, p1 = 1, p2 = 1, and E = 0.6

Suppose the initial population of prey and predators is X0 =

1, 100 and Y0 = 900.

Case (i):

For case (i) where E < a
p1

obtained three equilibrium points:

(0.0), (450,0), and (−583.3,−169.51). The point (−583.3,−169.51)

is ignored because it is negative. The stability at equilibrium point
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(0, 0) is unstable and at (450,0) is asymptotically stable. The

numerical simulation results of case (i) are presented in Figures 7,

8A. Figure 7A shows the system is stable toward the point of

equilibrium (450.0). The phase plane graph for case (i) is presented

in Figure 8A.

Suppose the initial population X0 and Y0 uncertain is defined

as a triangular fuzzy number as in model I, then the fuzzy

equilibrium point χ{0,0} is unstable, and the fuzzy equilibrium point

χ{450,0} is asymptotically stable. The numerical simulation results

for the fuzzy model in case (i) are presented in Figures 7, 8B.

Figure 7B shows a stable fuzzy system toward the equilibrium point

χ{450,0}.The fuzzy phase plane graph for case (i) is presented in

Figure 8B.

Case (ii):

For the case (ii) where E > a
p1

obtained three equilibrium

points: (0.0), (−200,0), and (−906.25, −564.792). The points

(−200,0) and (−906.25, −564.792) are ignored because they are

negative. The numerical simulation results of case (ii) are presented

in Figures 9, 10A. Figure 9A shows the system is stable toward

the equilibrium point (0,0). The phase plane graph for case (ii) is

presented in Figure 10A.

Suppose the initial population is uncertain and defined as a

triangular fuzzy number as in model I, then the fuzzy equilibrium

point χ{0,0} is stable. The numerical simulation results for the fuzzy

model in case (ii) are presented in Figures 9, 10B. Figure 9B shows

the fuzzy system is stable toward the equilibrium point χ{0,0}. The

fuzzy phase plane graph for case (ii) is presented in Figure 10B.

7. Discussion

The research presented in this paper is an extension of the

predator-prey model with a type II Holling functional response

discussed by Jha et al. [34] taking into account the uncertainty in the

parameters and the initial population expressed in fuzzy numbers.

Thismodel is further expanded by adding harvesting factors to both

populations. In this study, the behavior of the system is only studied

qualitatively by performing numerical simulations to explore the

behavior of the fuzzy system and compare it with the crisp system.

In conducting the simulation, we use triangular fuzzy numbers to

express uncertainty in the initial population and parameters. Of the

two models studied, we found the same results. In both models,

FIGURE 9

Population growth over time for case (ii) of model II. (A) Crisp. (B) Fuzzy.

FIGURE 10

Phase plane for case (ii) of model II. (A) Crisp. (B) Fuzzy.
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the fuzzy system shows the same behavior as the crisp system

when only the initial population of prey and predators is fuzzy or

when one parameter is added as a fuzzy parameter. Another result

obtained is, for the fuzzy model, the time required for the system

to reach equilibrium is longer than the crisp model. This is due to

the uncertainty in the initial value expressed in the fuzzy interval.

This research only studied the behavior of the system qualitatively

through numerical simulation. In this numerical simulation, all

the figures of the phase planes for the fuzzy systems above are

plotted for the value of the α-level equals zero. It seems that

the phase planes for the crisp systems can be extracted from the

fuzzy system’s phase planes with the α-level equals zero. This is an

interesting result that can be interpreted crisp model can be used as

a special case of fuzzy model whenever the degree of uncertainty is

relatively low.

8. Conclusion

In this paper, we have developed a numerical scheme to find

the solution of two predator-prey models with a Holling type II

functional response by considering fuzzy parameters and fuzzy

initial populations. The first model was developed from the model

studied by Jha et al. [34] by replacing the initial population and

one of the parameters with a fuzzy number. While the second

model was developed from the first model by adding harvesting

factors to both prey and predator populations. The behavior of the

model was studied qualitatively using the Runge-Kutta method of

order-5 which was modified for the fuzzy system using the Zadeh

extension principle. The numerical simulation results show that,

when the initial population prey and predators that have fuzzy

values, then both fuzzy models have the same behavior as the

crisp model, but the fuzzy model takes a longer time to achieve

stability than the crisp model. This is due to the uncertainty

in the initial population which is indicated by fuzzy intervals.

Likewise, when one parameter is added with a fuzzy value, the

fuzzy model has the same behavior as the crisp model. Finally,

we can conclude that fuzzy behavior represents a generalization of

crisp behavior, and this gives more realistic results that represent

the problem of uncertainty. However, there are still much work

to be done in the future, including studying the stability of the

system analytically, bifurcation problems, and others. As pointed

by one of the reviewer, it “would have been more interesting to

place the choice of parameters on the crisp model exibiting marked

sensitivity behavior to initial conditions” and this is currently under

investigation by the authors.
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