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Structured dynamics of the
cell-cycle at multiple scales

Arran Hodgkinson1, Aisha Tursynkozha2† and Dumitru Trucu2*

1Quantitative Biology and Medicine, Living Systems Institute, University of Exeter, Exeter,

United Kingdom, 2Division of Mathematics, University of Dundee, Dundee, United Kingdom

The eukaryotic cell cycle comprises 4 phases (G1, S, G2, and M) and is an essential

component of cellular health, allowing the cell to repair damaged DNA prior to

division. Facilitating this processes, p53 is activated by DNA-damage and arrests

the cell cycle to allow for the repair of this damage, while mutations in the p53

gene frequently occur in cancer. As such, this process occurs on the cell-scale but

a�ects the organism on the cell population-scale. Here, we present twomodels of

cell cycle progression: The first of these is concernedwith the cell-scale process of

cell cycle progression and the temporal biochemical processes, driven by cyclins

and underlying progression from one phase to the next. The second of these

models concerns the cell population-scale process of cell-cycle progression and

its arrest under the influence of DNA-damage and p53-activation. Both systems

take advantage of structural modeling conventions to develop novels methods

for describing and exploring cell-cycle dynamics on these two divergent scales.

The cell-scale model represents the accumulations of cyclins across an internal

cell space and demonstrates that such a formalism gives rise to a biological

clock system, with definite periodicity. The cell population-scale model allows

for the exploration of interactions between various regulating proteins and the

DNA-damage state of the system and quantitatively demonstrates the structural

dynamics which allow p53 to regulate the G2- to M-phase transition and to

prevent the mitosis of genetically damaged cells. A divergent periodicity and

clear distribution of transition times is observed, as compared with the single-

cell system. Comparison to a system with a reduced genetic repair rate shows

a greater delay in cell cycle progression and an increased accumulation of cell in

the G2-phase, as a result of the p53 biochemical feedback mechanism.

KEYWORDS

cell-cycle, mathematical modeling, cell-scale, cell population scale, temporal-structural

dynamics

1. Introduction

The healthy functioning of the cell cycle is essential to maintaining the genetic integrity

of the cell, protecting it from DNA-damage and becoming a cancer cell, and for the

organism’s ability to grow and repair itself, in a controlled fashion throughout its lifetime.

The eukaryotic cell cycle, in particular, can be split into 4 phases: G1, wherein the cell grows

to make space for DNA replication; S, wherein the cell synthesizes a replicate of its DNA;

G2, wherein the cell grows once more in preparation for mitosis; and M, wherein the cell

splits into two daughter cells, leaving each with a complete set of DNA [1], (see Figure 1A).

In order to ensure the healthy progress of the cell cycle, checkpoints at the end of each phase

prevent transition to the succeeding phase unless certain biochemical conditions, regulated

by a family of proteins called cyclin dependent kinases (CDKs), are met [2]. In general, CDKs
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remain inactive until their cyclin subunit is bound through the

accumulation of cyclins in the cell, throughout the relevant phase of

the cell-cycle [3]. These cyclins are typically named after the phase

in which they are synthesized (i.e., S-phase cyclins are synthesized

in S-phase). Transitions from G1-S and G2-M are controlled by the

activation of the CDK protein complex Cdc2:Cdc13 [4], making G1

and G2 escape dependent on similar cyclins.

As the biological cell is stressed, either through physical

[5], metabolic [6], or chemical [7] mechanisms, DNA-damage

may occur and can compromise the healthy functioning of the

cell, in situ. In response, the p53 gene is well-established to

be activated and, in turn, to activate a plethora of restorative

(cell-cycle arrest, DNA-damage repair) or fatal (apoptosis) bio-

chemical processes [8, 9]. Consequently, p53 deletions or gain-

of-function mutations often lead to cancer or cell death [6, 10–

13]. Through the suppression of transcriptional cdc25 activity [14]

and additional mechanisms, p53 arrests cell-cycle in the G1 phase

[5, 15] in the event of DNA-damage or other cellular stressors.

Simultaneously, the synthesized p53 protein promotes the repair

of damaged DNA through the induction of O6-methylguanine-

DNAmethyltransferase [16] and triggers apoptosis in the event that

repair fails [17]. Cells in the G1 state are preferentially susceptible to

p53-induced cell death [18]. Once DNA-damage has been repaired,

it is the role of native levels of the protein mdm2 to degrade

p53 [19] and suppress the signal inhibiting cell cycle progression

(see Figure 1A). Additional evidence has suggested that p53 may

be involved in the regulation of several cell-cycle checkpoints

[20], including the G2 cell-cycle checkpoint [14, 15, 21, 22].

Moreover, recent testimony [13] suggests that a population-scale

understanding of p53’s dynamics is necessary for progress.

Modeling focused on the role of p53 in cell cycle regulation

has primarily utilized systems biology or ordinary differential

equation (ODE) approaches [23–31], limiting conclusion to the

cell scale, where cancer, itself, is a population level phenomenon.

The role of p53 in regulating the cell’s response to DNA-damage

has been explored extensively through analyzes of genetic network

dynamics [25–27, 29, 31], demonstrating p53 oscillations and

subsequent cell-cycle arrest and/or apoptosis. The role of p53 in

cell fate decision-making has been highlighted as a challenge for

mathematical biology [28], yet answering this question on the

cell-scale, alone, will leave open questions as to the population-

scale consequences of these conclusions. In order to expand upon

this work, we model cell-scale dynamics using delay integro-

differential equations, which allow for inter-temporal biochemical

effects of cyclin levels to be accounted for, and population-scale

dynamics using partial differential equations (PDEs), which allow

for multiple biochemical events to be observed simultaneously at

population level.

Early structured approaches to studying cell-cycle dynamics

[32] were motivated by the observation that, on the population-

scale, cell-cycles were unsynchronised and were unsuited to a

mean-field approximation described by singular ODEs. Other

structured models of cell-cycle progression have utilized age-size

[33, 34] or space-size [35, 36] structured models to track the

cell’s progression through the cell cycle (as a single quantitative

measure of age) to theoretical ends. These models still do not

account for the richness and correlation of the interactions

between cyclin and DNA-damage states, which would allow for

an understanding of how failures in the cell-cycle may contribute

to the onset and survival of cancerous cells. One data-inspired,

DNA structured approach accounts for the effects of hypoxia on

the accumulation of synthesis related DNA-damage in the nucleus

[7], demonstrating an application for models of this kind, though

without correlating this to the failure of cell-cycle checkpoints.

We expand upon previous structured models through a multi-

dimensional approach which allows for population-scale cyclin,

p53, and mdm2 concentrations to interplay, allowing for a more

accurate representation of the biological literature.

To investigate the dynamics of the cell-cycle, we here propose

two novel models focussed on cyclin amount and the p53 DNA-

repair pathway and its associated mdm2 checkpoint, respectively.

The first of these models (Section 2) explores the quantity of S-

and M-cyclins across the cell cycle and at the level of the individual

cell, through the utilization of a novel, oscillatory PDE framework.

The second of these models (Section 3) explores the effect of

p53 on DNA-damage repair on the population level, during the

course of the cell cycle, using a novel spatio-temporal-structural

population level PDE framework similar to that in Domschke

et al. [37] and Hodgkinson et al. [38]. To further address the

potential role for this model to be used for the simulation of

p53 mutant cell lines, relevant in several species of cancer [39],

the results for this model (Section 4) are explored across several

hypothetical scenarios. The purpose of this study is to explore the

dynamics of two fundamentally novel approaches for modeling

the cell cycle and to demonstrate their potentials (under a limited

parameter set) to give rise to important nonlinearities in cell

population-scale behavior.

2. A cell-level model for individual
cell-cycle dynamics

As described above, the dynamics involved in the completion of

mitosis from a newly birthed daughter cell involve the separation

of events across the cell cycle. Presently, we consider a model of

a single cell which progresses through the cell cycle, accordingly

with their cyclin states which initiate the transition between phases

of the cell cycle. Since DNA replication occurs in the S-phase,

whilst mitosis occurs in the M-phase, we begin by considering a

simple single-cell model consisting of cyclin states for each of these

phases, respectively.

2.1. Motivation for the cell-level model

Firstly, since the purpose of this model is to explore the

dynamics of the cell cycle within a single-cell, we describe the

‘state’ of the cell based on the relative amounts of the molecules

which govern this process; i.e., the total mass of cyclins at time

t. For example, the S-cyclin state of the cell describes the relative

amounts of S-cyclin in the cell, whilst the overall state of the cell

is determined by the relative amounts of S- and M-cyclins or the

lack thereof. This state then allows one to determine both the phase

of the cell cycle, within which the cell finds itself, and also the

trajectory of the cell in time.
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FIGURE 1

(A) Diagramatic representation of the cell cycle, showing all 4 phases and associated biochemical dynamics accounted for within the model. (B) The

masses of M- and S-cyclins over time.

Now, let us consider the S-phase of the cell cycle. Allow that all

dynamics of this system occur within a time interval, I : = [0,T],

and an internal cellular spatial domain, D ⊆ R
d, of dimension d

with independent variables t ∈ I and ξ ∈ D (Table 1). Since we

are assuming that only S- and M-phase dynamics are relevant for

our system, the expression of S-cyclin will necessarily be tied to

the activation of the M-phase in the previous cell cycle, such that

the S-cyclin state should not increase whenever there are significant

numbers of M-cyclins still present within the cell.

In order to account for the change in the bio-chemistry of

the cell, without introducing additional states, we then allow for

the existence of a “cellular memory”, whose length is determined

by the temporal parameter τ . Biologically, cellular memory can

accumulate through the biochemical transformation of a protein’s

surroundings (for instance, through phosphorylation of target

proteins), so that the biochemical landscape of the cell will retain

some residual differences from its base state, even after the

disappearance of the protein [40, 41]. In this case, and in order

to reduce the number of independent variables in the model, we

account for this by allowing a delay-intergral in the system of

integro-differential equations. In practice, τ serves to determine

the time-scale over which the cell may account for its past states

while, in theory, this τ represents the time-scale over which the

state of a cell will determine its future state, through influencing

biochemistry in the present. Thus, we assume that if the historically

weighted M-cyclin state, giving rise to current protein levels, is

below some critical threshold, θm, then it is assumed that S-cyclin

expression will occur, and not in any other case.

Moreover, to account for the fact that cyclins will be produced

nearby the nucleus and must diffuse throughout the cell to control

whole-cell cell-cycle functioning, we multiply this positive term by

appropriate spatial biasing kernel p :D → R+. The purpose of the

spatial biasing kernel is to distribute the translation or production

of cyclin proteins in the region near to the nucleus and, therefore,

we choose the form

p(ξ ) : = exp(−κpξ ) , (1)

TABLE 1 Table of variables and the domains considered for simulating

solutions to Equations (3), (27).

Symbol Description Considered domain

t Time I : = [0,T]

s S-cyclin state S : = [0, 1]

g G2-cyclin state G : = [0, 1]

m M-cyclin state M : = [0, 1]

ξ Internal cell position D : = [0, 1]

z DNA-damage Z : = [0, 1]

p p53 expression P : = [0, 1]

µ mdm2 expression M : = [0, 1]

Where κp is a decay rate from ξ = 0. Therefore, assuming that

the S-cyclin state is normalized and asymptotic to its maximum

quantity, the term corresponding to the expression of S-cyclins (i.e.,

“source of S-cyclins") within the cell is written as

source
S−cyclin

: = ksp(ξ )[1− s(t, ξ )]+



θm −
τ∫

0

1∫

0

m(t − t′, ξ ′)dξ ′ dt′





+

,

Where the positivity operator is given by [·]+ : = max(0, ·) and
ks > 0 is the cyclin production rate constant.

In simple terms, when m(t, ξ ) is sufficiently high across space

and some period of time and s(t, ξ ) < 1 for p(ξ ) > 0, the source

term should be positive and S-cyclins are produced. If either of

these conditions are not met [i.e., eitherm(t, ξ ) was not sufficiently

high for long enough or s(t, ξ ) > 1] then the source term will be 0.

This acts as a switch to engage production of cyclins and begin the

given phase of the cell cycle, just as in the biological case.

Further, the degradation of S-cyclins and subsequent decrease

in amount appears, also, to depend upon theM-cyclin state, with S-

cyclin being systematically degraded as M-cyclins approach their

maximal cellular quantity. Therefore, assume that degradation
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occurs with a rate µs, we have that the total S-cyclin decay is given

by

decay
S−cyclin

: = −µss(t, ξ )χ{
∫ 1
0 m(t,ξ ′) dξ ′+ǫ>1

} , (2)

where

χA (x) : =

{

1 if x ∈ A

0 otherwise.

is the usual characteristic function.

On the other hand, exploring now the balance between the

source and decay of the M-cyclin population, the relationships

between the involved positive and negative terms (of identical form

to the ones giving the source and decay for S-cyclins) is here

reversed, as M-cyclins are expressed only when historic S-cyclin

population levels are above a certain threshold and are degraded

only when current S-cyclin states approach their minimum value,

0. Furthermore, both for S- and M- cyclin populations, given that

decay toward minimal cyclin quantity is regarded as an exponential

asymptotic process, explore this by introducing a parameter ǫ

which represents the degree to which levels of cyclin are expected

to approach their respective maxima or minima.

Finally, in the presence of the associated balance of source

and decay, in order to permeate the entire cell, per unit time,

both cyclins populations are assumed to exercise a diffusive

spatial transport locally throughout the cyctoplasm, with diffusion

coefficients Ds and Dm for S- and M-cyclins, respectively. Hence,

the coupled dynamics of S- and M-cyclin populations is therefore

given by

∂

∂t
s(t, ξ ) =Ds∇ξ · ∇ξ s(t, ξ )− µss(t, ξ )χ{

∫ 1
0 m(t,ξ ′) dξ ′+ǫ>1

}

+ ksp(ξ )[1− s(t, ξ )]+



θm −
τ∫

0

1∫

0

m(t − t′, ξ ′)dξ ′ dt′





+

(3a)

∂

∂t
m(t, ξ ) =Dm∇ξ · ∇ξm(t, ξ )− µmm(t, ξ )χ{

∫ 1
0 s(t,ξ ′) dξ ′<ǫ

}

+ kmp(ξ )[1−m(t, ξ )]+





τ∫

0

1∫

0

m(t − t′, ξ ′)dξ ′ dt′ − θs





+

(3b)

Given that these dynamics are assumed to take place within the

cyclin-impermeable lipid membrane of the cell and, as such, we

impose no flux boundary condition to complete the model.

FIGURE 2

Spatial S- (red) and M- (green) cyclin state estimated for t ∈ [0, 1150].
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FIGURE 3

Spatial S- and M-cyclin state estimated for t ∈ [1,310, 1,960].

FIGURE 4

Spatial S- and M-cyclin state estimated for t ∈ [2,770, 3,900].
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2.2. Results for the cell-level model

Beginning with initial conditions given by s(0, ξ ) =
m(0, ξ ) = 0 and using a finite differences numerical simulation

scheme, alongside central difference calculations for gradient

approximation and mid-point integration calculation for integrals,

we obtain both spatially and temporally resolved results. As

such, we present these firstly as a spatially integrated cyclin

state profile over time (Figure 1) and secondly as a time

series distributed in the internal cell space, ξ (Figures 2–4).

The default parameter set used in this section is given in

Table 2.

Observing the temporally resolved data, in the first instance, we

find an oscillatory dynamics between the S- and M-cyclin states

(Figure 1B). We also observe that the time period over which

S-cyclin maintains its near-maximal quantity, |1 − s| < ǫ, is

significantly longer than that observed for the M-cyclin, in spite

of the controlling variables being equal in value: θm = θs. Also,

the relative exclusivity of these two cyclin states means that we can

begin to delineate the S- and M-phases, respectively, as those time

periods across which either the S- orM- cyclins are at their maximal

concentrations, yielding a period of1t = 2,770.

Let us turn, now, to the spatially resolved system, wherein the

S- andM-cyclins are viewed as a time series, as they diffuse through

the spatial cell interior, ξ ∈ D. Beginning at t = 10, we observe the

creation of S-cyclins at the origin of the system, ξ = 0, consistently

with the cyclin translation (or production) function, p(ξ ), followed

by the asymptotic homogenisation of the spatial domain through

diffusive processes for t ∈(0,500] (Figure 2). At t ≈1,000, the

historic activity of S-cyclins becomes sufficient to manifest the

process of M-cyclin creation which, again, begins from the origin

and homogenizes across the domain as time progresses (Figure 2),

such that S- and M-cyclins coexist for some period of time.

At t ≈ 1,310, the population of S-cyclins decreases ubiquitously

across the domain as
∫

D
m(t, ξ ) dξ ′ + ǫ > 1 (Figure 3). It may also

be readily observed that this process is exponential and asymptotic

with s(t, ξ ) → 0. Likewise, at t = 1,770, the M-cyclin population

TABLE 2 Table of parameters used for simulating solutions to Equation

(3).

Parameter Description Range Default
value

Ds S-cyclin diffusion [0, 1] 5× 10−1

Dm M-cyclin diffusion [0, 1] 5× 10−1

µs S-cyclin decay rate [0, 1] 1× 10−2

µm M-cyclin decay rate [0, 1] 1× 10−2

ks S-cyclin synthesis rate [0, 1] 1

km M-cyclin synthesis rate [0, 1] 1

θs S-cyclin memory threshold [0, 1] 9× 102

θm M-cyclin memory threshold [0, 1] 1× 102

τ Duration of memory of cyclins [0, 1] 1× 103

ǫ Arbitrary small parameter [0, 1] 1× 10−2

κp Production kernel slope [0, 1] 1× 102

begins to decrease ubiquitously in space and exponentially in time,

such thatm(t, ξ ) → 0.

Comparing this spatial process (Figures 2, 3) with its

corresponding temporal process (Figure 1B), we find a close

correspondence where the diffusive process accounts for the delay

between process initiation and concentration maximization in

cyclin states. Moreover, observing the temporal sequence, we find

that the S-cyclin state remains significantly greater than 0, whilst

the M-cyclin state appears to be at least infinitesimally close to

0. (In fact, since the processes of protein production and protein

destruction are both asymptotic, the M-cyclin states may be no less

than infinitesimally greater than 0 for times, t′, at whichm(t, ξ ) > 0

with t > t′, ξ ∈ D). This is due to the assumption that S-cyclins

are degraded only for times in which M-cyclins are near-maximal,

whilst M-cyclins are degraded where S-cyclin states are near-0,

inducing a fundamental asymmetry between these quantities; the

time period over which each are degraded is significantly different,

under these assumptions and with the given parameter values.

Finally, as the M-cyclin state remains sufficiently low for a

sufficient period of time, t ≈ 2, 770, one observes the S-cyclin state

begin to rise (Figure 4), similarly as in the above case (Figure 2,

t = 10). Likewise, at t ≈ 3, 740 the M-cyclin state again begins to

rise and diffuse across the cell to complete the periodic oscillation

(Figure 4), correspondingly with the temporal cyclin state data

(Figure 1B).

3. A novel population-level
mathematical model for the influence
of p53 on cell-cycle dynamics

Having explored a novel model of cell cycling through

interdependent oscillations in cyclin expression on the individual

cell-level, we now extend the biological context of this model to

look at cell population-scale dynamics of cell cycling. Since cyclin

expression is the fundamental mode of phase transition across the

cell cycle, we retain this dependence through the population-level

model. Alongside this dependence on cyclin expression, however,

we wish to explore the dynamics of DNA-damage and the critical

p53-mdm2 checkpoint in the G2-phase of the cell-cycle. This

checkpoint is thought to prevent significantly genetically damaged

cells from progressing through to the mitotic, or M-, phase and

we shall discuss the assumed dynamics of this checkpoint in detail

(Section 3.2).

In order to reconcile the complexity of this cyclin

interdependence with a yet more complex model of cell cycle

checkpoint operation, however, we simplify the representation of

dynamics dependency on cyclin expression. In this population-

level model, we assume that cyclin expression increases across the

present phase of the cell cycle, whilst transition to the following

phase of the cell cycle is probabilistically dependent upon this

cyclin expression level. Therefore, no explicit dependence of one

cyclin’s expression upon the other’s need be accounted for. This

effectively allows us to extend the cell-level cyclin-dependent

cycling model to a population-scale model incorporating

additional stochastic dynamics involved in DNA-damage, repair,

and biochemical survey.
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Firstly, we begin by defining a time interval, I : = [0,T] ⊂ R,

and corresponding independent variable, t ∈ I upon which these

dynamics are considered. Next, we define a number of independent

variables which mathematically represent the expression levels of

S, G, and M-cyclins, respectively, as s ∈ S ⊆ R
ς
+, g ∈ G ⊆ R

γ
+,

and m ∈ M ⊆ R
ω
+. In line with this definition, the number

of dimensions through which we consider the dynamics of S,

G, and M-cyclins are given by ς , γ ,ω ∈ N. In our particular

case, we consider the simplest case, where ς = γ = ω = 1.

In this 1-dimensional case, we consider that there is only one

cyclin for any given phase (S, G, or M), whereas the higher

dimensional cases, of 2 dimensions or greater, would represent

multiple relevant cyclins within a given phase of the cell cycle,

which may present with differing biochemical properties and may,

for instance, interact with one another. Notable here is that the

general model derivation presented below remains valid also in

these higher dimensional cases.

Likewise, and across all phases of the cell cycle, we consider

that the cells may retain or acquire damage to their genome,

which we map onto a ζ−dimensional domain, ζ ∈ N, with

an independent variable given by z ∈ Z ⊆ R
ζ
+. Meanwhile,

the G2-phase checkpoint is mediated by the interaction of

p53 and mdm2, whose independent variable are mathematically

represented by p ∈ P ⊆ R
η
+ and µ ∈ D ⊆ R

δ
+,

respectively. Likewise, we here consider the 1−dimensional case

where ζ = η = δ = 1. The dynamics of each of these

essential biochemical properties will be discussed appropriately

to motivate modeling construction in Sections 3.1–3.3. Finally,

the domains considered here are non-dimensional and are taken

as S = G = M = Z = P = D = [0, 1].

In practice, this will allow for a simpler interpretation and

visualization of results, whilst maintaining the biological realism of

the system.

Furthermore, the current model considers the populations

of S-, G-, and M-phase cells as mathematically distinct.

In particular, cs :I × S × Z → R+, cg : I × G ×
P × D × Z → R+, and cm :I × M × Z → R+
represent the cell populations in the S- G-, and M-

phases, respectively. The derivation of the fundamental

equations governing the temporal-structural dynamics

of the S-, G-, and M-phase populations follow the

formalism employed in previous studies of cell population

dynamics [37, 38].

3.1. S-phase

3.1.1. Derivation of S-phase cell population
spatio-temporal dynamics

Given the S-phase population of cells, cs(t, s, z), we begin by

considering an arbitrary control volumeUs×Y ⊂ S×Z , withUs and

Y assumed to be compact and with piecewise smooth boundaries.

Then the total number of cells in Us×Y at a given time t is given by

CUs×Y (t) =
∫

Y

∫

Us

cs(t, s, z) ds dz . (4)

Using the principle of mass conservation, the change in

CUs×Y (t) per unit time in the region Us×Y is given by

d

dt
CUs×Y (t) =

∫

Y

∫

Us

Ss(t, s, z) ds dz −
∫

Y

∫

∂Us

Fs(t, s, z) · n(s) dσς−1(s) dz

−
∫

Us

∫

∂Y

Js(t, s, z) · n(z) dσζ−1(z) ds ,

(5)

where σς−1 and σζ−1 are surface measures on ∂Us and ∂Y

respectively and n(·) is the normal unit vector at a point (·)
on the boundary of the corresponding compact set. Moreover,

Ss, Fs, and Js are the respective fluxes in source (birth-death

processes), S-cyclin concentration, and DNA damage. Supposing

now, that Fs and Js are in the C1 class of continuously

differentiable vector fields one can use Stokes’ Theorem to

write

d

dt
CUs×Y (t) =

∫

Y

∫

Us

Ss(t, s, z) ds dz −
∫

Y

∫

Us

∇m · Fs(t, s, z) ds dz

−
∫

Us

∫

Y

∇z · Js(t, s, z) dz ds ,

(6)

and, using Lebesgue’s dominated convergence

theorem, one can move the time derivative

within the integral for CUs×Y (t) to arrive

at

∫

Y

∫

Us

∂

∂t
c(t, s, z) ds dz =

∫

Y

∫

Us

Ss(t, s, z) ds dz −
∫

Y

∫

Us

∇m · Fs(t, s, z) ds dz

−
∫

Us

∫

Y

∇z · Js(t, s, z) dz ds .

(7)

We then use the indicator function to write the equivalent

relation in terms of the integral over the ζ + ς−dimensional

domain

∫

Rς+ζ

[
∂

∂t
c(t, s, z)

]

χUs×Y (t, s, z) ds dz =
∫

Rς+ζ

[

Ss(t, s, z)
]

χUs×Y (t, s, z) ds dz

−
∫

Rς+ζ

[

∇s · Fs(t, s, z)
]

χUs×Y (t, s, z) ds dz

−
∫

Rς+ζ

[

∇z · Js(t, s, z)
]

χUs×Y (t, s, z) ds dz .

(8)

Then, since we have that Us × Y , where Us and

Y are compact with piecewise smooth boundaries is a

family of generators for the Borelian σ -algebra on R
ς+ζ ,

given the density of the simple functions (i.e., finite

sums of indicator functions) among the test functions

from C∞
c (i.e., the family smooth compact support

functions) in L1 [42], we finally obtain that Equation (8)
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is valid also in terms of test functions, and so we have

that:

∫

Rς+ζ

[
∂

∂t
cs(t, s, z)

]

ν(t, s, z) ds dz =
∫

Rς+ζ

[

Ss(t, s, z)
]

v(t, s, z) ds dz

−
∫

Rς+ζ

[

∇s · Fs(t, s, z)
]

ν(t, s, z) ds dz

−
∫

Rς+ζ

[

∇z · Js(t, s, z)
]

ν(t, s, z) ds dz .

(9)

where ν(t, s, z) is an arbitrary test function. Thus, we have finally

obtained the following general equation, namely:

∂

∂t
cs(t, s, z) = Ss(t, s, z)

︸ ︷︷ ︸

Source Term

−∇s · Fs(t, s, z)
︸ ︷︷ ︸

s-Cyclin Flux

−∇z · Js(t, s, z)
︸ ︷︷ ︸

DNA-damage flux

.

(10)

3.1.2. Defining S-phase flux relations
Firstly, the source-sink function, Ss, will consist of one term

accounting for cells which are expected to leave the S-phase of the

cell cycle and one for those which are expected to enter it, based on

the current state of the system. Cells should exit the S-phase of the

cell cycle (to enter the G-Phase) dependent on their S-cyclin state

and with a rate of progression, rs. The dependence on cyclin state

for cell cycle progression is a function of the cyclin state itself and

is described and defined here as ψ :S → [0, 1], an exponentially

decaying function from maximal cyclin levels of 1, given by

ψ(x) : = exp
(

κψ (x− 1)
)

, (11)

where κψ is the probability decay rate from x = 1. Since we define

the independent variables to be non-dimensional and contained

within the interval [0, 1], this ensures that ψ(1) = 1 whilst 0 ≤
ψ(x) ≤ 1, ∀x ∈ [0, 1). Cells should, then, transition from the

M-phase of the cell cycle to the S-phase, dependently with the M-

cyclin state of the entering cell, with a rate of progression given

by rm and with an S-cyclin distribution given by σs :S → R+.

The distribution of cell transition to the S-phase are given by the

exponentially decaying probability function

σx(x) : = Nσ exp
(

− κσ x
)

, (12)

whereNσ is a normalization constant and κs is the decay rate of the

redistribution function from x = 0. The S-phase source function,

as a whole, is then expressed as

Ss(t, s, z) = rmσs(s)

∫

M
ψ(m)cm(t,m, z) dm− rsψ(s)cs(t, s, z) .

(13)

We know that S-cyclin state increases over the S-phase, as

a marker of S-phase progression. For the S-cyclin flux function,

therefore, we assume that the dynamics are composed of both

deterministic dynamics toward greater levels of S-cyclin state and

random fluctuations in these states. We express the deterministic

flux in the form of an advective term toward s = 1, accounting

for the normalized domain, with a rate given by χs. The random

dynamics in S-cyclin concentrations, on the individual cell-scale,

are accounted for through a diffusive term in the S-cyclin domain,

on the population-scale, and with a rate given by Ds. The full flux

expression is then given by

Fs(t, s, z) = χs(1− s)cs(t, s, z)− Ds∇scs(t, s, z) . (14)

As for DNA-damage, in line with the majority of the literature

in this field [7, 27, 43, 44], we assume this to be an unbiased

random process, with time being the only causal factor. In the case

of the S-phase, due to the rapid DNA replication which occurs

across this phase, we assume that the DNA-damage occurs at some

accelerated rate. Therefore, the DNA-damage flux term is expressed

as a diffusive dynamic with a generic rate, Dz , plus some additional

replicative rate, Dr , such that

Js(t, s, z) = −(Dz + Dr)∇zcs(t, s, z) . (15)

3.2. G-phase

Since the derivation of the G-phase dynamics is analogous to

that of the S-phase, we begin here simply by stating the fundamental

dynamical equation in the G-phase:

∂

∂t
cg(t, g, p,µ, z) = Sg(t, g, p,µ, z)−∇g · Fg(t, g, p,µ, z)

−∇p · Gp(t, g, p,µ, z)

−∇µ · Gµ(t, g, p,µ, z)− ∇z · Hg(t, g, p,µ, z) .

(16)

As such, the full derivation of the dynamical equation for the

G-phase follows that given in Section 3.1.1.

3.2.1. Defining G-phase flux relations
The source term for the cell population in the G-phase is

somewhat more complicated than that given in the S-phase due

to the increase number of dimensions through which we consider

this population. Firstly, the entry of cells to the G-phase arrive

exclusively as a result of sufficient S-cyclin state in the S-phase, with

the function ψ . Cells are then distributed in (g, p,µ)-components

of the G-phase, with σg , σp, σµ. The rate of transition from the S- to

the G-phase occurs with a rate rs, where the factor φs is utilized

to account for the assumed increase of mass, in the population,

across the S-phase and is accounted for through during the S- to

G-phase transition. In particular, though we assume that the mass

of the cell increases across both the S- and G-phases, we utilize φs
and φg (where φsφg = 2) during the transitionary source term,

in order to simplify the mathematics and mass-balance. Thus, the

total increase in mass of any given cell across the cell cycle will be

2, accounting for the mitosis of the mother cell into 2 daughters of

precisely equal mass.

Secondly, the exit of cells from the G-phase depends with ψ on

G-cyclin state, with a rate rg . Moreover, since p53 is known to arrest

cell cycle progression [15, 20, 21], we assume that the transition of
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cells from G2- to M-phase is dependent upon the relative amount

of p53, as

θ(x) : = Aθ exp
(

− κθx
)

, (17)

where Aθ is the magnitude and κθ is decay rate in the distribution

from x = 0. Thus, the source term for cells in the S-phase is written

as

Sg(t, g, p,µ, z) =φsrsσg(g)σp(p)σµ(µ)
∫

S
ψ(s)cs(t, s, z) ds

− rgθ(p)ψ(g)cg(t, g, p,µ, z) ,

(18)

where the functions ψ , σg , σp, and σµ are the probabilistic

transition and distributed source functions defined in Equations

(11), (12).

Again, G-cyclin state is known to increase across the G-phase

and this is assumed to occur with some regularity, alongside

random perturbation. Therefore, we assume a similar form to

that taken for the S-phase source but with the corresponding

parameterization, χg and Dg , such that

Fg(t, g, p,µ, z) = χg(1− g)cg(t, g, p,µ, z)− Dg∇gcg(t, g, p,µ, z) .

(19)

One important dynamic to consider across the G-phase is

the p53-mediated checkpoint delay to cell-cycle progression. This

occurs primarily through the natural up-regulation of p53 and is

mitigated through the subsequent up-regulation of Mdm2, in the

absence of DNA-damage, across the same phase of the cell-cycle.

In essence, p53 will naturally halt cell-cycle progression, where the

concurrent expression of p53 and absence of DNA-damage will

allow for Mdm2 expression and a consequent inhibition of p53’s

effect. In the absence of DNA-damage, therefore, the cell-cycle will

be allowed to proceed.

Let us begin by considering the dynamics of p53. As we have

observed, we assume that the production of p53 is natural and

spontaneous, so that we assume an asymptotic increase in p53 levels

from p = 0 to p = 1. We know however, that Mdm2 suppresses

this expression of p53 and can mathematically represent this as an

asymptotic increase in p53 state from p = 0 to p = 1 − µωµ ,

where µ is the Mdm2 state and ωµ accounts for the fact the form of

this inhibitory process is unknown. Therefore, the p53 flux in the

G-phase is given by

Gp(t, g, p,µ, z) = χp(1− µωµ − p)cg(t, g, p,µ, z) . (20)

Similarly, we now consider the Mdm2 flux in the G-phase and

begin by acknowledging that this process is dependent upon the

state of p53 flux, p. Similarly as with p53, we assume that the Mdm2

state of the cell will increase asymptotically fromµ = 0 toµ = 1. In

the case of Mdm2, however, we know that DNA-damage, z, exerts

an inhibitory effect on the expression of Mdm2 and assume that

this will take the form of an asymptotic increase from µ = 0 to

µ = 1− zωz , where ωz shall again represent our uncertainty in the

form of this inhibitory process. The full Mdm2 flux term is then

given by

Gµ(t, g, p,µ, z) = χµp(1− zωz − µ)cg(t, g, p,µ, z) . (21)

In both of these cases, it should be noted that the dynamics

of the system, as well as the inter-dependence of p53 and Mdm2

will not necessarily cause the population to exhibit any monotonic

behavior in either p53 or Mdm2 but will likely exhibit nonlinear

behavior. Nevertheless, the value to which the system shall exhibit

asymptotic behavior remains accurately described above.

Finally, the DNA-damage during the G-phase shall exhibit 2

primary dynamics; those of random variation and repair. The

random variation of the DNA-damage during the G-phase shall

exhibit diffusive dynamics with the same generic rate of DNA-

damage as can be observed in the S-phase dynamics, although

without the additional DNA-damage occurring due to replication.

Rather, the G-phase occurs posterior to DNA replication and

contains a cell-cycle checkpoint which appears specifically to

attempt to mitigate DNA-damage arising during DNA replication.

The DNA repair is assumed to cause an exponential decay in the

degree of DNA-damage within the cell, with a rate given by χz , such

that

Hg(t, g, p,µ, z) = −χzzcg(t, g, p,µ, z)− Dz∇zcg(t, g, p,µ, z) .

(22)

note that the efficiency of this DNA repair mechanism shall

determine the rate at which the cell population may pass from the

G-phase to the M-phase and on to cellular mitosis, controlled by

the p53 mechanism. This is the reason for which cells with mutated

alleles in p53 often exhibit cancer-like behaviors and unregulated

cell-cycle checkpoint control.

3.3. M-phase

Since the derivation of the M-phase dynamics is analogous to

that of the S-phase, we begin here simply by stating the fundamental

dynamical equation in the M-phase:

∂

∂t
cm(t,m, z) = Sm(t,m, z)−∇m · Fm(t,m, z)−∇z ·Hm(t,m, z) .

(23)

As such, the full derivation of the dynamical equation for the

M-phase follows that given in Section 3.1.1.

3.3.1. Defining M-phase flux relations
Consistently as defined in the flux relations for the S- and G-

phases, the source term in the M-phase is defined based upon the

incoming population being distributed with σ inm, yielding

Sm(t,m, z) =φgrgσm(m)

∫

G

∫

P

∫

M

θ(p)ψ(g)cg(t, g, p,µ, z) dµ dp dg

− rmψ(m)cm(t,m, z) .

(24)

Here, the factor φg is utilized to account for the assumed

increase of mass, in the population, across the G-phase and is

accounted for through during the G- to M-phase transition.

The M-cycling flux in the M-Phase, similarly as in the cases of

the S- and G-phase dynamics, are given by both an advective state

term and a diffusive random-walk term. The respective parameters

for these dynamics, specifically for the M-phase, are given by χm
and Dm, respectively. Hence, the M-cyclin flux term is given by

Fm(t,m, z) = χm(1−m)cs(t,m, z)− Dm∇scm(t,m, z) . (25)
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Likewise, the DNA-damage during the M-phase is presumed

not to be driven by any particular event but simply by random

fluctuation and stochastic interaction of the genome with RNA

synthase. Therefore, we assume its dynamics to be governed by a

diffusive term with the generic DNA-damage rate, Dz , found in

both the S- and G-phases. Hence, the DNA-damage flux is given

by

Hm(t,m, z) = −Dz∇zcm(t,m, z) . (26)

3.4. Full system

Therefore, with all of the individual elements of the
model introduced in Equations (10)–(26), the full system
of equations for the 3 phasically-resolved subpopulations are
given by:

∂

∂t
cs(t, s, z) =∇z · (Dz + Dr)∇zcs(t, s, z)

+ ∇s · Ds∇scs(t, s, z)

− ∇s · χs(1− s)cs(t, s, z)

+ rmσs(s)

∫

M
ψ(m)cm(t,m, z) dm− rsψ(s)cs(t, s, z) ,

(27a)

∂

∂t
cg(t, g, p,µ, z) =∇z · Dz∇zcg(t, g, p,µ, z)+ χz∇z · zcg(t, g, p,µ, z)

+ ∇g · Dg∇gcg(t, g, p,µ, z)

− ∇g · χg(1− g)cg(t, g, p,µ, z)

− ∇p · χp(1− µωµ − p)cg(t, g, p,µ, z)

− ∇µ · χµp(1− zωz − µ)cg(t, g, p,µ, z)

+ φsrsσg(g)σp(p)σµ(µ)
∫

S
ψ(s)cs(t, s, z) ds

− rgθ(p)ψ(g)cg(t, g, p,µ, z) ,

(27b)

∂

∂t
cm(t,m, z) =∇z · Dz∇zcm(t,m, z)

+ ∇m · Dm∇scm(t,m, z)

− ∇m · χm(1−m)cs(t,m, z)

+ φgrgσm(m)

∫

G

∫

P

∫

M

θ(p)ψ(g)cg(t, g, p,µ, z) dµ dp dg

− rmψ(m)cm(t,m, z) .

(27c)

Now that the system, in its entirety, has been derived and

discussed, it is useful to consider how various parameters will

affect the behavior, dynamics, and outcomes of the system.

Firstly, an increase in synthesis rates (χs, χg , and χm) will

cause a concurrent increase in the dynamic transition rate of

cells to the subsequent phase of the cell cycle, as a result of

their accumulation of cyclins and favorable positioning with

respect to the relevant ψ . Likewise, an increase in random cyclin

fluctuations (Ds, Dg , and Dm) will both cause some cells to

defer transition to the subsequent phase and others to transition

more rapidly, as a result of the widening distribution in cyclin

concentrations.

Now consider the more complicated dynamics of the G2-phase:

Firstly, the p53 concentration, p, will increase only with lower levels

of p53 and mdm2, µ, since its factor (1 − µωµ − p) is near-

zero for high levels of mdm2. Likewise, the mdm2 concentrations

will increase only for low levels of DNA-damage and mdm2,

since (1 − µωz − µ) is near-zero for high levels of DNA-damage.

The production of mdm2, however, is also contingent upon the

presence of p53. Thus, for high levels of DNA damage, p53 will

be produced in the absence of mdm2 until the DNA-damage has

been sufficiently repaired, with rate χz , to allow for increases in

mdm2 concentration. At such times, p53 production will reverse to

a degradative dynamic to allow for p53-dependent transition, with

θ(p). Thus, increasing the rates χp or χµ will significantly effect the

extent to which this checkpoint operates. For instance, with low χp,

one would expect high rates of transition fromDNA-damaged cells,

due to the lack of p53 to suppress transition. Increasing χµ will

likewise admit greater numbers of cells to the subsequent phase

due to the increased rate of suppression of p53 in the G2-phase.

Consider, also, that an increase in either of the diffusion parameters

in the DNA-damage space, Dz and Dr , will therefore cause some

subset of cells to remain within the G2-phase for longer, on account

of this mdm2-p53 checkpoint.

These inter-phase dynamics yield interesting results for

which the trend may be approximated, though the outcome of

simultaneously altering multiple parameters may be difficult to

TABLE 3 Table of parameters used for simulating solutions to Equation

(27).

Parameter Description Range Default
value

Dz Random DNA-damage [0, 1] 2× 10−4

Dr Random replicative

DNA-damage

[0, 1] 1× 10−2

Ds Random S-cyclin fluctuation [0, 1] 5× 10−3

χs S-cyclin synthesis rate [0, 1] 2× 10−1

rm M-to-S transition rate [0, 1] 5× 10−1

rs S-to-G2 transition rate [0, 1] 5× 10−1

χz DNA-damage repair rate [0, 1] 1× 10−1

Dg Random G2-cyclin fluctuation [0, 1] 1× 10−2

χg G2-cyclin synthesis rate [0, 1] 1× 10−1

χp p53 synthesis rate [0, 1] 5× 10−2

ωµ mdm2-p53 suppressive form (0,∞) 1

χµ mdm2 synthesis rate [0, 1] 1× 10−1

ωz DNA-damage-mdm2

suppressive form

(0,∞) 1

φs G1- & S-growth rate [1, 2]
√
2

rg G2-to-M transition rate [0, 1] 5× 10−1

Dm RandomM-cyclin fluctuation [0, 1] 1× 10−2

χm M-cyclin synthesis rate [0, 1] 2× 10−1

φg G2-growth rate [1, 2]
√
2

κψ Transition exit discretisation [0,∞) 40

κσ Transition entry discretisation [0,∞) 1× 102

Aθ Extent of p53 admission (0,∞) 5

κθ p53 admission discretisation [0,∞) 20
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FIGURE 5

Cell populations (A) in each cell cycle, (B) in each of the phases (across cell cycles), and (C) the total cell population shown as the integral across cell

cycle phases (CCP) and cell cycle number (CCN), in time, demonstrating mass-balance between metrics.

predict, a priori. We can also understand general principles of

the system, such as that having a greater φg , at the expense of φs
(since φsφg = 2) will allow for a greater efficiency in the system,

since biosynthesis is not unnecessarily spent on cells with extensive

DNA damage.

4. Computational simulations and
results

In order to simulate system (Equation 27), time stepping was

achieved using a MacCormack predictor-corrector method and

the spatial and structural gradients were calculated using central

differences, in the case of diffusion, and downstream differences,

in the case of advection. The domains utilized for the simulation of

temporal solutions to Equation (27) are normalized and described

in Table 1, while the default parameter set utilized is described in

Table 3.

In general, the parameters in Table 3 were chosen manually

to give rise to a set of clear, and interpretable numerical results.

The aim was to demonstrate the dynamics of the system, in this

instance, while more rigorous analysis of global robustness and

stability falls outside the scope of the current study but remains an

open problem. In particular, the default value of diffusion within

the system was chosen as 1×10−2 (applying to Dz , Dg , and Dm),

since this lies near the upper limit of numerical stability for the

parameter. The random DNA damage and S-cyclin fluctuation are

lower than the default value to demonstrate a distinction with

replicative damage and elongate the S-phase (to account for the

absent G1 phase) respectively. Synthesis rates are set to reflect the

rapid accumulation of cyclins within the cell, where the effect of

changing these values would simply be to alter the dynamic rates of

transition, in general. Transition rates (r·), themselves, have been

set high in order not to limit the transition of cells but to facilitate

their dynamic transition via cyclin accumulation. Finally, form

parameters (ωµ and ωz) have been set arbitrarily to 1, whilst κ·
parameters and Aθ give rise to sufficiently interesting constraints

to allow observation of whole-system dynamics. Other choices for

these parameters, and particularly those involving the mdm2-p53

checkpoint, can significantly alter transition rates and, as such, are

deserving of further study.

In particular, we simulate two experiments: In the first

case, we use the default parameter set (given in Table 3) to

simulate a theoretical, healthy cell population before simulating

a second population with reduced genetic repair rate (χz =
2 × 10−2). This serves the purpose of comparison, such

that we might understand the dynamics of an unhealthy

cell population with respect to its healthy counterpart. In

order to fully explicate the dynamics of the system, we

separate the description of the system simulated with default

parameters into a comparison between phases of the cell-cycle

(cs, cg , and cm), prior to conducting a closer examination

into the dynamics in the G-phase in particular. This allows

for a general understanding of the system to be gained

prior to a specific understanding of the p53-mediated G-phase

checkpoint.

4.1. Unstructured cell cycle dynamics

In the first instance, we began by simulating the cell cycle by

generating solutions to Equation (27), using the given parameters
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FIGURE 6

Structured cell populations with S-cyclins (s) and DNA-damage (z), given in the S-phase (cs); G-cyclins (g) and DNA-damage (z), given in the G-phase

(C
g,z
g ); and M-cyclins (m) and DNA-damage (z), given in the M-phase (cm), solved for t ∈ {3.2, 6.4, 10}, respectively.

(Table 3), and extracted population level metrics during simulation

in MatLab. As expected, cells lost from the 1st cell cycle

are incorporated into the second cell cycle, while each cell

cycle population exhibits a sigmoidal growth phase before and

apparently sub-exponential decay phase (Figure 5A). It is also

worth noticing that twice as many cells enter the 2nd cell cycle

as have left the 1st so that the population is doubled through a

successful mitosis.

Since the processes of the cell cycle are probabilistic,

rather than deterministic, and rely on several checkpoints in

order to complete a full cycle, the 1st cell cycle still retains

a significant percentage of its initial population, even at

t = 150. This is despite a speedy and almost complete

transition of cells from the S-phase with the time interval

t ∈ [0, 100]. In developing organisms, such as Drospohila

melanogaster, it is therefore likely that cellular biochemistry

is more tightly regulated, in order to achieve the tightly

regulated progression of the cycle across the population and

the synchronization of mitosis across the embryo during

early cycles.

As for the phases of the cell cycle, the entirety of the population

originates in the S-phase of the cell cycle, by design (Figure 5B).

Although this constitutes a departure from the biological reality of

the average system, it allows for a more systematic observation of

dynamics and divergence across the system, as a whole. As cells

leave the S-phase of the cell cycle, they enter the G2-phase of the

cycle and quickly begin to progress through to the M-phase. It is

in this G2-phase of the cell cycle that the individual cells, amongst

the population can be seen to diverge in their behaviors. Although

there exists a significant transfer of cells between the S- and G2-

phases, this progresses is arrested in the G2-phase due to the dual

requirements of the cell to achieve low levels of DNA-damage and

high levels of G-cyclin. This leads to an early onset but slow rate of

transfer between the G2- andM-phases of the cell cycle. Cells which

do enter the M-phase, however, appear to progress through mitosis

successfully and reach their next cell cycle.

Similarly as what is observed in the case of numbered cell

cycle populations (Figure 5A), the population is seen to increase

at around t = 30 so that the doubling time for the population

is given approximately by 150 (Figure 5C). Interestingly, however,

the increase in the population has a linear trend, where one might

have expected an exponential trend for such a system. Looking

back toward the populations within various phases of the cell cycle

(Figure 5), it is possible that this linear trend in population growth

is explained by the apparently linear trend in the growth of cells

within the M-phase, owing to G2-phase checkpoint controls. It

is difficult to know whether this relationship does indeed hold in

nature or whether the rate of thesemolecular checkpoints allows for
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FIGURE 7

Structured cell populations with S-cyclins (s) and DNA-damage (z), given in the S-phase (cs); G-cyclins (g) and DNA-damage (z), given in the G-phase

(C
g,z
g ); and M-cyclins (m) and DNA-damage (z), given in the M-phase (cm), solved for t ∈ {30, 70, 90}, respectively.

an exponential realization. In order to establish the mass-balance

of the cell cycle decomposition approach, we have provided an

overlay of the integral across the cell cycle phases, giving the total

population, and the sum of the populations across the relevant

cell cycles.

4.2. Structured population dynamics

Of course, as is the case in the CDK cell-cycle model,

the cell-cycle is characterized by the transition from the S-

through the G- to the M-phase biochemistry, where each

of these phases are themselves characterized by unique

dynamics and cellular behaviors which ultimately result

in the growth of the cell population. The progress of

the studied cell population through the cell cycle is seen

from the decompositions given in Figure 5A, whilst the

dynamics of the solutions for the cell population are found

in Figures 6–11.

It is important that one interpret these dynamics carefully,

so as to avoid leaving with the mistaken impression that the

true nature of the population’s dynamics are given explicitly

by these solutions to system (Equation 27). Instead, one must

bear in mind that these solutions describe density distributions

for the population, which must, in turn, be interpreted as a

distribution of possible states in which one might expect to find

the system. It is the sum of probabilistic expectation functions,

across cells, so that each value is the multiple of a population-

wide probability density function and the total number of cells

at time t. Thus, when small densities are first recorded within

the G2 phase, this implies only that there is some non-zero

probability that a cell has (or cells have) transitioned into the G2

phase.

As in the case of demographic distributions across a given

human population, for example, these density distributions

describe the likely characteristics of the populations of a whole,

whilst they may fail to describe the precise individual realizations

of such a process. For instance, outlier events occur frequently

and confound the rationale for such a demographic distribution

and, yet, the distribution remains an accurate depiction of the

large-scale populations dynamics. Similarly, we here depict the

dynamics of the density distribution for entire population, such

that fractional elements of cells may transition between phases

of the cell cycle, truly representing only a fractional probability

that a single whole-cell may have achieved transition across such

a boundary. One must appreciate, therefore, that what may be

true for the population may still yield surprising results on the

individual scale.
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FIGURE 8

Structured cell populations with S-cyclins (s) and DNA-damage (z), given in the S-phase (cs); G-cyclins (g) and DNA-damage (z), given in the G-phase

(C
g,z
g ); and M-cyclins (m) and DNA-damage (z), given in the M-phase (cm), solved for t ∈ {110, 130, 150}, respectively.

4.2.1. Solutions across cell cycle phases
The initial conditions for the cell population in the S-phase

are given by a Gaussian distribution in (s, z), centered at (0, 0)

and with a standard deviation of 1/20. This crude approximation

of the Dirac delta function has the effect of starting the cellular

distribution from awell defined position in the domain, such that S-

cyclin expression and DNA-damage levels are low, s ≈ 0 and z ≈ 0.

Meanwhile, we begin with no cells in the G- or M-phases, such that

cg(0, g, p,µ, z) = 0 and cm(0,m, z) = 0.

The early dynamics of the system display a slow but gradual

increase in cellular S-cyclin expression, alongside a concurrent

increase in DNA-damage levels within the cell (Figure 6). The

increase in S-cyclin state within the cell is observed as themigration

of the cellular population from initially low values in s to higher

values of s across the time interval. Similarly, the increase in

DNA-damage levels is observed as the increase in the spread of

the population from an initially sharp distribution to a far more

dispersed distribution (t = 3.2) along the z-axis. During this time,

there exists some small probability that a cell with high S-cyclin

state may have transitioned to the G-phase of the cell cycle, which

is observed as the distribution arising in the C
g,z
g population.

This next time interval sees the critical increase in the number

of cells transitioning from the S-phase of the cell cycle to the

G-phase (Figure 6, t ∈ [6.4, 10]) and corresponds to the like

observation in Figure 5B (red). Given that the S-phase is primarily

characterized by the utilization of synthesized biomaterial into

the constitutive replication of the eukaryotic chromosome, this

introduces a significant degree of DNA-damage in the cell and

leads to cells entering the G-phase with a significantly damaged

genetic cargo. This is observed as a broad distribution (standard

deviation ∼ 0.3) along the z-axis at low values of g (g ≈ 0,

Figure 6).

The G-phase of the cell cycle is characterized by the initiation of

genetic repair and operation of the p53 DNA-damage checkpoint,

which should act to prevent sufficiently damaged cells from

progressing to the M-phase of the cell cycle. As such we observe

that the cell population in the G-phase undergoes a contractile

migration from a relatively dispersed population, with respect

to DNA-damage levels, at low G-cyclin state, to a collected and

narrowly distributed population, with respect to DNA-damage

levels, at high G-cyclin state (Figures 6, 7). Across this time interval,

t ∈ [10, 30], we also observe the first cells entering the final phase

of the cell cycle (M-phase) and can begin to appreciate the extent

to which the p53 checkpoint is contributing to the restriction of

progress in damaged cells. This manifests through the transition of

cells, from the G- to M-phase of the cell cycle, with relatively low

levels of DNA-damage. This effect appears to increase in intensity

over the passage of time.
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FIGURE 9

Structured G-phase cell population given in: the G-cyclin-DNA-damage plane (g, z); the p53-mdm2 plane (p,µ); and the p53-DNA-damage plane,

solved for t ∈ {3.2, 6.4, 10}, respectively.

Moreover, during this particular time interval, t ∈ [10, 30] we

observe a marked increase in the DNA-damage of cells remaining

in the S-phase, as a result of their slow transfer rate to the G-

phase of the cell cycle. This concerns the S-phase transition rate,

rs, such that for lower values of rs we observe more extensive DNA-

damage within the cell. Phenomenologically, this corresponds to

the equivalent biological claim that longer DNA duplication inflicts

a higher DNA-damage cost to the cell. This increased DNA-damage

may also be observed in those cells entering the G-phase but is,

nonetheless, resolved through the genetic repair process, prior to

entering the M-phase (Figure 7).

As cells migrate through the M-cyclin domain, m, from their

initial position, m ≈ 0, to a sufficient expression levels to achieve

transition, m ≈ 1, we observe cells beginning to reenter the S-

phase and begin their second cell cycle (Figure 7). This can be seen

through the manifestations of an additional lobe to the distribution

occurring at low values of s and z (Figures 7, 8) and results in a

local minimum in the S-phase population (Figure 5B) as it takes on

a positive temporal gradient at t ≈ 50. Likewise, we observe that the

relatively low values of rs, rg , and rm result in an accumulation of the

density distributions at high levels of cyclin state for all phases of

the cell cycle (Figure 7), indicating that the probabilistic transition

rate, and not cyclin accumulation, is the rate limiting step in our

simulated cell population.

Finally, notice that for higher values of time, t ∈ [50, 150], we

observe a significant decrease in the z-directed standard deviation

of G-phase distributions, for high cyclin state, g ≈ 1 (Figures 7, 8).

This is accompanied by a long residence time for the cell population

in the G-phase (observe high cell density levels, Figure 8) and a

resultant low-magnitude negative gradient, t ∈ [50, 70], followed

by a low-magnitude second temporal derivative, t ∈ [90, 110] in

the G-phase population (Figure 5B). This is likely due to the high

DNA-damage rate causing low levels of mdm2 expression, resulting

in high levels of p53 expression and low effective transition rates

from the G- to M-phases of the cell cycle.

To observe the dynamics of the G-phase, we now present

identical solutions through multiple dimensions in the G-phase

(Section 4.2.2), to increase our ability to scrutinize the dynamics

of the G-phase, p53 checkpoint.

4.2.2. Solutions observed within the G2-phase
Our initial conditions are conserved from the above case

(Section 4.2.1), such that the G-phase contains 0 cells for t = 0.

Solutions for early time points have been omitted on the basis that

the G-phase population gains only significant numbers of cells for

t ≥ 4.8.
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FIGURE 10

Structured G-phase cell population given in: the G-cyclin-DNA-damage plane (g, z); the p53-mdm2 plane (p,µ); and the p53-DNA-damage plane,

solved for t ∈ {30, 70, 90}, respectively.

As significant numbers of cells begin to transition from the

S- to the G-phase of the cell cycle, we observe that the initial

distribution of the population is characterized by a low G-

cyclin state, g; a low p53 expression, p; a low mdm2 expression

level, µ; and a dispersed DNA-damage level, z, with a standard

deviation of ∼ 0.3 (Figure 9). The biological significance of

the G-phase and, in particular, the p53 checkpoint is to repair

those cells with significant DNA-damage and allow only those

cells to transition who otherwise possess little damage within

their genome. This begins with a steady, unprovoked increase

in the expression of p53 within G-phase cells, which can

be seen as a migration of the distribution along the p-axis

(Figure 9).

Likewise, this phase of the cell cycle is characterized by

the ubiquitous search for such genetic abnormalities and their

attempted repair, occurring within this mathematical system

with the rate χz . Therefore, the longer that cells remain

within the G-phase the more of their genome one would

expect to have been repaired and the fewer abnormalities

they should retain as they progress through their following

cycle. Since G-cyclin state is useful as a surrogate measure for

residence time within the G-phase, increasing monotonically

with residence time, this genetic repair relationship can be

seen across the interval where t ∈ [10, 30], since the

increase in G-cyclin state is accompanied by a concurrent

reduction in the distribution of the population over z (Figures 9,

10).

A similar surrogate measure for residence time (though

exclusively at early time points since this relationship is

not monotonic) is p53 expression levels. As p53 increases,

during the interval t ∈ [10, 30], a clear relationship is

observed wherein high levels of p53 expression, p, are

accompanied by a narrow distribution in DNA-damage

levels, z, whilst low levels of p53 expression are accompanied

by a highly distributed population across the DNA-

damage spectrum (Figures 9, 10). After this initial period

of relative agreement, the cellular distribution begins to

exhibit a quadratic form in the (p,µ)-plane, such that

the nonlinear increase in Mdm2-expression decreases the

rate at which p53-expression increases (Figures 9, 10, C
p,µ
g ,

t = 30).

As the cellular population accumulates and consolidates its

high levels of G-cyclin expression (Figure 10, C
g,z
g ), the nonlinear

form of the cellular population through the (p,µ)-plane is

completed through a continuing increase in mdm2 expression

and the concurrent suppression of p53 expression (Figure 10,

C
p,µ
g ). Simultaneously and by observing the migration of the

peaks in the (p,µ)- and (p, z)-planes, we identify that the
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FIGURE 11

Structured G-phase cell population given in: the G-cyclin-DNA-damage plane (g, z); the p53-mdm2 plane (p,µ); and the p53-DNA-damage plane,

solved for t ∈ {110, 130, 150}, respectively.

distribution of cells with reducing p53 expression levels also

have significantly reduced DNA-damage levels (Figure 10, C
p,z
g )

when compared with the cell population as it initially entered

the G-phase (Figure 10, C
p,z
g ). As such, we see that the dynamics

of the cell cycle are displaying a damaged cell enter the G-

phase (after DNA-replication); the cell automatically increases its

p53 expression levels; this is met by a repair of the DNA and

increase in expression of the healthy DNA reporter, mdm2; which

decreases p53 levels and allows transition of the cell to the mitotic

phase.

Finally, as p53 levels within the cell decrease and the cellular

distribution continues to increase its mean levels of G-cyclin

expression (Figure 10), we observe a diminution of the low-

p53 high-mdm2 peak (Figure 11) indicating a transition of those

cells with repaired DNA out of the G-phase and into the M-

phase. This p53-mediated DNA-repair pathway is the rate limiting

step in the G-phase transition, illustrated by the early increase

in G-cyclin state (Figure 9, C
g,z
g ) far in advance of the G-to-

M-phase transition. We also observe, over the course of time

(Figures 9–11, C
g,z
g ) a temporal decrease in the mean and standard

deviation in of the cellular distribution in DNA-damage, such

that cells at transition exhibit significantly lower DNA-damage

than those exhibiting high G-cyclin expression at earlier time

points.

4.3. Reduced genetic repair rate

Next, in order to investigate the effect of reducing the rate of cell

population’s intrinsic DNA repair pathway, we re-parameterise the

system for χz = 0.02 and observe the change in the underlying

structural dynamics in comparison to the above case (Section

4.2.2). During the early stages of simulation (t < 10), results

remain qualitatively and quantitatively similar to previous cases

and, as such, these results have been omitted for the sake of

scientific parsimony.

As significant numbers of cells begin to accumulate within the

G-phase of the cell cycle (t ∈ [10, 30]) one observes a significantly

increased standard deviation in the DNA-damage spectrum of

the cellular population (Figures 12, 13) when comparing to the

equivalent population in the previous case (Figures 9, 10). This is

to be expected as a result of reducing the DNA-damage repair rate,

since χz controls the rate at which the cellular population exhibits

asymptotic advection toward z = 0, by definition. On the other

hand, the currently considered cellular population (Figures 12, 13,

C
p,µ
g ) exhibits a similar rate of increase in automatic p53 expression

across the early stages their G-phase occupation, compared with

the previous case (Figures 12, 13, C
pµ
g ). Mdm2 expression, as a

result of the reduction in DNA-damage repair rate, is, however,

limited in this case and transforms the distribution from its
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FIGURE 12

Structured G-phase cell population given in: the G-cyclin-DNA-damage plane (g, z); the p53-mdm2 plane (p,µ); and the p53-DNA-damage plane,

with a reduced mutational repair rate (χz = 2× 10−2) and solved for t ∈ {3.2, 6.4, 10}, respectively.

previous quadratic form (Figures 12, 13, C
pµ
g ) to a far more shallow

distribution, exhibiting a form of an order 2 > q > Q polynomial

(Figures 12, 13, C
pµ
g ), whereQ > 2. We must bear in mind that this

is a distribution, such that cells exhibit multiple positions upon the

(p,µ)-plane which lie between the curves bounded by the order 2

and order Q polynomials.

Simultaneously, we begin to observe an increase in the p53

expression levels (Figures 12, 13, C
p,z
g ), previously not exceeding

p ≈ 0.5 (Figures 12, 13, C
p,z
g ), as the DNA-damage levels decrease

at a slower rate. During later time points, t ∈ [70, 150], one

observes a significant increase in the p53 expression levels in

cells with increased residual DNA-damage (Figures 13, 14, C
p,z
g )

in comparison cells within the previously considered population

(Figures 13, 14,C
p,z
g ), who typically underwent DNA-damage repair

prior to the occurrence of this increase in p53 expression. Thus,

the cellular population appears to mitigate this additional residual

DNA-damage by restricting the passage of the cellular population

between the G- and M-phases at the G-phase checkpoint.

Once again, the cellular distribution for the population with

reduced DNA-damage repair rate exhibits a significantly differing

profile in the (p,µ)-plane (Figure 13, C
p,µ
g ) when compared to

the previous case (Figure 10, C
p,µ
g ). In the current case, the

distribution is not, in fact, symmetric whilst the previous case

shows a reflective symmetric distribution inµ, whilst the additional

qualitative comparison on these 2 distributions is left to the

reader. Similarly as with the previous case (Figure 11, C
p,z
g ),

however, we observe that the cell distribution which migrates

negatively in p has considerably lower mean DNA-damage levels

when compared with the population as a whole (Figure 14,

C
p,z
g ).

Likewise, across the whole time sequence (Figures 12–14, C
g,z
g ),

the increase in G-cyclin remains consistent with the previous

case (Figures 12–14) whilst the DNA-damage remains elevated,

with respect to the standard deviation of the distribution. Notice,

further, that the modal DNA-damage is equal in both case, at

z = 0, since the DNA-damage mechanism is purely diffusive

(such that there exists no mechanism by which this modal value

could change). Likewise, even the selective transfer mechanism

between the G- and M-phases should ensure that the modal

DNA-damage rate within the transferred population remains

z = 0. Therefore, to discuss dynamics in the DNA-damage

dimension in the case where the initial condition has a modal

density at z = 0 is always to speak of the change in the

populations distribution through z and not its position in z, per

se. This means that although individual cells may change their

position with respect to DNA-damage, the most likely situation

for a cell is remain without DNA-damage throughout the cell

cycle.
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FIGURE 13

Structured G-phase cell population given in: the G-cyclin-DNA-damage plane (g, z); the p53-mdm2 plane (p,µ); and the p53-DNA-damage plane,

with a reduced mutational repair rate (χz = 2× 10−2) and solved for t ∈ {30, 70, 90}, respectively.

5. Discussion and conclusions

We have presented two novel models representing cell-cycle

dynamics aiming to highlight different perspectives that the

approaches at cell- vs. population- levels can offer in exploring

this important process. The first is a single-cell model, wherein

the molecular memory of cyclin state triggers discrete transitions

between cyclin dynamics and, thus, independent phases of the

cell cycle. This model has parallels in gene-protein circadian

clock bio-mechanics, for instance in Arabidopsis thaliana [45],

and may be relevant to other biological-clock circuits. The second

accounted for dynamics across 3 phases of the cell cycle (S, G2,

and M), alongside DNA-damage and the p53 pathway for cell-

cycle arrest, on the population-scale. Each of these introduce new

features to mathematical biology; namely the use and numerical

simulation of temporally distributed memory processes, in the

first instance, and the interaction between multiple, inter-related

structural dimensions, in the second.

Beyond their mathematical significance, the reduction of DNA-

damage repair rates in the population-scale model presents a

quantitative understanding of how p53 modulates and protects

the cell from the propagation of DNA-damage. In the case with

reduced repair rate, the model shows a quantitative reduction in the

admission of cells into latter phases of the cell-cycle, mediated by

the consequent reduction of p53 in cells with an increased extent of

DNA-damage. This was observable as a tail in the (p, z)-distribution

and a quantitative change in the form of the distribution, in the

(p,µ)-plane, which translated to a delayed cell-cycle progression.

The single-cell model allows for a more accurate representation

of internal, spatial dynamics which lead to the long-term

accumulation of proteins, which triggers the biological

transition from S- to M-phase, while the population-scale

model allows one to understand the distributed dynamics

of stochastic cellular processes, including the p53-mediated

arrest of the G2-phase. Though this simulation would not

be possible using a deterministic system on the single-cell-

scale, since the cell must deterministically transition or fail

to do so, a population model allowed for the appreciation of

probabilistically distributed cellular dynamics with differing

cell-fate outcomes. Likewise, due to computational limitations

on the number of dimensions which may be simultaneously

simulated at sufficient resolution to allow scientific accuracy,

the spatial components of the cell-scale model could not

be achieved on the population scale. The development of

novel numerical strategies to increase both the resolution

and number of dimensions for the simulation of PDEs is,

ultimately, both necessary and desirable in order to reconcile this

divide.

In other instances, such structured models have been used

in conjunction with data. Recently, in Jin et al. [46] and Klowss
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FIGURE 14

Structured G-phase cell population given in: the G-cyclin-DNA-damage plane (g, z); the p53-mdm2 plane (p,µ); and the p53-DNA-damage plane,

with a reduced mutational repair rate (χz = 2× 10−2) and solved for t ∈ {110, 130, 150}, respectively.

et al. [47], researchers showed that spatio-temporal models could

be used to recapitulate cell-cycle dynamics in spheroid tumors,

in vitro. Nonetheless, despite the researchers’ descriptions of the

spheroid as 4D, constitutively 1-dimensional models were used in

these cases. Likewise, models which have used partially structured

mathematical models [7], have still not explored the full extent

of the biological dynamics which may be captured by such

higher-dimensional models as would complement the data. The

models presented herein provide an opportunity to researchers

to approach the biological description of a given system with a

structurally similar mathematical model, simulated in time, space,

and structure.

These two new systems present novel methods for

modeling biological clocks, though additional work should

be conducted to understand the precise nature of these

results. Analysis of these systems lies beyond the scope of

this initial exploratory research but significant analysis should

be undertaken on these systems to determine the underlying

mathematical functions driving the observed phenomena.

Moreover, a robust set of metrics for this class of model

should be set out and utilized for the rigorous comparison

between analytic interpretation and numerical simulations,

both to visually realize the analytic predictions and to

concurrently confirm the validity of the numerical approach,

itself.
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