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Boxing-in of a blender in a
Hénon-like family
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Katsutoshi Shinohara2

1Department of Mathematics, The University of Auckland, Auckland, New Zealand, 2Graduate School of

Business Administration, Hitotsubashi University, Kunitachi, Tokyo, Japan

Introduction: The extension of the Smale horseshoe construction for

di�eomorphisms in the plane to those in spaces of at least dimension three

may result in a hyperbolic invariant set referred to as a blender. The defining

property of a blender is that it has a stable or unstable invariant manifold that

appears to have a dimension larger than expected. In this study, we consider a

Hénon-like family in R
3, which is the only explicitly given example of a system

known to feature a blender in a certain range of a parameter (corresponding to an

expansion or contraction rate). More specifically, as part of its hyperbolic set, this

family has a pair of saddle fixed points with one-dimensional stable or unstable

manifolds. When there is a blender, the closure of these manifolds cannot be

avoided by one-dimensional curves coming from an appropriate direction. This

property has been checked for the Hénon-like family by themethod of computing

extremely long pieces of global one-dimensional manifolds to determine the

parameter range over which a blender exists.

Methods: In this study, we take the complimentary and local point of view of

constructing an actual three-dimensional box (a parallelopiped) that acts as an

outer cover of the hyperbolic set. The successive forward or backward images of

this box form a nested sequence of sub-boxes that contains the hyperbolic set, as

well as its respective local invariant manifold.

Results: This constitutes a three-dimensional horseshoe that, in contrast to the

idealized a�ne construction, is quite general and features sub-boxes with curved

edges. The initial box is defined in a parameter-dependent way, and this allows us

to characterize properties of the hyperbolic set intuitively.

Discussion: In particular, we trace relevant edges of sub-boxes as a function of

the parameter to provide additional geometric insight into when the hyperbolic

set may or may not be a blender.

KEYWORDS

non-uniform hyperbolicity, three-dimensional di�eomorphism, Hénon-like map,

generalized horseshoe construction, global invariant manifolds, carpet property

1. Introduction

We construct a three-dimensional horseshoe for the Hénon-like family of

diffeomorphisms

H(x, y, z) = (y, µ + y2 + βx, ξz + y), (1)

which we introduced and studied in Hittmeyer et al. [1, 2]; see also Díaz et al. [3] for a

Hénon-like endomorphism that motivated it. To date, the family H defined on R
3 is the

only known example of a diffeomorphism with a blender given in explicit form, specifically

by Equation (1). This means, in particular, that the properties of the invariant sets of H can

be investigated not only theoretically but also with advanced numerical tools.
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We now proceed by introducing the necessary theoretical

concepts with specific reference to the family H in Equation (1).

To do so, we begin with some basic properties. The map H has a

skew-product structure: its restriction to the (x, y)-plane does not

depend on z and is the Hénon map [4], written here in the form

h(x, y) = (y, µ + y2 + βx). (2)

The z-coordinate of Equation (1) implements a shear with

contraction factor ξ , which we take to be positive throughout.

We fix µ = −9.5 and β = 0.3, which ensures that the planar

Hénon map h features a full Smale horseshoe; see Hittmeyer et

al. ([2], Section 2). Hence, h has a hyperbolic set 3h in the form

of a Cantor set that is topologically equivalent to a full shift on two

symbols. In particular, 3h contains two saddle fixed points

p±
h
:=

(

ρ±, ρ±
)

,

where

ρ±
:=

1

2

(

1− β ±
√

(1− β)2 − 4µ
)

.

For our choice of µ = −9.5 and β = 0.3, the saddle points are

p−
h
≈ (−2.7520,−2.7520) and p+

h
≈ (3.4520, 3.4520).

As for any full Smale horseshoe, the hyperbolic set 3h is

transitive and, hence, arises as the closure of the intersection

set of the stable and unstable manifolds of p−
h

and p+
h
,

that is, 3h = Ws(p±
h
) ∩Wu(p±

h
). It then also follows that

the stable and unstable manifolds Ws(3h) and Wu(3h) of

3h are given as the closures of the manifolds Ws(p±
h
) and

Wu(p±
h
), respectively.

Due to the skew-product structure of Equation (1), the

hyperbolic set 3h of h lifts to a hyperbolic set 3 of H with similar

properties. Namely, 3 is the closure of the intersection set of

the stable and unstable manifolds Ws(p±) and Wu(p±) of two

corresponding saddle fixed points

p± :=

(

ρ±, ρ±,
ρ±

1− ξ

)

(3)

of H; furthermore,Ws(3) = Ws(p±) andWu(3) = Wu(p±). The

dimensions of these manifolds depend on the contraction factor

ξ 6= 1, and we consider here the following two cases.

(1) ξ > 1, when there is expansion in the z-direction ofH, which

means that dim(Ws(p±)) = 1 and dim(Wu(p±)) = 2; and

(2) 0 < ξ < 1, when there is contraction in the z-direction ofH,

which means that dim(Ws(p±)) = 2 and dim(Wu(p±)) = 1.

Owing to the skew-product nature of Equation (1), for

any ξ , the orthogonal projections of the global manifolds

Ws(p±) and Wu(p±) of H onto the (x, y)-plane are the

global manifolds Ws(p±
h
) and Wu(p±

h
) of the Hénon map h.

In particular, the respective two-dimensional global manifolds,

Wu(p±) for ξ > 1 and Ws(p±) for 0 < ξ < 1, are

the direct products of R (the z-direction) with Wu(p±
h
) and

Ws(p±
h
), respectively.

In either case, for ξ sufficiently close to 1 the (transitive)

hyperbolic set 3 is a blender [1, 2]. As mentioned in Hittmeyer

et al. [1, 2], we use the definition of a blender from Díaz et al. [3]

and Bonatti et al. [5] that says, colloquially speaking, that 3 is a

blender if its one-dimensional global manifold—Ws(3) for ξ > 1

andWu(3) for 0 < ξ < 1—acts geometrically as a set of dimension

two. In more technical terms, the requirement is that there exists

a C1-open set of curve segments in the three-dimensional phase

space that each intersect the respective one-dimensional manifold

locally near 3. Moreover, this property must be robust, that is,

hold for the corresponding hyperbolic set of every sufficiently C1-

close diffeomorphism. We remark that the existence of a blender

for some ξ > 1 does not automatically imply the existence of a

corresponding blender for some 0 < ξ < 1. Indeed, the existence

of a blender for the map H is determined by properties of Ws(3)

for ξ > 1, but for 0 < ξ < 1 it is determined by properties of

Wu(3). While Wu(3) can be considered as the stable manifold

of 3 with respect to the inverse map H−1, there is no known

conjugacy between these two cases.

The concept of a blender was introduced by Bonatti and

Díaz [6] to show that “wild” dynamics may occur C1-robustly

in (non-uniformly hyperbolic) systems [3, 5–15]. In particular,

the construction of a blender is an important ingredient for

showing that, subject to mild genericity conditions, the existence

of a heterodimensional cycle is a C1-robust property. Such a

cycle consists of two hyperbolic fixed (or periodic) points of

different index (dimensions of the unstable manifold), the stable

and unstable manifolds of which intersect to form a heteroclinic

cycle [5, 10, 16–18]. This requires a diffeomorphism with a phase

space of dimension at least three, while a heterodimensional cycle

in a vector field requires a phase space of dimension at least

four; see Zhang et al. [19] and Mason et al. [20] for an example.

Necessarily, one of the two connections of the heterodimensional

cycle is structurally stable, while the other can be destroyed by a C1-

perturbation. This is why the robust existence of heterodimensional

cycles is surprising, and a wild (not tame) property in the sense

of Bonatti and Díaz [6]. Blenders are relevant in this context,

because their stable (or unstable) manifold, while of too low

dimension, can nevertheless not be avoided by the respective

unstable (or stable) manifold of another periodic orbit.

We are motivated here by the questions: how can one check

when a blender exists in a given system, and what are the required

geometric properties? According to the definition from Hittmeyer

et al. [1, 2], the hyperbolic set 3 of the map H is a blender if (when

seen from an approriate direction) the one-dimensional manifold

Ws(3) orWu(3), respectively, looks like a surface—although it is a

Cantor set of curves when viewed along the z-direction.We refer to

this defining characteristic of a blender as the carpet property [1, 2].

Since the one-dimensional global manifolds, Ws(p±) and Wu(p±)

of the fixed points p± are dense in Ws(3) or Wu(3), respectively,

the carpet property can be verified numerically for the family H

by checking whether these one-dimensional global manifolds fill

out an area in projection. This is achieved by considering the

intersection points ofWs(p±) orWu(p±) with a plane and showing,

for a suitable projection, that the gaps between them converge to
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FIGURE 1

Box B (green) and its preimages B− (light blue) and B+ (dark blue) under H with ξ = 1.2. The x-aligned edges of B± are labeled #, 3, �, and △ by

their corner points according to how they map under H to the respective edges of B defined in Equations (5)–(8). Also shown are the saddle fixed

points p± (green crosses) contained in the diagonal plane 6 (gray); throughout µ = −9.5 and β = 0.3.

0 as the arclength of the respective one-dimensional manifolds

goes to infinity. The required very long one-dimensional global

manifolds are computed as arclength-parametrized curves [21]

after the phase space R3 has been compactified to C = D× [−1, 1];

see Hittmeyer et al. [1, 2] for details. In this way, we showed over

which range near ξ = 1 the hyperbolic set 3 of H is indeed a

blender. We also explored numerically how the carpet property is

lost when ξ deviates too far from 1 and found that this happens via

the creation of infinitely many robust gaps as ξ is varied.

In this article, we focus on the complementary, local, and

arguably “classical” perspective that the hyperbolic set 3 arises as

the invariant set of a three-dimensional horseshoe construction.

By this, we mean that there is a three-dimensional “box,” which

is stretched and folded in such a way that its image and preimage

intersect this box in a number of “sub-boxes”—two in the case

of the Hénon family H. The hyperbolic set 3 and its respective

local one-dimensional global manifolds are, hence, the limit of

an infinite set of boxes intersecting boxes. Indeed, the question

“What is . . . a blender?” is answered by Bonatti et al. [7] with an

affine horseshoe construction, and the type of blender we find

for the family H is also referred to as a blender-horseshoe [11,

22]. In complete analogy with Smale’s horseshoe construction,

the illustrations by Bonatti et al. [7] and Díaz and Pérez [11]

show how a box in phase space should map back to itself

such that a blender is created in the limit of this repeating

process.

The affine blender-horseshoe construction by Bonatti et al. [7]

is idealized in that the abstract map consists locally of linear

scalings that align with the respective coordinate axes; hence,

the initial box and all of its iterates are cuboids. While it still

gives insight into the geometry of a blender when the central

contraction or expansion rate is near 1, the affine construction is not

sufficiently representative of how a box maps in an actual example.

This is demonstrated here by considering a specific, more typical

horseshoe construction. In particular, the nonlinear nature of the

three-dimensional horseshoe turns out to be relevant when one is

interested in the (dis)appearance of a blender as parameters change.

More specifically, for the Hénon-like family in Equation

(1), we construct a parameter-dependent box in the form of a

“tight” parallelopiped, meaning that the two sub-boxes that are

its (pre)images extend to the boundary of the initial box. This is

achieved separately for ξ > 1, for which one needs to consider

backward images of the constructed box, and for 0 < ξ < 1,

for which one needs to consider its forward images. Since the

underlying horseshoe of the Hénon map is not symmetric under

time reversal, these two cases show interesting differences in terms

of how the constructed box maps under (pre)images of H to

successive sub-boxes. In contrast to the affine construction, in both

cases, these sub-boxes all have curved edges so that neither their

“side” nor their “front” faces line up exactly with the initial box.

These additional properties represent a more realistic case of a

three-dimensional horseshoe, and they provide a more intuitive

idea of how the respective one-dimensional local manifolds behave

when the parameter ξ is varied. This will be illustrated in different

ways: we present images that show (i) the initial box, its sub-

boxes, and the relevant local manifolds inside the box in the three-

dimensional phase space ofH; and (ii) the intersection sets of these

objects with a suitably chosen plane. We provide such illustrations

for the two cases that the hyperbolic set 3 is a blender and that it is

not, separately for both ξ > 1 and 0 < ξ < 1.

This allows us to identify and illustrate which edges are

responsible for the opening and closing of gaps in a certain

projection as the carpet property of the respective one-dimensional

global manifolds is lost. This geometric insight is then used to trace
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FIGURE 2

Box B (green) for ξ = 1.2 with its two preimages B− (light blue) and B+ (dark blue) and their four preimages B−− (light magenta), B−+ (light purple),

B+− (purple), and B++ (magenta). (A) shows these objects in (x, y, z)-space, together with p± (green crosses) and the diagonal plane 6 (gray). (B) is

the top view in the (x, y)-plane oriented as in (A), and (C) shows the intersecting (approximate) parallelograms in 6; note that 6 is represented here by

its projection onto the (y, z)-plane. Compare with Figure 1.

out the locations of these edges in the parameter ξ , and they provide

an outer approximation of the ξ -range over which a blender

may exist. These results are complementary to earlier studies

in Hittmeyer et al. [1, 2], which focused on the global (rather than

local) one-dimensional manifolds as a means to identify blenders

and study their (dis)appearance. In contrast, we show here that the

non-affine nature of the box construction indeedmatters, especially

when one is interested in how the carpet property is lost and the

hyperbolic set ceases to be a blender. More generally, knowledge of

the nature of the three-dimensional horseshoe is useful if one wants

to “continue” a blender in parameters and/or construct a computer-

assisted proof of its existence by verifying topological properties,

for example, based on methods by Zgliczyński and Gidea [23],

Zgliczyński [24], and Kapela et al. [25] as applied by Capiński et

al. [26].

The article is organized as follows. In Section 2, we construct a

box B for ξ > 1 that contains segments of Ws(3) in its successive

preimages; we consider the properties of these preimages of B for

the two cases ξ = 1.2 when 3 is a blender and for ξ = 2.4

when it is not. Similarly, Section 3 presents and shows a box D for

0 < ξ < 1 and its images under H, which contain segments of

Wu(3); moreover, we show their properties when 3 is a blender

and when it is not, for ξ = 0.8 and ξ = 0.4, respectively. Section 4,

then, discusses for ξ ∈ [ 13 , 3] when successive (pre)images of boxes

B and D overlap in the relevant direction of projection, and how

this relates to the existence of a blender. In Section 5, we discuss

our results and point out avenues of ongoing and future research.

2. Box and its preimages for ξ > 1

We first consider H with ξ > 1, in which case the stable

manifolds Ws(p±) and Ws(3) have dimension one. We consider

the square [−Q,Q]×[−Q,Q] in the (x, y)-plane with the four points

(±Q,±Q), where

Q :=
1

2

(

1+ β +
√

(1+ β)2 − 4µ
)

. (4)

Note that this square only depends on the parameters β and µ

of the Hénon map and that it always contains the two fixed points

p±; for our choice of µ = −9.5 and β = 0.3, we have Q = 3.8.
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FIGURE 3

First 450 segments of Ws(p±) ∩B (blue curves) for ξ = 1.2, shown in (A) inside B (green), B− (light blue), and B+ (dark blue), and in (B) inside B+ (dark

blue), B+− (purple), and B++ (magenta); also shown are p± (green crosses) and the diagonal plane 6 (gray).

We now define for ξ > 1 the box B in (x, y, z)-space as the

parallelopiped given by the corner points

# :

(

±Q, −Q, −
Q

ξ − 1
·
2− ξ

ξ

)

, (5)

3 :

(

±Q, −Q,
Q

ξ − 1

)

, (6)

� :

(

±Q, Q, −
Q

ξ − 1

)

, (7)

△ :

(

±Q, Q,
Q

ξ − 1
·
2− ξ

ξ

)

. (8)

Hence, each of the symbols #, 3, �, and △ indicates a pair

of corner points with the same y- and z-coordinates, and we will

use these symbols also to denote the respective edges of B between

these points. The edges #, 3, �, and △ are given by x ∈ [−Q,Q]

and, hence, are parallel to the x-axis.

By construction, B has the following properties.

• B projects in the z-direction onto the square [−Q,Q] ×

[−Q,Q].

• Each intersection of B with a vertical plane of constant y is a

rectangle with edges parallel to the x- and z-axes.

• Each intersection of B with a vertical plane of constant x is a

parallelogram with two vertical edges.

Moreover, box B with Q as defined in Equation (4)

is tight with respect to the action of the inverse H−1.

By this, we mean that its preimage satisfies the following

statements, which can be checked directly from Equations (1),
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(4)–(8). Note here that, since ξ > 1, the x-direction of

B is expanded, while its y- and z-directions are contracted

under H−1.

• The three-dimensional horseshoe-like setH−1(B) intersects B

in two sub-boxes B− with negative y and B+ with positive y.

We will refer to B− and B+ simply as the two (first) preimages

of B.

• The preimages B− and B+ intersect the boundary of B only

on its two faces with x = −Q and x = Q, respectively.

• Vertical edges (parallel to the z-axis) of B map under H−1

to vertical edges of H−1(B); hence, the sub-boxes B± have

vertical edges that map to the vertical edges of B under H.

• The outer vertical edges of B− and B+ with x = −Q are

subsets of the respective vertical edge of B; moreover, the two

corner points
(

±Q,Q,− Q
ξ−1

)

of Bmap as follows:

H−1

(

Q,Q,−
Q

ξ − 1

)

=

(

−Q,Q,−
Q

ξ − 1

)

and

H−1

(

−Q,Q,−
Q

ξ − 1

)

=

(

−Q,−Q,−
Q

ξ − 1
·
2− ξ

ξ

)

.

• The two (respective pieces of the) preimages of edge 3 lie on

the top face of B, and those of edge� lie on the bottom face of

B.

• The fixed points p− and p+ lie on B− and B+, respectively.

Figure 1 shows the parallelopiped B for ξ = 1.2 together

with its preimages B− and B+; also shown is the diagonal plane

6 : = {(x, y, z) | x = y} containing the fixed points p±, and the

viewpoint is chosen such that the face of B with x = Q is at the

front of the image. Figure 1 illustrates the properties of box B as

well as of the preimages B− and B+ inside B. Each of these boxes

is represented by its edges with the faces colored and transparent.

In particular, notice how B− and B+ extend across B, meaning

that they connect the faces of B with x = ±Q; moreover, the

edges of these sub-boxes form (approximate) parallelograms with

straight sides but slightly curved tops and bottoms. Notice further

that at x = −Q the outer vertical edges of B− and B+ are indeed

subsets of the vertical edges of B and include the respective bottom

corner point, while the inner vertical edges of B− and B+ reach

the upper edge of this face of B. The three-dimensional nature of

Figure 1 is enhanced by the inclusion of the intersection sets of

B and B± with the diagonal section 6, which are (approximate)

parallelograms. Overall, this image shows that B is indeed the

tightest parallelopiped with a square “footprint” in the (x, y)-plane

that yields a three-dimensional horseshoe, meaning that the sub-

boxesB± ⊂ B intersect only the front and back faces with x = ±Q.

We remark that if the value of Q in Equations (5)–(8) is increased

from the one given in Equation (4) then one still has a three-

dimensional horseshoe but it is no longer tight. However, if Q is

decreased, the set H−1(B) no longer intersects B as required to

obtain a horseshoe.

Figure 1 also shows how the respective edges and corner points

of B− and B+ inherit the labels #, 3, �, and △ from the

respective x-aligned edges of B that they map to. We refer to these

labeled edges as the determining edges of each box because they

are the ones that are expanded by H−1 in the three-dimensional

A

B1

B2

FIGURE 4

First 900 intersection points in Ws(p±) ∩ 6 for ξ = 1.2 shown

together with p± and the intersection sets of B (green), B− (light

blue), B+ (dark blue), B−− (light magenta), B−+ (light purple), B+−

(purple), and B++ (magenta). (A) shows all of 6 ∩B, and (B1, B2) are

enlargements of B− and B+, respectively.

horseshoe construction. Owing to the nonlinear nature of map H,

the determining edges of B± are no longer straight lines that are

parallel to the x-axis. Nevertheless, they are still aligned with the x-

axis, by which we mean that the angle between the tangent at any

point of the edges #, 3, �, and △ with the vector (1, 0, 0) is small.

In particular, the sub-boxesB± intersect the faces ofBwith x = ±Q

in (approximate) parallelograms; the same is true for any transverse

plane, such as the diagonal plane 6 in Figure 1.

The overall geometry of the images of B underH−1 andH−2 is

shown in Figure 2. Figure 2A shows in (x, y, z)-space the box B, its

first preimages B− and B+, and its second preimages B−−,B−+ ⊂

B− and B+−,B++ ⊂ B+. These boxes are again represented by

their edges with their faces colored and transparent; compare with

Figure 1. In particular, the four sub-boxes B±∓ in Figure 2A also
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FIGURE 5

Stable manifolds Ws(p±) (blue curves) of p± (green crosses) for ξ = 2.4 inside the box B (green) and its two preimages B− (light blue) and B+ (dark

blue); shown are the first 450 segments of Ws(p±) ∩B in (x, y, z)-space together with p± (green crosses) and the diagonal plane 6 (gray). Compare

with Figure 3A.

connect the faces of B with x = ±Q, where they intersect in

(approximate) parallelograms that are “steeper” and more sheared

than those for B±; by this, we mean that the angle of their non-

vertical (slightly curved) edges with the y-direction is now larger.

The top view in Figure 2B shows that these sub-boxes correspond

to increasingly thinner strips in the (x, y)-plane for which the limit

is the local stable manifold Ws(3h) ∩ ([−Q,Q] × [−Q,Q]) of

the hyperbolic set 3h of the Hénon map h; this set is a Cantor

set of curve segments for our choice of the parameters. Figure 2A

also shows the diagonal section 6 with the intersection sets of

all boxes, and they are illustrated further in Figure 2C in a “front

view” in projection onto the (y, z)-plane. Notice, in particular, how

the parallelograms and, hence, the different boxes they represent

become more sheared by taking successive preimages.

The affine three-dimensional blender-horseshoe

construction [7, 11] is very special in that all edges remain

parallel to the three axes. However, for the map H only the vertical

edges remain parallel to the z-direction when taking preimages.

Indeed, the determining edges #, 3, �, and △ of successive

preimages of box B are no longer straight lines parallel to the

x-axis; moreover, we observe a shearing of the sub-boxes.

The box B and its intersection set B ∩ 6, which is an exact

parallelogram, are given explicitly from Equations (5)–(8) and their

stated properties. The further sub-boxes and their intersection sets

shown in Figure 2 are determined as follows. We represent the

determining edges of B by 30 evenly spaced points; the edges

#, 3, �, and △ of B− and B+ are then determined from the

interpolation of the preimages of the respective 30 points. Due to

the skew-product nature of H, this determines the side faces of

these two sub-boxes. Their top and bottom faces are curved and

determined in the same way by computing the respective pieces of

the preimages of two sets of equidistant lines on the top and bottom

surfaces of B, respectively, parallel to the determining edges, and

each again represented by 30 points. Interpolation of this data is

then used to compute the approximate parallelograms B− ∩6 and

B+ ∩ 6 and, in particular, the intersection points #, 3, �, and △

of their determining edges. The same procedure is then applied to

determine B−− and B−+ from B−, and B+− and B++ from B+.

Despite the nonlinear nature of the sequence of sub-boxes in B, the

limiting set

lim
N→∞

N
⋂

k=0

H−k(B) = Ws(3) ∩ B (9)

exists, and the question is whether it has the carpet property and,

hence, whether the hyperbolic set 3 of H is a blender. Theory

suggests that 3 is a blender when ξ > 1 is sufficiently close to 1,

while it is not a blender when ξ is sufficiently large.

2.1. Carpet property for ξ = 1.2

According to our earlier results [1, 2], for ξ = 1.2 the one-

dimensional manifold Ws(3) = Ws(p±) has the carpet property

with respect to the y-direction and, hence, the hyperbolic set 3 of

H is a blender. In the context of the three-dimensional horseshoe

given by B and its preimages, this can be understood by the fact

that there is sufficient overlap between the sub-boxes at every

level k ≥ 1 of Equation (9) when they are seen along the y-

direction. To illustrate the carpet property and how it is connected

to properties of the preimages of box B, Figure 3 illustrates how

the stable manifolds Ws(p±) intersect B and its preimages. To

achieve this, we compute the stable manifoldsWs(p−) andWs(p+)
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as parametrized curves up to considerable arclength, fromwhichwe

determine and show in Figure 3 the first 150 segments in B of the

repeated intersections for each branch ofWs(p±). Specifically, these

are both branches of Ws(p+) and one branch of Ws(p−) (its other

branch goes straight to infinity and does not intersect B again);

see Hittmeyer et al. [1, 2] for more details of the global structure

ofWs(p±).

Figure 3A shows the computed 450 segments in Ws(p±) ∩ B

withB,B−, andB+, while Figure 3B is an enlargement nearB+ that

also shows B+− and B++. All segments inWs(p±) ∩ B are aligned

in the x-direction and connect the back and front faces of B, where

x = ±Q; moreover, the segments can be seen to cluster successively

in the sub-boxes B− and B+, and B+− and B++. By construction,

when seen from the top along the z-direction, they form part of the

Cantor set of curves Ws(3h) ∩ ([−Q,Q] × [−Q,Q]). After taking

k preimages of H, one can check in which sub-box a given segment

lies to determine the symbolic sequence s ∈ {0, 1}N that represents

its location in this Cantor set of curve segments. In turn, each

symbolic sequence s ∈ {0, 1}N defines a unique one-dimensional

segment ofWs(3) ∩ B.

When viewed side-on, however, the 450 computed segments in

Figure 3 seem to be very much distributed in their z-coordinate,

and this suggests that Ws(3) ∩ B = Ws(p±) ∩ B acts as a surface.

This is illustrated further in Figure 4 where we show the first

300 intersection points with 6 of each of the three repeatedly

returning branches of Ws(p±); here, Figure 4A shows the entirety

of 6 ∩B, while Figures 4B1, B2 are enlargements near B− and B+,

respectively. Indeed, the 900 points shown look dense in projection

onto the z-axes. We confirmed this observation [1, 2] by showing

numerically that the (largest) gaps between the (finite number of)

projected pointsWs(p±) ∩ 6 goes to zero as the number of points

inWs(p±) ∩ 6 increases.

Owing to the properties of the box B, the symbolic sequence of

a particular segment can be determined from that of its intersection

point with a transverse section; see Figure 4. Notice the self-similar

nature of the construction in Equation (9) of taking the limit of

successive preimages of B. In particular, note that each segment of

Ws(3) ∩ 6 has a unique z-value. In more colloquial terms, and as

Figure 3 illustrates, the set Ws(3) ∩ B = Ws(p±) ∩ B is a set of

(infinitely many) spaghetti that look like a Cantor set from the top

and like a surface when seen side-on. This is the geometric essence

of the carpet property. Specifically, the orthogonal projection of

Ws(p±)∩6 onto the y-axis is always the same Cantor set associated

with the Hénonmap—while the orthogonal projection ofWs(p±)∩

6 onto the z-axis fills up an interval [1, 2].

2.2. Lack of the carpet property for ξ = 2.4

In contrast, when ξ = 2.4 the manifold Ws(3) does not have

the carpet property according to the numerical convergence test

for gaps in projection [1, 2]. Figure 5 shows the set Ws(p+) ∩ B

and the boxes B, B−, and B+ for this case, in the same way as

Figure 3A. While the top views of these two Figures are identical,

Figure 5 now shows a much “thinner” set of spaghetti in B that

does not look like a surface. This is confirmed by the respective

intersection sets with the diagonal plane 6, as is illustrated further

A

B1

B2

FIGURE 6

First 900 intersection points Ws(p±) ∩ 6 for ξ = 2.4 from Figure 5

shown together with p± and the intersection sets of B (green), B−

(light blue), B+ (dark blue), B−− (light magenta), B−+ (light purple),

B+− (purple), and B++ (magenta). (A) shows all of 6 ∩B, and (B1,

B2) are enlargements of B− and B+, respectively.

in Figure 6: the points Ws(p+) ∩ 6 now appear to have gaps

in the z-coordinate. Notice how the segments in Ws(p±) ∩ B

and points in Ws(p±) ∩ 6 cluster strongly in B− and B+, and

successively in B−− and B−+, B+−, and B++. As a result, in

Figure 6A the points in Ws(p±) ∩ 6 are practically all obscured

by the (approximate) parallelograms that are the intersection sets

of B−− and B−+, B+− and B++ with 6. The set Ws(p±) ∩ 6

is, however, visible in the enlargements in Figures 6B1, B2. The

difference with the case ξ = 1.2 is that, for ξ = 2.4, the

respective boxes no longer overlap fully: there is now a gap in the

z-coordinate between the projections of B− and B+, as well as of

B+− and B++; see Figures 6A, B2. This explains the visible gaps

between points in Ws(p±) ∩ 6 when seen in projection onto the
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FIGURE 7

Box D (green), its images D− (orange) and D+ (red), and their images D−− (yellow), D−+ (magenta), D+− (dark magenta), and D++ (light brown)

under H with ξ = 0.8. (A) shows these objects in (x, y, z)-space together with p± (green crosses) and diagonal 6 (gray). (B) is the top view in the

(x, y)-plane, and (C) shows the intersecting parallelograms in 6, which is represented by its projection onto the (x, z)-plane. The y-aligned

determining edges are labeled �, △, #, and 3 by their respective corner points, as defined for D in Equations (10)–(13). Compare with Figure 2.

z-coordinate. The boxes B−− and B−+ in Figure 6B1, however,

still overlap.

3. Box and its preimages for 0 < ξ < 1

When 0 < ξ < 1 the unstable manifolds Wu(p±) and Wu(3)

are of dimension one, and we now consider images of a suitable

boxD underH. This box is also defined over the square [−Q,Q]×

[−Q,Q] in the (x, y)-plane withQ as in Equation (4), namely, as the

parallelopiped given by the corner points

� :

(

−Q, ±Q, −
Q

1− ξ

)

, (10)

△ :

(

−Q, ±Q,
Q

1− ξ
· (2ξ − 1)

)

, (11)

# :

(

Q, ±Q, −
Q

1− ξ
· (2ξ − 1)

)

, (12)

3 :

(

Q, ±Q,
Q

1− ξ

)

. (13)

Therefore, the symbols #, 3, �, and △ again indicate

the pairs of corner points and corresponding determining

edges; these are now parallel to the y-axis, which is the

expanding direction, while the x- and z-directions are contracted

under H.

Figure 7 shows the parallelopiped D (green) over the square

[−Q,Q] × [−Q,Q] and its (forward) images D− and D+; this

illustrates that these boxes have the equivalent properties listed in

Section 2 for B and B±, subject to the reversal of the roles of the x-

and y-directions. Namely, the sub-boxes D− and D+ intersect the

boundary of D only on the two faces given by y = −Q and y = Q,

respectively.WithQ as given in Equation (4), the boxD is tight with

respect to the action ofH, meaning that now the outer edges ofD±

are subsets of the outer edges of D with y = Q; moreover, the two

(respective pieces of the) images of the edges3 and� lie on the top

and bottom face of D, respectively. These properties follow from

the expressions given by Equations (10)–(13) and the formula in

Equation (1) forH. Figure 7 also shows the four imagesD−−,D−+,

D+−, andD++ ofD underH2. Notice that these sub-boxes are very

narrow in the x-direction and close to the respective boundaries of
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FIGURE 8

First 450 segments of Wu(p±) ∩D (blue curves) for ξ = 0.8, shown in (A) inside D (green), D− (orange), and D+ (red), and in (B) inside D− (orange),

D−− (yellow), and D−+ (magenta); also shown are p± (green crosses) and the diagonal plane 6 (gray).

D− and D+. This is due to the strong contraction of D in the x-

direction under H, which is considerably stronger than that of B in

the y-direction under H−1; compare with Figure 2.

As Figure 7 illustrates, the nested sub-boxes also constitute a

three-dimensional horseshoe, now under the (forward) action of

H, meaning that the limiting set

lim
N→∞

N
⋂

k=0

Hk(D) = Wu(3) ∩D (14)

exists and 3 is a blender whenWu(3)∩B has the carpet property.

Moreover, 3 is expected to be a blender when 0 < ξ < 1 is

sufficiently close to 1, while it is not a blender when ξ is sufficiently

close to 0; see Hittmeyer et al. [1, 2].

3.1. Carpet property for ξ = 0.8

Figure 8 shows the unstable manifoldsWu(p±)∩D for ξ = 0.8

inside the box D and its images D− and D+ in Figure 8A, while

Figure 8B illustrates the situation locally near D− with the second

images D−− and D−+. We again compute the manifolds Wu(p±)

as curves and show the first 150 segments of the branches that

intersect D repeatedly, which are both branches of Wu(p−) and

one branch of Wu(p+) (its other branch goes straight to infinity).

As a result of the strong contraction of the x-direction under H,

the segments Wu(p±) ∩ D are seen to cluster strongly near the

boundaries of D− and D+, and near D−− and D−+, respectively.

As a result, the Cantor structure is much harder to recognize in

Figure 8 compared to Figure 3.
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According to Hittmeyer et al. [1, 2], an orthogonal projection

onto the z-coordinate for ξ = 0.8 shows gaps between the

segments Wu(p±) ∩ D that converge to zero as more segments

are added. Hence, Wu(3) has the carpet property and 3 is a

blender. Indeed, the 450 segments computed for Figure 8 already

give the impression that Wu(p±) ∩ D is dense in projection onto

the (y, z)-plane. To illustrate this further, Figure 9 shows the first

300 intersection points with the diagonal plane 6 of each of the

three repeatedly returning branches of Wu(p±) together with the

intersection sets of the sub-boxes from Figure 8; here Figure 9A

shows all of D, while Figures 9B1, B2 are enlargements near D−

andD+, respectively. The 900 points ofW
u(p±)∩6 do not appear

to have any gaps between them (at this resolution) when projected

onto the z-axis. This is because the sub-boxes D−, and D+, and

D−−,D−+,D+−, andD++ overlap sufficiently, meaning that they

do not leave gaps when seen in projection onto the z-coordinate.

Notice that D−−, D−+, D+−, and D++ are so narrow that they

would obscure Wu(p±) ∩ 6 in Figure 9; this is why we now plot

these points “on top” of the shown boundaries of these sub-boxes.

3.2. Lack of the carpet property for ξ = 0.4

Figures 10, 11 illustrate that 3 is not a blender when ξ = 0.4

according to the convergence test in Hittmeyer et al. [1, 2]. When

seen along the x-axis, the shown segments of Wu(p±) ∩ D in

Figure 10 now appear to be a Cantor set of curves, which suggests

thatWu(3) no longer has the carpet property. Figure 11 illustrates

this further by showing how the points in Wu(p±) ∩ 6 sit within

the different sub-boxes. Notice in Figure 11A how narrowly spaced

these points are in the very narrow D−−, D−+, D+−, and D++,

which lie near the boundaries of the sub-boxes D− and D+. The

enlargements in Figures 11B1, B2 show that, in turn, the points

in Wu(p±) ∩ 6 lie close to the boundaries of D−−, D−+, D+−,

and D++; specifically, in such a way that there are gaps in between

these groups of points in terms of their z-coordinates. Notice from

Figure 11 that the respective pairs of sub-boxes shown in each panel

do not overlap in projection onto the z-axis, meaning that this

projection ofWu(3) ∩ 6 is now also a Cantor set. This shows in a

different way that 3 is indeed not a blender for ξ = 0.4.

4. Relative positions of determining
edges

Figures 4, 6 of the intersection sets in the diagonal plane 6

illustrate that the carpet property ofWs(3) for ξ > 1 is associated

with the overlap in the z-coordinate between sub-boxes in the

sequence defining the limit set in Equation (9). Similarly and

according to Figures 9, 11, the carpet property of Wu(3) for 0 <

ξ < 1 is associated with the overlap in the z-coordinate between

sub-boxes that generate the limit set in Equation (14). We now

investigate further how the respective z-overlap betweenH−k(B)∩

6 and Hk(D) ∩ 6 in the particular plane 6 of intersection relates

to the properties of Ws(3) ∩ 6 and Wu(3) ∩ 6, respectively. To

this end, we consider how these objects change with the contraction

rate ξ over the range [ 13 , 3]. Since the corresponding z-ranges vary

A

B1

B2

FIGURE 9

First 900 intersection points Wu(p±) ∩ 6 for ξ = 1.2 from Figure 8

shown together with p± and the intersection sets of D (green), D−

(orange), D+ (red), D−− (yellow), D−+ (magenta), D+− (dark

magenta), and D++ (light brown). (A) shows all of 6 ∩D and (B1, B2)

are enlargements of D− and D+, respectively.

a lot with ξ , it is convenient to show the relevant information in the

compactified coordinate z̄, which is obtained by the transformation

z̄ :=
z

1+ |z |
∈ [−1, 1]. (15)

Moreover, for ease of comparison of the two cases 0 < ξ <

1 and ξ > 1, we transform the smaller interval [ 13 , 1] to the

interval [−1, 1] so that it has length 2 as well; this is achieved by

the transformation

ξ → −
1

ξ
+ 2. (16)

Figure 12 shows the z̄-values#z̄(ξ ),3z̄(ξ ),�z̄(ξ ), and△z̄(ξ ) of

the intersection points with 6 of the determining edges of the pairs
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FIGURE 10

Unstable manifolds Wu(p±) (red curves) of p± (green crosses) for ξ = 0.4 inside the box D (green) and its two preimages D− (orange) and D+ (red);

shown are the first 450 segments of Wu(p±) ∩B in (x, y, z)-space together with the diagonal plane 6 (gray). Compare with Figure 8.

of sub-boxes B± and D± in Figure 12A, and of the four respective

sub-boxes D±∓ and B±∓ in Figure 12B. These points form ξ -

parametrized curves in the (ξ , z̄)-plane, which are labeled by the

respective symbols and have the color of the corresponding box as

in previous figures. To obtain these curves, we consider 500 evenly

spaced ξ -values in [0.001, 0.999] and 450 evenly spaced ξ -values

in [1.01, 8.0], for which the intersection points of the respective

determining edges with 6 are computed by interpolation from

(pre)images of H as was explained in Section 2.

Figure 12 also shows the z̄-values of the intersection sets

Wu(p±)∩6 for 0 < ξ < 1 andWs(p±)∩6 for ξ > 1. They form a

gray background and consists of curves generated from computed

intersection points. Specifically, the respective one-dimensional

manifolds were computed for ξ ∈ {0.01,0.1,0.2,0.3,0.35,0.5, 0.6, 1.7,

1.8, 1.9, 2, 2.1, 2.4, 4.0, 10.0, 50.0, 100.0}; the first 1,000 intersection

points for ξ ≤ 4 and the first 500 intersection points for ξ ≥ 4

were determined for each returning branch of a manifold. These

points were then connected by using modified Akima interpolation

in Matlab to obtain a set of gray ξ -parameterized curves over the ξ -

range [ 13 , 3]. Moreover, in the range ξ ∈ [0.6, 1.7], the area between

the z̄-values of p± was gray-filled, since there are no visible gaps

(in this projection) at the scale of these Figures; compare with

Hittmeyer et al. ([2], Figure 8).

Notice in Figure 12 that the different curves #z̄(ξ ), 3z̄(ξ ),

�z̄(ξ ), and △z̄(ξ ) align quite well with the “boundaries” of

Wu(p±) ∩ 6 and Ws(p±) ∩ 6. It is noticeable that the curves for

D±∓ andB±∓ in Figure 12B lie closer toWu(p±)∩6 andWs(p±)∩

6, respectively, than those for B± and D± in Figure 12A. In

particular, intersection points between curves 3z̄(ξ ) and �z̄(ξ ) of

pairs of sub-boxes correspond to changes in their overlap properties

as identified in Figures 4, 6 for ξ > 1, and Figures 9, 11 for 0 < ξ <

1. As expected from these Figures, there are two intersection points

in Figure 12A between the respective curves 3z̄(ξ ) and �z̄(ξ ).

Namely, (ξ , z̄) ≈ (0.4506, 0.4061) marks the gain or loss of overlap

between the sub-boxes D− and D+, and (ξ , z̄) ≈ (2.258, 0.2566)

marks that between B− and B+.

Figure 12B shows the curves #z̄(ξ ), 3z̄(ξ ), �z̄(ξ ), and △z̄(ξ )

for the sub-boxes B±∓ and D±∓. For 0 < ξ < 1, there are two

intersection points between curves 3z̄(ξ ) and �z̄(ξ ), namely the

point (ξ , z̄) ≈ (0.4377,−0.7094) concerning the overlap between

D−− and D−+, and the point (ξ , z̄) ≈ (0.4566, 0.7803) concerning

overlap between D+− and D++. The fact that both these points

occur between ξ = 0.8 and ξ = 0.4 reflects the change in

overlap observed in Figures 9, 11. For ξ > 1, Figure 12B shows

only the intersection point (ξ , z̄) ≈ (1.9883,−0.5498) between the

respective curves 3z̄(ξ ) and �z̄(ξ ), which marks the change in

overlap between B+− and B++. Note that there is no intersection

point between the curves 3z̄(ξ ) for B−− and �z̄(ξ ) for B−+ in

the shown ξ -range. Moreover, we did not find such an intersection

point based on the data we computed in [1.01, 8.0]; so if it exists,

this point will lie well beyond ξ = 8.0. In other words, B−− and

B−+ remain in overlap, which agrees with the change observed in

Figures 4, 6.

The curves #z̄(ξ ), 3z̄(ξ ), �z̄(ξ ), and △z̄(ξ ) can be computed

for further (pre)images, and Figure 13 shows them for the

respective eight sub-boxes D±∓± and B±∓±. Notice that these

curves are now even closer to the boundaries of Wu(p±) ∩ 6 and

Ws(p±) ∩ 6, respectively. Moreover, we find further intersection

points between curves 3z̄(ξ ) and �z̄(ξ ). For 0 < ξ < 1, we find

all expected four intersection points in the shown ξ -range, namely

(ξ , z̄) ≈ (0.4410,−0.7928), (ξ , z̄) ≈ (0.4396,−0.5639), (ξ , z̄) ≈

(0.4024, 0.7014), and (ξ , z̄) ≈ (0.4740, 0.8367), which correspond

to changes in overlap between the pairs D−−±, D−+±, D+−±,

and D++±, respectively. For ξ > 1, however, Figure 13 shows

Frontiers in AppliedMathematics and Statistics 12 frontiersin.org

https://doi.org/10.3389/fams.2023.1086240
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Hittmeyer et al. 10.3389/fams.2023.1086240

only the three intersection points (ξ , z̄) ≈ (1.92181,−0.70477),

(ξ , z̄) ≈ (2.07822, 0.52975), and (ξ , z̄) ≈ (2.51816, 0.61039); they

correspond to changes in overlap between the pairs B−−±, B+−±,

and B++±, respectively. We did not find an intersection between

the curves 3z̄(ξ ) for B−+− and �z̄(ξ ) for B−++ based on the data

we computed for ξ ∈ [1.01, 8.0]. As was the case for B−− and B−+,

this intersection point may well exist for values of ξ well beyond the

ones considered here.

To summarize the discovered changes in overlap between

successive sub-boxes, Figure 14 shows only the relevant curves

3z̄(ξ ) and �z̄(ξ ) for pairs of “opposite boxes” that generate the

intersection points we identified in Figures 12, 13. Notice how

the respective intersection points are reasonably close to the

disappearance of the biggest z̄-gaps ofWu(p±)∩6 andWs(p±)∩6,

respectively. More specifically, the parts of the pairs of curves3z̄(ξ )

and�z̄(ξ ) corresponding to non-overlapping of the respective pairs

of sub-boxes, as well as the intersection points themselves, actually

lie in the respective gap. This reflects the fact that the boxes B and

D, and their (pre)images provide an outer approximation of the

local one-dimensional manifold of the hyperbolic set 3. Hence,

the ξ -values of the computed intersection points that represent a

change in overlap, as well as those for further pairs of (pre)images of

B andD, provide an outer approximation of the ξ -interval around

ξ = 1 where the carpet property holds and, hence, where 3 is

a blender.

5. Discussion and outlook

We have shown how to construct for the Hénon-like family

H a parameter-dependent and tight linear box, a parallelopiped

with forward images for 0 < ξ < 1 and backward images for

ξ > 1 that intersect this box to yield a three-dimensional horseshoe

containing the local one-dimensional (un)stable manifold of the

underlying hyperbolic set 3. As we illustrated, sufficient overlap

of the corresponding sequence of sub-boxes, when viewed along

the relevant direction, is directly associated with 3 being a

blender. As the contraction/expansion rate ξ is varied away from

ξ = 1, gaps are created between these boxes, again when

viewed along the relevant direction, and eventually 3 ceases to be

a blender.

Due to the nonlinear nature of map H, the (pre)images of

the initial box deform in a non-affine way; here, we identified

two different yet related general phenomena. First, while the

determining edges of all sub-boxes are aligned with the expanding

direction, they are nevertheless curved and so are not parallel

to the determining edges of the initial parallelopiped. Second,

the successive sub-boxes are sheared increasingly. Both these

effects are relevant when one wants to decide whether there

exists, or not, an overlap between sub-boxes when viewed from

a given direction. In particular, the gaps between different

pairs of sub-boxes, in a chosen transverse section and chosen

direction, do not all open up for the same value of ξ .

Moreover, when such gaps open depends on the section and

not just on the chosen direction. This represents a typical

scenario, and it shows that the disappearance of the blender

via the vertical separation of the two “arms” of the three-

dimensional horseshoe is a complicated and subtle process. While,

A

B1

B2

FIGURE 11

First 900 intersection points Wu(p±) ∩ 6 for ξ = 0.4 from Figure 10

shown together with p± and the intersection sets of D (green), D−

(orange), D+ (red), D−− (yellow), D−+ (magenta), D+− (dark

magenta), and D++ (light brown). (A) shows all of 6 ∩D, and (B1,

B2) are enlargements of D− and D+, respectively.

as a first approximation, the affine construction provides a

concise and persuasive explanation for the existence of blenders,

it does not properly represent the details of their creation

or disappearance.

Notwithstanding these issues, tracing the intersection points

of the relevant determining edges of pairs of boxes with a

transverse section provides an outer approximation of the ξ -

range over which 3 should be expected to be a blender. Indeed,

we observed that the successive gaps of the respective one-

dimensional manifolds appear at values of ξ that are necessarily

closer to ξ = 1 but still quite close to the ξ -values of the

appearance of gaps between the corresponding boxes. This type

of geometrical information should be useful also for subsequent
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A

B

FIGURE 12

Curves #z̄(ξ ), 3z̄(ξ ), �z̄(ξ ), and △z̄(ξ ) for the sub-boxes B± and D± in (A), and for the sub-boxes D±∓ and B±∓ in (B), shown in the (ξ , z̄)-plane with

[ 1
3
, 1] rescaled by Equation (16) to have width 2. Colors match those of the boxes in Figures 4, 6, 9, 11, and the gray background is formed by

Wu(p±) ∩ 6 for ξ ∈ [ 1
3
, 1) and Ws(p±) ∩ 6 for ξ ∈ (1, 3]. Black dots mark the intersection points of 3z̄(ξ ) and �z̄(ξ ) of opposing sub-boxes, which

indicate a gain/loss of overlap.

FIGURE 13

Curves #z̄(ξ ), 3z̄(ξ ), �z̄(ξ ), and △z̄(ξ ) for the sub-boxes D±∓± and B±∓± shown with Wu(p±) ∩ 6 and Ws(p±) ∩ 6 as in Figure 12.
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FIGURE 14

Curves 3z̄(ξ ) and �z̄(ξ ) of opposing sub-boxes for B± and D±, D±∓ and B±∓, and B±∓± and D±∓±, shown with Wu(p±) ∩ 6 and Ws(p±) ∩ 6 as in

Figures 12, 13.

investigations to determine an inner approximation of the ξ -

range over which a blender exists. In particular, the presented

box construction may inform and motivate a computer-assisted

proof of the existence of a blender via rigorous computations

based on interval arithmetic. This will require verifying that

the (pre)image of the initial box satisfies topological as well

as metric properties (expressed via cone conditions; see Díaz

et al. [3] and Bonatti and Díaz [6]) required for a three-

dimensional blender horseshoe. This may be achieved rigorously,

for example, with the approach by Zgliczyński and Gidea [23],

Zgliczyński [24], and Kapela et al. [25]; see Capiński et al. [26].

In a similar spirit, it should be possible to provide a computer-

assisted proof that 3 is not a blender when ξ is sufficiently far

from ξ = 1.

In the intermediate range, it is not so clear from a box

construction whether a given hyperbolic set 3 is a blender or not.

Namely, the mentioned distortion of iterates of the initial box,

here under H or H−1, is expected to play an important role. One

observes an increasing, nonlinear distortion at deeper levels of the

three-dimensional horseshoe construction, which is mainly due to

the difference between the expanding rates in the strong unstable

and the center stable directions. This implies that a guess derived

from the affine systems may not be suitable when attempting to

prove that a hyperbolic set is a blender. The issue of distortion in

the generic setting is known to experts in the field; in particular,

dealing with it is an important part of the proof by Bonatti and

Díaz [6] that a blender exists, and it is dexterously circumvented

in their work by combining the observations of forward and

backward iterations.

This effect of distortion is pronounced near where the carpet

property is lost. More precisely, both analytical as well as

computer-assisted methods run into increasing difficulties with

obtaining the required estimates at deeper levels as the overlap

between boxes decreases. This suggests that other approaches

should be used when one is interested in how a blender can

disappear or be created as system parameters are changed. A

specific example of an alternative approach is the computation

of extremely long pieces of the respective one-dimensional

manifolds. As we have shown in earlier [1, 2] for the Hénon-

like family H, computing Ws(p±) or Wu(p±), respectively, as

arclength-parametrized curves allows one to provide convincing

numerical evidence (albeit in a non-rigorous way) that any gaps

in projection converge to zero with increasing arclength. This

constitutes a check that the carpet property is satisfied and,

hence, 3 is a blender. Indeed, these one-dimensional manifolds

exist for any value of ξ > 1 and of 0 < ξ < 1,

respectively, so that the break-up of the blender via the emergence

of gaps in the projection can be studied. The details of this

transition—the bifurcation of the blender—are the subject of

ongoing research.

As a concluding remark, we hope that this study will stimulate

further investigations of blenders and their role for associated

dynamics. As was already mentioned briefly in the introduction,

there is a close connection between blenders and the C1-robust

existence of heterodimensional cycles [3, 5–15]. In the low-

dimensional context of a diffeomorphism in R
3 as discussed here,

a heterodimensional cycle is characterized by the existence of a

quasi-transverse intersection of codimension one between the one-

dimensionalmanifoldsWs(p) andWu(q) of two saddle points p and

q of different index; moreover, their two-dimensional manifolds

Wu(p) and Ws(q) intersect transversely. Suppose now that p ∈

3, where 3 is a blender and Wu(q) approaches Ws(3) along

the direction associated with the carpet property. Then there

exists a (different) heteroclinic connection for any sufficiently

small C1-perturbation of the map. It is a challenging task to

find or construct this geometric configuration in an explicitly

given map or vector field. The Hénon family H is still the only

explicit example of a diffeomorphism with a blender, and one

approach of our ongoing work is to modify it in a suitable

way to generate heterodimensional cycles. Alternatively, one may

attempt to find blenders in systems that feature heterodimensional

cycles. A few specific examples of such systems are known,
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including maps [18, 27] and vector fields [17, 19, 20], and

the identification of a blender in any of them remains an

interesting challenge.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

SH generated the Figures with input from BK, HMO,

and KS. A first draft of the paper was produced by BK.

All authors devised and contributed equally to the research

and contributed to editing and completing the writing.

All authors contributed to the article and approved the

submitted version.

Funding

KS was supported by the JSPS KAKENHI Grant 21K03320.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Hittmeyer S, Krauskopf B, Osinga HM, Shinohara K. Existence of blenders
in a Hénon-like family: geometric insights from invariant manifold computations.
Nonlinearity. (2018) 31:R239–67. doi: 10.1088/1361-6544/aacd66

2. Hittmeyer S, Krauskopf B, Osinga HM, Shinohara K. How to identify
a hyperbolic set as a blender. Discr Cont Dynam Syst-A. (2020) 40:6815–36.
doi: 10.3934/dcds.2020295

3. Díaz LJ, Kiriki S, Shinohara K. Blenders in centre unstable Hénon-like families:
with an application to heterodimensional bifurcations.Nonlinearity. (2014) 27:353–78.
doi: 10.1088/0951-7715/27/3/353

4. Hénon M. A two-dimensional mapping with a strange attractor. Comm Math
Phys. (1976) 50:69–77. doi: 10.1007/BF01608556

5. Bonatti C, Díaz LJ, Viana M. Dynamics beyond uniform Hyperbolicity. In: A
global geometric and probabilistic perspective. vol. 102 of Encylopaedia of Mathematical
Sciences. Springer-Verlag: Berlin (2005).

6. Bonatti C, Díaz LJ. Persistent nonhyperbolic transitive diffeomorphisms. Ann
Math. (1996) 143:357–96. doi: 10.2307/2118647

7. Bonatti C, Crovisier S, Díaz LJ, Wilkinson A. What is. . . a blender? Notices Amer
Math Soc. (2016) 63:1175–8. doi: 10.1090/noti1438

8. Bonatti C, Díaz LJ, Kiriki S. Stabilization of heterodimensional cycles.
Nonlinearity. (2012) 25:931–60. doi: 10.1088/0951-7715/25/4/931

9. Bonatti C, Díaz LJ. Abundance of C1-robust homoclinic tangencies. Trans Amer
Math Soc. (2012) 364:5111–48. doi: 10.1090/S0002-9947-2012-05445-6

10. Díaz L. Robust nonhyperbolic dynamics and heterodimensional cycles.
Ergod Theory Dyn Syst. (1995) 15:291–315. doi: 10.1017/S01433857000
08385

11. Díaz L, Pérez SA. Hénon-like families and blender-horseshoes at
nontransverse heterodimensional cycles. Int J Bifurcat Chaos. (2019) 29:1930006.
doi: 10.1142/S0218127419300064

12. Díaz L, Pérez SA. Nontransverse heterodimensional cycles: stabilisation and
robust tangencies. Trans Amer Math Soc. (2023) 376:891–944. doi: 10.1090/tran/8694

13. Li D, Turaev D. Persistence of heterodimensional cycles. arXiv:210503739.
(2021). doi: 10.48550/arXiv.2105.03739

14. Avila A, Crovisier S, Wilkinson A. C1 density of stable ergodicity. Adv Math.
(2021) 379:107496. doi: 10.1016/j.aim.2020.107496

15. Biebler S. Almost blenders and parablenders. Ergodic Theory Dyn Syst. (2022)
2022:1–42. doi: 10.1017/etds.2022.16

16. Bonatti C, Díaz L. Robust heterodimensional cycles and C1-generic dynamics. J
Inst Math Jussieu. (2008) 7:469–525. doi: 10.1017/S1474748008000030

17. Li D. Homoclinic bifurcations that give rise to heterodimensional
cycles near a saddle-focus equilibrium. Nonlinearity. (2017) 30:173–206.
doi: 10.1088/1361-6544/30/1/173

18. Kostelich EJ, Kan I, Grebogi C, Ott E, Yorke JA. Unstable dimension
variability: a source of nonhyperbolicity in chaotic systems. Phys D. (1997) 109:81–90.
doi: 10.1016/S0167-2789(97)00161-9

19. Zhang W, Krauskopf B, Kirk V. How to find a codimension-one heteroclinic
cycle between two periodic orbits. Discrete Contin Dyn Syst Ser A. (2012) 32:2825–51.
doi: 10.3934/dcds.2012.32.2825

20. Mason G, Hammerlindl A, Krauskopf B, Osinga HM. Determining the global
manifold structure of a continuous-time heterodimensional cycle. J Comput Dynam.
(2022) 9:393–419. doi: 10.3934/jcd.2022008

21. Krauskopf B, Osinga HM. Growing 1D and quasi-2D unstable manifolds of
maps. J Comput Phys. (1998) 146:404–19. doi: 10.1006/jcph.1998.6059

22. Díaz LJ, Pérez SA. Blender-horseshoes in center-unstable Hénon-like families.
In: Pacifico M, Guarino P, editors. New Trends in One-Dimensional Dynamics. vol. 285
of Springer Proceedings in Mathematics and Statistics. New York, NY: Springer (2019).
p. 137–63.
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