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Ordering countries when
managing COVID-19

Meitner Cadena*† and Marco Méndez†

DECE, Universidad de las Fuerzas Armadas - ESPE, Sangolqui, Ecuador

Here we assess countries’ management of the coronavirus 2019 (COVID-19)

pandemic using the reliability measure P(X ≤ Y). In this management, all

kind of strategies as interventions deployed by governments as well individuals’

initiatives to prevent, mitigate, and reduce the contagion of this disease are taken

into account. Also, typical customs practiced locally and influencing contagion

are included. Regarding a number of countries and rates associated to deaths

and incidence, orderings of countries about such management are established,

by using the measure of reliability indicated above. In this way, countries are

distinguished from each other depending on how they managed this pandemic.

This kind of analysis may be extended to the management of other diseases.
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1. Introduction

The outbreak of the disease called COVID-19 that appeared in 2019 and was caused

by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has challenged the

world’s health systems by increasing demand for care of their patients. As of the third

year of the pandemic, there have been over 400 million confirmed cases and almost 6

million deaths. Thus, this new disease has triggered the rapid development of a number

of measures to detect, prevent, mitigate, and reduce its impacts. Among these measures,

non-pharmaceutical interventions like those applied during the Spanish Flu were again

applied [1]. However, the efficacy of these initiatives was limited since the disease was

previously unknown. Alternatively, vaccines were considered as essential to fight against

COVID-19, but their rapid evaluation processes due to the urgency of using themmay have

limited their popularity [2, 3]. In addition to these issues, vaccine availability and access were

constraining factors. In practice, countries adopted diverse mixtures of protection measures

to overcome risks of this disease like contagions, hospitalizations, and deaths. Thesemixtures

were mainly proposed by governments and built on the available protection options

[4–7]. However, all these conditions led countries to experience complex situations in a

number of sectors other than health, as food security, local and global economy, education,

tourism, and environmental air pollution [8, 9]. Such difficult situations also involved

concerns experienced by individuals about sports and leisure, gender relations, domestic

violence/abuse, and mental health [9].

Despite the highly complex and ever-evolving situations caused by COVID-19, it is of

interest to identify good practices learned from successful managements of COVID-19. In

fact, these lessons may suggest recommended practices to better protect populations from

COVID-19 and other similar diseases. Different types of analyzes have been performed

to identify and assess impacts of protection measures put in place. The case fatality rate

(CFR), computed as the ratio of deaths among all patients confirmed with a disease causing
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an epidemic, is considered usually a benchmark for assessing

and comparing the severity of this epidemic between countries.

Variations in this rate during peaks and outbreaks would

evidence response impacts against the disease [10]. However,

it is hard to get the numbers for computing this rate [11, 12].

Deaths are right-censored because of a time delay between

the appearance of symptoms and death, whereas confirmed

patients are not entirely determined, leading to biased numbers.

Alternatively, some scholars have studied the effects of a single

category of interventions, such as travel restrictions [13, 14], social

distancing [15, 16], and personal protective measures [17]. More

recently, [6] analyzed the effects of multiple interventions, but

only the non-pharmaceutical ones implemented by governments

were considered. In this paper, we propose a method to

assess crucial effects for any set of interventions, including

both pharmaceutical and non-pharmaceutical ones. Furthermore,

temporality of interventions is also taken into account, as they may

vary due to epidemic evolution. This is the case of variants of this

disease that eventually appeared as those called Alpha, Delta,

and Omicron.

To compare the management of COVID-19 between countries,

we use the notion of reliability given by P(X ≤ Y), which is the

probability of being in a success state without having entered a

failure state, see e.g., Singh and Billinton [18]. The reliability is

typically applied when relations stress-strength are analyzed, which

are frequent in fields likemedicine, quality control, and engineering

[19]. However, this measure can also be used in other contexts. For

example, [20] compared mortality rates from populations with

unequal incomes in order to get lost life years of compensation

since human beings can be seen as systems exposed to failures.

To the best of our knowledge, this is the first application of

reliability to analyze the management of COVID-19. Considering

countries as systems, this measure allows assigning a probability

to each country X when it is compared to a reference system.

Then, adopting another country Y as a reference system, we

obtain a set of probabilities R = P(X ≤ Y) for each couple of

countries (X,Y). These probabilities thus allow the establishment

of orderings among countries, as R numbers define a stochastic

order [21, 22]. In this case, such orderings can be easily deduced

because relations among countries can be organized into simple

schemes.

Our approach to stochastically order countries is a new deep

learning method, as it reveals previously unknown order relations

among countries [23].

Under our proposed method, the management of COVID-19

in 67 countries during 2021 and the first months of 2022 is analyzed

by considering COVID-19 deaths per million (DPM) and COVID-

19 cases per million (CPM), which are commonly used rates for

comparing countries [24–26]. This means that the effects of Delta

and Omicron, two of the main variants of COVID-19 classified

as variants of concern by the World Health Organization, are

included in this study [27, 28].

The rest of the paper is structured as follows. In the next section,

the data used and their main features are presented. Section 3

presents the methodology to be applied. It concerns the description

of the computation of reliability and the establishment of orderings.

Section 4 shows results for each of the variables to be studied. The

last section presents concluding remarks.

2. Data

Daily data on mortality and cases due to COVID-19 from

67 countries were obtained from https://covid19.who.int/WHO-

COVID-19-global-data.csv, with the exception of Ecuador, whose

information was obtained from https://www.salud.gob.ec. The

period of analysis was from January 1st, 2021 to February 19th,

2022, which is related to COVID-19 vaccine availability for

most of the analyzed countries. These data were downloaded on

February 22th, 2022. To avoid some unusual values resulting

from data released with delay, daily data were transformed into

epidemiological weeks. This kind of week is commonly referred to

as an epi week or a CDC week, i.e., a seven-day period starting

on Sunday. Furthermore, two-letter country codes defined in ISO

3166-1, called alpha-2 codes, were used instead of the full names

of countries.

The total number of individuals from the examined countries

was obtained from https://population.un.org. Because the period

of analysis is short, such total numbers were assumed to be constant

over the studied time interval.

Next, the DPM and CPM variables for a country i and a given

epidemiological week j are built using the following expressions.

DPMi,j =
Number of deaths in week j in the country i

Total number of individuals of the country i

× 1, 000, 000

CPMi,j =
Number of cases in week j in the country i

Total number of individuals of the country i

× 1, 000, 000.

3. Method

Let us see how to build country orderings by using the notion

of reliability given by R = P(X ≤ Y), where X and Y are random

variables representing failures of two systems [18]. Note that 0 ≤

R ≤ 1. If R < 0.5 (>0.5), the system represented by X (Y) would

be more resistant to failures than the system represented by Y

(X), whereas if R = 0.5, both systems behave equally. Since the

relations between X and Y are unknown, we propose using the

nonparametric R estimate given by the classical Wilcoxon-Mann-

Whitney statistic, see [29]. Given samples x1, . . . , xn ofX and y1, . . . ,

ym of Y , this nonparametric statistic is expressed by

r =
1

nm

n∑

i=1

m∑

j=1

I(xi, yi),

where I(x, y) = 0 if x ≥ y and I(x, y) = 1 if x ≤ y. This is an

unbiased and consistent estimate of R.

Let A and B be two countries and let VA and VB be their

corresponding random variables when we focus on a variable V of

interest. Then, we define RA,B,V = P(VA ≤ VB) and its estimate

is denoted by rA,B,V . This means that RA,B,V < 0.5 (> 0.5) implies

thatVA (VB) would present more frequently higher values than the

ones of VB (VA), whereas if RA,B,V = 0.5, both VA and VB behave
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equally. In the case RA,B,V ≥ 0.5, it is said that VA stochastically

precedesVB [30]. Based on this inequality, we define a strict version

as follows. VA strictly stochastically precedes VB if RA,B,V > 0.5.

Using this strict stochastic precedence order, we have that country

B performs worse than country A with respect to the variable V if

RA,B,V > 0.5.

Let Ai, i = 1, . . . , s, be a set of countries. When considering

the ordering introduced above, a matrix MV of order s × s is

built to represent the outputs R between any couple of countries.

The element (i, j) of MV is 1 if VAi stochastically precedes VAj ;

otherwise, this element is 0.

Now, we will deduce a causal diagram associated with MV , i.e.,

a directed acyclic graph representing probabilistic causal domains

[31]. Further, directed cycles are included in this diagram, if needed.

This directed graph will exclude redundant edges, i.e., edges that do

not block all existing paths between the two most extreme vertexes

of such a graph.

To this aim, denoting by the directed edge Aj → Ai if the

element (i, j) of MV is 1, we propose to apply Algorithm 1. Steps

1 and 2 of this algorithm arrange the matrix MV in such a way

that countries with a few 1s by row are placed on top and left of

the matrix, whereas those with more 1s are placed on the bottom

of the matrix. For each row of this matrix, more 1s means the

country’s management is relatively better. Step 3 renames countries

according to their new positions in MV , calling them Bi, i = 1, . . . ,

s. In this way, Bi has less or the same number of 1s than Bj if i < j.

These three steps are key because they allow an easy deduction of a

causal diagram in some cases. For instance, if under the diagonal of

MV there are only 1s, we have B1 → B2 → · · · → Bs because some

of those 1s evidently represent all the relations Bi−1 → Bi for i =

2, . . . , s. This ideal ordering would be expected, but variations may

arise. Precisely, starting with this ideal relation in Step 4, Steps 5

and 6 modify it if any of the following three situations occurs. First,

when there are 0s in positions (i, i−1). Although the corresponding

relation has been previously included as Bi−1 → Bi, it must be

changed by Bi → Bi−1. Second, when there are 1s located over the

diagonal of MV , say the position (i, j) with i < j. This means that

their corresponding 0s are located in the position (j, i), i.e., under

that diagonal. Thus, the relation Bi → Bj holds and must be added

to the causal diagram. Third, once the first situation has happened,

the change from Bi−1 → Bi to Bi → Bi−1 breaks the causal diagram

in Step 4. Hence, it is necessary to design the “right bridges” to

reconnect that diagram. Assuming that the diagram is interrupted

in the vertex i andMV has value 1 in the position (i, j) for some j > i,

then the relation Bi−1 → Bj is added to the diagram. Proposition 1

guarantees Algorithm 1 works.

Remarks 1. 1. Step 6-b) of Algorithm 1 gives multiple options to

choose j. In this paper, we take the minimum of T = {k : i <

k ≤ s satisfying Bi−1 → Bk} as j. In this way, the shortest path

between B1 and Bs, i.e., the path with the shortest distance from

B1 to Bs [32], includes as many countries as possible. Note that

selecting a member of T other than its minimum produces a

different directed graph.

2. Algorithm 1 does not provide preceding directed edges to

vertexes related to Step 6-a). This is not developed because it is

not crucial in our analysis.

Parameters: Ai, i = 1, ..., s, and MV.

1: Build a vector given by the sum of the elements of

MV by row.

2: Ordered the previous vector increasingly, sort

MV by row and column according to such an ordered

vector.

3: Since the order of countries has changed, denote

by B1, B2, ..., Bs the countries under the new

order.

4: Build a directed graph from B1 to B2, from B2 to

B3, ..., and from Bs−1 to Bs.

5: For each value 1 located over the diagonal line in

the position (i, j), add the directed edge Bj → Bi.

6: For each value 0 located immediately under the

diagonal line in the position (i, i− 1):

a) record Bi → Bi−1 instead of Bi−1 → Bi.

b) add an existing directed edge Bi−1 → Bj for

some j satisfying i < j ≤ s.

Algorithm 1. Building of a partial ordering fromMV .

3. Proposition 1-iii) and Step 6 of Algorithm 1 take into account

interruptions due to only one vertex at a time. In case of lack of

connection due to several consecutive vertexes, such statements

can still be applied by regarding all those consecutive vertexes as

if they were only one.

4. The resulting directed graph may include directed cycles.

Proposition 1. Let V be a variable to be analyzed. Let Ai, i = 1,

. . . , s, be a set of countries andMV their associatedmatrix as defined

above. Let nAi ,V =
∑s

j=1 MV (i, j), i = 1, . . . , s. We have:

i) Ai, i = 1, . . . , s, can be ordered by considering nAi ,V , i = 1, . . . ,

s.

Assume that there is a country that manages better than the

other analyzed countries, and another one that manages worse than

the other analyzed countries. Rename Ai, i = 1, . . . , s, as Bi, i = 1, . . . ,

s, by considering an order defined in i). We have:

ii) Bs (B1) is unique and verifies nBs ,V = s− 1 (nB1 ,V = 0).

iii) If a directed graph is interrupted at vertex i, 2 ≤ i < s, there

exists a vertex j satisfying i < j ≤ s and Bi−1 → Bj.

Proof.

Statement i) follows because nAi ,V varies between 0 and s− 1.

Assume that there is a country that manages better than the

other analyzed countries, say without loss of generality Bs.

Let us prove ii). This assumption means that Bs strictly

stochastically precedes Bi, i = 1, . . . , s− 1. Therefore, RBs ,Bi ,V > 0.5,

i = 1, . . . , s− 1, and thus nBs ,V = s− 1. On the other hand, suppose

that there is Bj, j 6= s, which also manages better than the other

analyzed countries. This fact implies that B′s strictly stochastically

precedes Bs, i.e., RBj ,Bs ,V > 0.5. Because of RBj ,Bs ,V = 1 − RBs ,Bj ,V ,
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we have RBs ,Bj ,V < 0.5, which contradicts the fact that Bs strictly

stochastically precedes Bj. Thus, it is concluded that Bs is unique.

The claims about B1 follow similarly.

Let us prove iii). Consider the set T = {k : i < k ≤

s satisfying Bi−1 → Bk}. This set is not empty because of s ∈ T

due to the assumption that there is a country that manages better

than the other analyzed countries. The claim then follows.

4. Results

4.1. COVID-19 deaths per million

When considering the reliability of COVID-19 deaths by

applying Algorithm 1, the orderings of countries show that some

countries perform better than most. These results are presented in

Figure 1, which shows a directed graph for all studied countries.

In this plot, the directed graph starts in BG, the country with

the worst management of COVID-19 deaths, and ends in NZ,

representing the country with the best management of such

deaths. This last result shows that the assumption enunciated in

Proposition 1 is satisfied. Arrows in the graph indicate the relation

of management of COVID-19 deaths between pairs of countries,

following the ordering defined in Section 3. Paths following

arrows indicate consecutive improvements in the management

of COVID-19 deaths. Therefore, countries exhibiting the best

management are NZ, KY, IS, and SG, while the worstmanagement

is observed in BG, HU, PE, and SK. Furthermore, the network

of directed edges presents some directed cycles, such as the one

established among RU, GR, BR, and PL, or the one among AW,

CR, BO, ZA, and UY. However, these cyclical behaviors are

experienced only occasionally, indicating that most relations

among countries are hierarchical. Moreover, these directed cycles

tend to occur more frequently among countries with poorer

management. The highlighted shortest path in the directed graph

reveals the main countries participating in relations that give a

complete order. It should be noted that this pathmay vary since the

directed graph developed by applying Algorithm 1 is not unique.

4.2. COVID-19 cases per million

In this subsection, we consider COVID-19 cases per million.

This variable differs from COVID-19 deaths per million as

the latter depends on the specific protection provided to the

population, whereas protection against cases is not necessarily

related to the appareance of cases. While vaccines are a means

to prevent deaths, contagion can still occur. When considering

the reliability of COVID-19 cases, the ordering of countries

appears much more complex than in the previous subsection, as

shown in Figure 2. More directed cycles appear, indicating that

fewer countries participate in the shortest path between the starting

country, SI, and the finishing country, NZ. This last result shows

that the assumption stated in Proposition 1 is satisfied too. Also,

it is noted that directed cycles still occur more frequently among

countries with poorer management of COVID-19.

The configuration of the directed graph related to COVID-

19 cases per million differs from that seen in the previous

FIGURE 1

Reliability about COVID-19 deaths: Partial orderings among

countries, starting in BG and ending in NZ.

FIGURE 2

Reliability about COVID-19 cases: Partial orderings among

countries, starting in SI and ending in NZ.

subsection. When examining the countries with the best COVID-

19management, five countries, NZ, AU, SG, JP, and KR, are among

the top ten in both graphs. However, this consistency is lost

when considering the ten countries with the worst COVID-19

management, as only one country, LT, is common between both

graphs. This implies that most of the studied countries did not

manage COVID-19 deaths and cases poorly.
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5. Conclusion

In this paper, we proposed methods to order countries based

on their management of COVID-19 and to cluster such countries

by considering similar management behaviors. These methods

consider the notion of reliability, P(X ≤ Y), by treating countries

as systems exposed to failures. Our proposed methods are

more general than typical methods that only assess the impacts of

specific measures, as they consider not only interventions given

by governments, but also any activities that people undertake to

protect themselves.

The application of our proposed methods to 67 countries

allowed us to identify the countries that performed better and

worse in managing COVID-19 deaths and cases per million.

Notably, several countries demonstrated better management

of COVID-19 for both COVID-19 deaths and cases. However, this

consistency was almost lost when observing worse management

of the disease. Moreover, most countries exhibiting better

management of COVID-19 demonstrated complete orderings.

These results are related to COVID-19 deaths and cases

per million.

In practice, countries that exhibited better management of

COVID-19 may recommend their protection strategies to others.

We plan to deepen these results in a forthcoming paper by

considering key protection measures as vaccination. Also, since

the reliability measure R varies with the time interval considered,

we plan to assess the management of COVID-19 in different time

intervals, to understand how it evolves in each country.

These methods can also be applied to assess country’s

management of other diseases or sets of diseases.
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