
TYPE Original Research

PUBLISHED 17 April 2023

DOI 10.3389/fams.2023.1045218

OPEN ACCESS

EDITED BY

Zhennan Zhou,

Peking University, China

REVIEWED BY

Ranjit Kumar Paul,

Indian Agricultural Statistics Research Institute

(ICAR), India

Muhammad Aamir,

Abdul Wali Khan University Mardan, Pakistan

*CORRESPONDENCE

Dodi Devianto

ddevianto@sci.unand.ac.id

SPECIALTY SECTION

This article was submitted to

Mathematics of Computation and Data Science,

a section of the journal

Frontiers in Applied Mathematics and Statistics

RECEIVED 15 September 2022

ACCEPTED 06 March 2023

PUBLISHED 17 April 2023

CITATION

Devianto D, Yollanda M, Maiyastri M and

Yanuar F (2023) The soft computing FFNN

method for adjusting heteroscedasticity on the

time series model of currency exchange rate.

Front. Appl. Math. Stat. 9:1045218.

doi: 10.3389/fams.2023.1045218

COPYRIGHT

© 2023 Devianto, Yollanda, Maiyastri and

Yanuar. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

The soft computing FFNN method
for adjusting heteroscedasticity
on the time series model of
currency exchange rate

Dodi Devianto*, Mutia Yollanda, Maiyastri Maiyastri and

Ferra Yanuar

Department of Mathematics and Data Science, Andalas University, Padang, Indonesia

Introduction: Time series models on financial data often have problems with

the stationary assumption of variance on the residuals. It is well known as the

heteroscedasticity e�ect. The heteroscedasticity is represented by a nonconstant

value that varies over time.

Methods: The heteroscedasticity e�ect contained in the basic classical time

series model of Autoregressive Integrated Moving Average (ARIMA) can adjust its

residuals as the variance model by using Generalized Autoregressive Conditional

Heteroscedasticity (GARCH). In improving the model accuracy and overcoming

the heteroscedasticity problems, it is proposed a combinationmodel of ARIMA and

Feed-Forward Neural Network (FFNN), namely ARIMA-FFNN. Themodel is built by

applying the soft computing method of FFNN to replace the variance model. This

soft computing approach is one of the numerical methods that can not be only

applied in the theoretical subject but also in the data processing.

Results: In this research, the accuracy of the time series model using the case

study of the exchange rate United States dollar-Indonesia rupiah with a monthly

period from January 2001 to May 2021 shows that the best accuracy of the

possible models is the model of ARIMA-FFNN, which applies soft computing to

obtain the optimal fitted parameters precisely.

Discussion: This result indicates that the ARIMA-FFNN model is better used to

approach this exchange rate than the rest model of ARIMA-GARCH and ARIMA-

GARCH-FFNN.

KEYWORDS

heteroscedasticity, currency exchange rates, ARIMA-GARCH, ARIMA-FFNN, ARIMA-

GARCH-FFNN

1. Introduction

Financial data is important information related to the performance of the business. The

record of all of the financial data is analyzed to monitor the performance and financial health

in identifying how the fluctuation of the data. The fluctuations of the financial data are

usually influenced by external factors. Consequently, the conditional variance of the financial

data sets is getting greater or unstable and this is problematic for prediction. Return volatility

is necessary for supporting the financial business and investor in decision-making in order to

measure and control the risk in the market [1]. Therefore, the suitable models are expanded

to estimate the currency exchange rates with some external factors in different countries [2].
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The time series stationary model can be adjusted to its

heteroscedasticity effect by building a suitable model of its time

series residual. The results of the suitable time series model

are expected to minimize the outlier of the data fluctuation

so that the model building will approach the actual data. The

suitable time series model for reducing the volatility of data can

be solved with linear or nonlinear methods. It can be applied

while forecasting the volatility of log-returns series in the energy

market [3] and the price of wheat using maximum temperature at

critical root initiation (CRI) stage as the exogenous variable in the

agricultural commodity subject [4]. Two types of hybrid models

Artificial Neural Networks (ANN) and Generalized Autoregressive

Conditional Heteroscedasticity (GARCH) are compared regarding

the residual model and information criteria. Thus, the results

showed that the suitable time series model of the EGARCH-ANN

model has better performance than other models because the

EGARCH-ANN as a nonlinear model estimates the parameters

using the numerical methods, which is more approaching the actual

value than the linear method. As a linear method, the GARCH-

type model has to fulfill some regression assumptions, especially

the heteroscedastic error [5]. GARCH model is even combined

with two or more methods, such as implied and realized volatility

model to be the preferred model for predicting the volatility [6]. In

advance, the GARCHmodel has several types that can be compared

to estimate volatility for returns. For instance, the comparison

between six types of GARCH models for estimating the Bitcoin

return applies the replication study and the robustness analysis to

determine whether the six GARCH-type models are appropriate

for modeling the Bitcoin returns [7]. Thus, the nonlinear method

of ANN as a valuable alternative is needed for neglecting the

econometric specifications. In addition, the ANNmethod is applied

for avoiding the nonlinearity in the conditional mean of time series

and also improving the built model of ANN using the number of

the finite testing sample [8]. Theoretically, the complex analysis

of ANN reduces the dimensions of the feature set and turns the

learning rate to help the networks recognize the new data so that the

optimal parameters give better performance to predict the stock’s

trading price [9].

For further analysis of the volatility issue, the currency

exchange rate as one of the crucial financial data is usually

analyzed and modeled to know how the financial activities of the

countries. The currency exchange rate of a country has a role in

influencing changes in international trade and investment. The

exchange rate is the price of a currency against other currencies.

The exchange rate greatly influences the risk of profit or loss

in a business activity carried out individually or in groups. Six

currencies have stable value movements in international trade,

namely the Japanese yen, Swiss franc, Canadian dollar, British

pound, euro, andUnited States (US) dollar. As twomajor indexes of

the US stock market in international trade, Nasdaq Composite and

Dow Jones Industrial Average were also built their model to govern

whether enhancements can be achieved by forecasting major stock

indexes and their volatility incorporating the financial variables as

a hybrid model [10].

Each country has a different policy regarding its currency

exchange rate. Generally, there are three policies regarding

currency exchange rates. First is the floating system, where the

exchange rate of foreign currencies fluctuates without restraint by

the demand and supply of currencies. The second one is a fixed

exchange rate system, where this policy needs the intervention

of the government to stabilize the fluctuation of the exchange

rate led by changes in currency demand and supply. The third

type is a controlled system between a floating and fixed exchange

rate system. The exchange rate in this system is allowed to

fluctuate against changes in demand and supply. It occurs because

the intervention of the government has a stabilizing role in the

exchange rate in the same periods to avoid short-term fluctuations

in exchange rates. The international foreign exchange market

has undergone significant changes since the gold standard was

abolished in 1971. Before August 1971, the US dollar value was

associated with a gold value of $ 35 per ounce, and the currency

value of other countries was referred to as the value of the US dollar.

In other words, world currencies are in a type of fixed exchange rate

system. Since August 1971, the US dollar and other currencies have

changed according to supply and demand. However, sometimes the

United States and other countries intervene. Therefore, the United

States currency policy can be described as a controlled exchange

rate system.

In Indonesia, the volatility of the United States (US) dollar

exchange rate against the Indonesia (ID) rupiah can affect

investment by making stock prices unstable. This condition causes

investors not to invest their capital, leading to a decline in

stock prices. Prediction of the US dollar exchange rate against

the ID rupiah is an alternative way to estimate future exchange

rates. It can reduce the risk of loss due to the instability

of the US dollar exchange rate against the ID rupiah. Thus,

economic observers and investors can provide further action.

Forecasting currency exchange rates with the classical time series

model can be obtained using the classical method, namely

the Autoregressive Integrated Moving Average (ARIMA). The

model of ARIMA requires assumptions that have to be fulfilled,

such as assumptions of normality, homoscedasticity, and non-

autocorrelation. However, in real cases, not all assumptions can

be fulfilled, so forecasting methods have been developed that do

not require these assumptions. One of them is the Feed-Forward

Neural Network method. The decision in combining the linear and

nonlinear models is proposed to obtain a more accurate prediction

model for various applications [11].

According to previous studies, several methods had been used

to estimate the currency exchange rates. First, the ANN method

was used for the British pound against the US Dollar [12]. The

second one was the utilization of a hybrid model between ARIMA

and ANN [13]. This model combines ARIMA and ANN models

to see linear and nonlinear modeling of Wolf sunspot data, the

distribution of lynx mammals in Canada, and the British pound

was conducted. Experimental results from these data sets indicated

that the combined model could be an effective way to improve the

accuracy of forecasting models. Besides, the analysis of the model is

needed to produce better forecasts than the classical model of time

series [14]. Independent Component Analysis (ICA) is proposed to

rebuild time series to be independent components as well as neural

networks. The results showed that ICA extracts the noise of time

series for having the explanatory variables so that it can improve the

accuracy of forecasts. Furthermore, the accuracy of forecasts is also
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still depended on the stability of the training dynamics. The error of

gradients for both different arrows of propagation, that are forward

and backward, have a bearing on the stability of the networks [15].

In addition, to build a model of the exchange rate [16], the

research predicted the daily period stock price index, namely

NASDAQ, by using the Dynamic Artificial Neural Network

(DAN2), combined models between neural networks and GARCH,

and Multi-Layer Perceptron (MLP) method. They evaluated the

effectiveness of the ANN model, which was known to be dynamic

and effective in predicting stock prices. The prediction case of

the exchange rate of the US Dollar against the Sri Lankan Rupee

(USD/LKR) also showed that the ANN model performs better

when compared with the GARCH model [17]. Each model was

compared using the measurement accuracy of Mean Square Error

and Mean Absolute Deviation. Stock price modeling was carried

out by comparing ARIMA and ANN models in predicting Dell

Technology’s stock prices [18] where the ANN model had good

accuracy compared to ARIMA. In international trade, the volatility

of a stock’s trading price can be analyzed by using the GARCH

model to measure the financial risk [19].

For further analysis, the performance of the ARIMA-GARCH

model is needed in modeling and forecasting the oil price [20].

This study estimated volatility in oil prices using static and

dynamic forecasting. The results show that one-step forecasting

provides better forecasting than finite-step forecasting. Inmodeling

the Composite Stock Price Index, there are several factors that

influence the Composite Stock Price Index, namely interest rates,

inflation, crude oil prices, gold prices, and currency exchange rates.

This study used the ANN model to build the Composite Stock

Price Index modeling [21]. The research about neural networks was

created again for analyzing the further application using ANN [22].

ANN is compared with nonparametric regression Multivariate

Adaptive Regression Spline using the MAPE to determine the

best model to build the model of Indonesian Composite Index

with some internal factors such as interest rates, crude-oil prices,

inflation, gold prices, exchange rates, Nikkei 225 Index, and Dow

Jones price.

Based on the description of the previous research, forecasting

conducted with the ANN method shows a pretty good result

compared to other methods. Several studies compared ARIMA

with ANN in that study and proposed modeling using the

ARIMA-ANN model. The ANN model as the machine learning

methodology applies soft computing to build a time series model.

One type of ANN method processes the initial random weight

with forwarding propagation to adjust the weights so that soft

computing gives the best weights estimation in building the

optimal fitted model of ANN. This soft computing will have larger

iterations while the networks figure out the optimal weights with

some initialization of networks, such as a smaller learning rate

and a specific threshold value. This type is well-known as Feed-

Forward Neural Networks (FFNN). Therefore, there is no accurate

comparison between ARIMA-GARCH and ARIMA-FFNN. This

study uses a soft computing method, that is FFNN, to adjust the

heteroscedasticity of the time series model of ARIMA. To show this

method has good performance in re-modifying the variance model

using the accuracy measures of the model, the classical time series

of GARCH is required as its comparison. Therefore, this study

shows the accuracy model of the US dollar exchange rate against

the ID rupiah using the ARIMA-GARCH, the ARIMA-FFNN, and

the ARIMA-GARCH-FFNN model.

2. Materials and methods

2.1. Data source

This study uses a monthly period of the financial data of

exchange rates between two countries, that are the United States

and Indonesia. The source data can be accessed on the official

website of Bank Indonesia, which is https://www.bi.go.id/. The

exchange rate data of the US dollar against the ID rupiah select 245

data which started from January 2001 to May 2021.

2.2. The building of hybrid model of
ARIMA-FFNN and ARIMA-GARCH-FFNN

Before the times series data {Xt} will be processed using a

specific method, the data set has to be stationary. A stationary

process makes the structure of data not change over time. If the

time series data is non-stationary, the data will be chosen for the

period under consideration. It makes the stationary of the time

series so essential to change the structure of data to fluctuate around

the mean and variance of the data set. It means that the stationary

time series data set will therefore be in a particular episode, and

it is impossible to change into the other time. However, in real-

life problems, most of the data is not fluctuating around a value.

Still, it can be changed over time because of many factors which

influence the fluctuating data. It can be indicated as non-stationary

data. Conversely, the non-stationary data can be improved to be

stationary by using power transformation and differencing.

For detecting the stationarity of data, graph analysis can not

be proposed to determine whether the time series data is already

stationary, but it helps to know how the pattern of the data. The

basic properties are still needed to determine the next decision. If

the data have a constant mean and variance, the data is already

stationary. If the variance of the data is non-stationary, it can be

solved by using the power transformation, namely the Box-Cox

transformation. Let T(Xt) is the transformation function of Xt . The

following formula is used to stabilize the variance

T(Xt) =
Xλ
t − 1

λ
(1)

for λ 6= 0 and λ called transformation parameter. After the data is

stationary in variance, it is followed by testing the stationary in the

mean by using Augmented Dickey-Fuller (ADF) test. The random

walk equation with drift for the differenced-lag model is regressed

to be:

∇Xt = µ + δXt−1 +

k
∑

i=1

φi∇Xt−i + et (2)

for ∇Xt = Xt − Xt−1, k is the number of lags, δ is the slope

coefficient, µ is a drift parameter, φi is parameter of random walk
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equation, and et is white noise error term. The test statistic is used

as follows:

ADF =
δ̂

SE(δ̂)
(3)

for δ̂ as the estimated δ which is obtained by using ordinary least

squares and SE(δ̂) as the standard error of δ. The initial hypothesis

is δ = 0, which means that the data is not stationary. The criteria

for decision-making reject the initial hypothesis if the ADF value is

less than the test statistics in the table.

In the real application of the study case, the sensitivity of data

can be indicated by the fluctuation of the data that describes the

non-random chaotic dynamics. The chaotic case leads to the linear

model does not adequate to approach the extreme point. Therefore,

the nonlinearity test is required to test the initial or null hypotheses

of independent and identical distribution (iid). The Brock-Dechert-

Scheinkman (BDS) test can be used to check the presence and

detect the remaining dependence of omitted nonlinear structure.

If the null hypothesis cannot be rejected, then the original linear

model cannot be rejected, or if the probability values are less

than the significant level so there are nonlinearity patterns in the

dataset [23].

A time series {Xt} has the properties of white noise if a sequence

of uncorrelated random variables with a specific distribution is

identified by constant mean, usually assumed to be 0, a constant

variance Var(Xt) = σ 2 and Cov(Xt+h,Xt) = 0 for k 6= 0. In time

series analysis, there are some time series models such as ARIMA

which is a combined two models between Autoregressive (AR) and

Moving Average (MA) after differencing. The common form of the

ARIMA model is expressed as follows:

φp(B)(1− B)dXt = θq(B)εt (4)

with

φp(B) = (1− φ1B− φ2B
2 − · · · − φpB

p)

θq(B) = (1− θ1B− θ2B
2 − · · · − θqB

q)

where φp(B) is the Autoregressive components, θq(B) is the Moving

Average components, B is the operator of backward shift, and

(1− B)dXt is stationary of time series in d-order differencing. This

process is denoted by ARIMA(p,d,q).

After fitting themodels, auto-correlation is used to diagnose the

SARIMA residual as a linear relationship in dependency as follows:

QLB = n(n+ 2)

k
∑

i=1

ρ2
i

n− i
(5)

The number of observation data is denoted as n, ρ2
i is the sample

auto-correlation coefficient at lag k = 1, 2, 3, . . .,K and K is lag

length. The ARIMA residual is non-auto-correlation if QLB >

χ2
α(k − p − q) . In the normality test, Jarque Berra (JB) was used

to diagnose ARIMA residuals whether or not they are normally

distributed. The statistics test of JB is:

JB =
n

6
(S2

(K − 3)2

4
) (6)

where K and S are kurtosis and skewness, respectively. ARIMA

residual will have normally distributed if JB ≤ χ2
α(2).

In the economic time series, the fluctuation of the data is usually

influenced by four factors, such as trend, seasonal period, periodic

factor or cycle, and also the irregular components. In 1982, Engle

introduced the ARCH model and assumed that the variance of the

data is influenced by the previous time. Based on the ARIMAmodel

in Equation (4) and the variance assumption of the ARCH model,

the ARCH(q) model can be written to be:

σ 2
t = α0 + α1ε

2
t−1 + · · · + αqε

2
t−q (7)

where q presents the number of autoregressive terms in the model,

εt denotes the ordinary least squares variance obtained from

original regression model Equation (4), αi is a parameter of ARCH

model, εt = σtet ,and et ∼ N(0, 1),αi > 0 for i = 0, 1, 2, · · · , q.

In processing real data using ARCH, the model often

has larger orders. It causes the estimated parameters are also

getting larger. Therefore, the ARCH model is developed to

be the preferred model, namely the GARCH model. As the

concept of time series, the residual et is assumed to always be

homoscedastic, i.e. E(e2t ) = E(e2t |e
2
t−1, e

2
t−2, · · · ) = σ 2 for every

t. Whereas in the GARCH model, the et variance changes over

time so that E(e2t |e
2
t−1, e

2
t−2, · · · ) = σ 2

t means the residual et
is heteroscedasticity.

The GARCH model assumes that the initialed data has

variances that always change over time. In other words, the

fluctuations of the data are not fixed in the same value for each

time t. In general, a GARCH(p,q) process is defined as a et process

that satisfies:

σ 2
t = α0 +

q
∑

i=1

αiε
2
t−i +

p
∑

j=1

βjσ
2
t−j (8)

where εt = σtet , et ∼ N(0, 1), q > 0, p ≥ 0, αi ≥ 0, α0 > 0,

for i = 0, 1, 2, · · · , q and βj ≥ 0 for j = 1, 2, · · · , p and also
∑q

i=1 αi +
∑p

j=1 βj < 1.

Then, the parameters of GARCH are firstly approximated

by using the Maximum Likelihood Estimation (MLE) method.

The residual of the ARIMA model is assumed to be white noise

with a mean value of 0 and a variance of σ 2. After getting the

log-likelihood function for n observed data, the parameters are

estimated using the iteration processes, namely Newton Raphson.

This method is used to find a solution to the probability log

function. Thus, a sufficiently convergent value is obtained as an

estimator for each parameter.

2.2.1. The building of ARIMA-FFNN model
After estimating the ARIMA model using Equation (4), the

regression assumption of the ARIMA residual has to be fulfilled.

Infrequently, there is the heteroscedasticity effect on the ARIMA

residual so the ARIMA model which is obtained cannot be applied

optimally to the actual data. Classically, this heteroscedasticity

problem can be corrected using the GARCH model in Equation

(8). However, as in the case of ARIMA, the GARCH residual

has to fulfill the regression assumptions of autocorrelation,

heteroscedasticity, and normality so that the GARCH residual is

already distributed in white noise.
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In this paper, the FFNN model is required as a comparison

to adjust this heteroscedasticity problem. It is not only because

the regression assumption of the GARCH residual can be ignored,

but also because the structure of the FFNN model is almost

similar to the GARCH model. Therefore, they are acceptable to

be compared to each other. In contrast, the FFNN model has

uniqueness in the network iteration. After the data is processed

to the new units, the network is going to do the transformation

using the activation function that is required to normalize the

dataset into the proper range. Therefore, the output of each unit

is always in the proper range. In other words, the estimated

parameters of the FFNN model are stable or converge into the

optimal value.

In forecasting, neural networks are also used to help predict

a value in the future using numerical methods. Theoretically, the

neural network is not only applied to adjust its weights but also

led to improving the performance on real-world problems [24].

Based on the article on a logical calculus of the ideas immanent in

nervous activities, McCulloch and Pitts explained how to construct

an artificial neural network. The construction of the mathematical

neuron model will be shown generally in Figure 1.

Based on Figure 1, artificial neural networks are formed by

directed links that connect two or more units. The input layer

accepted the independent variables as the input data of the model

and it is denoted by xi. A link from unit i to unit j has weight wij

to determine the sign and strength of the input data. In the input

function on the hidden layer, each unit j calculated a weighted sum

of its inputs as follows:

inj =

n
∑

i=0

xiwij (9)

Then the output zj obtained by applying the activation function

f so that zj = g(inj) = g(
∑n

i=0 xiwij) and the output zj forwarded as

the new input in the other neurons. The activation function f used

to scale the output in Eq.(9) into proper ranges.

For transforming the results from one layer to another, there

are three common activation functions provided in the neural

network: linear, sigmoid, and hyperbolic tangent [25]. The function

is chosen by the networks necessary. A linear function is the

least commonly used between the activation functions because

it does not transform the value into the proper range. A linear

function is also discontinuous and hence will not suffice for

the generalized delta rule. Thus, a continuous function provided

nonlinear activation functions, which are sigmoid and hyperbolic

tangents. In the sigmoid and hyperbolic tangent, there are upper

and lower bounds. If the networks needed to return positive values,

the sigmoid would be suitable because the function has a value

between 0 and 1 which is associated with the proper range of the

sigmoid function. The hyperbolic tangent function could not be

provided because this function obtains positive and negative values.

After determining the mathematical model based on Figure 1,

there are feed-forward and recurrent networks that are different in

making the networks. In a feed-forward network, each input unit

is received by the unit in the prior layer. The result is depended on

the type of layers, which are single-layer and multilayer networks.

In the multilayer network, there are one or more layers as a

link between the input and output layers, namely hidden layers.

Conversely, in the recurrent network, its outputs return to be

its inputs in the previous layer. This network forms a dynamical

system to approach the stable state so that the input depends

on its initial value in prior inputs. It makes the network more

approaching the brain but also more difficult to be learned.

Before getting the neural network model, the data is separated

to be training and testing set data [25]. It helps the model to

recognize the new data which will be entered into the model. In a

training network, a neuron is interconnected through the output

units to the other neurons. Each connection is associated with

weight which is not always equal to the different weights in the

same units. These initial weights will determine the output of the

networks. Otherwise, the training network also depends on the

output usage in the output layer. If the training network is given

sample data with expected outputs from these data, the network

uses supervised training proceeds. The model in this procedure is

taken through the number of iterations or epochs, the network’s

output whichmatches with an anticipated output and the boundary

value of error assessment.

Conversely, unsupervised training proceeds do not provide

the anticipated output in training. It occurs when the network

wants to classify the input data into several categories. There

is also the other type of training proceed that are combining

supervised and unsupervised proceeds. The network does not need

the anticipated output, but the networks determine whether wrong

or right the given input for each output is. A sample dataset of

training networks using their anticipated output was used to predict

the error of the network, which is substantially lower than the

boundary value. After the networks are trained, it is essential that

the performances of the network are measured by testing that is

used in the learning stage. It finds out whether the network is able

to make significant generalizations.

After the neural network model is obtained, the essential step to

determining whether additional training is required or iteration has

finished the validation of the model. Suppose the validation data is

insufficient or input data was not available in the train of data. In

that case, it can be solved with different random separating datasets

into training and testing processes. If it is not working, one large

training dataset needed to be combined with the old dataset. Then,

the process can be repeated until the validation of the network

is fulfilled.

In the training process, the error as the threshold limit is

required to decide whether the iteration of the process will be

repeated or stopped. This threshold limit is obtained based on the

difference between the actual and estimated output which depends

on the iteration. If there is no difference, no learning occurs, or the

initial weight will be changed to reduce the error. In minimizing the

square of the error as summed over the square of the differences

between all output units and observational values, the gradient

descent controlled by the delta rule provided to show the change

of weight has the negative constant proportionality to the change of

the error measure Err(W) with respect to each weight. The iteration

of the process is repeated until a minimum error is reached. The

change of the gradient of the error function Err(W) is denoted

by ∇Err(W) and the change in all weights is denoted by 1W.

The relation between the change of every single weight and error
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FIGURE 1

A construction of mathematical neuron model.

function can be written as follows:

1wjt = −η
∂Err(W)

∂wjt
(10)

where Err(W) is the error function, η is learning rate, wjk is single

weight between the jth hidden and the kth output unit layer. In

general, the training networks modify the connection weights using

the learning rate iteratively until the error between the outputs

given by the estimated output is less than a specific threshold as

explained in [25]. The gradient descent requires the infinitesimal

steps to be selected to help reach the optimal single unit of weight

in the training networks. Therefore, the infinitesimal steps need

constant proportionality, that is the learning rate, to minimize

the derivative of error measure for each weight in the gradient

descent procedure. If the constant proportionality is larger, then the

changes in the weight are getting larger. It means that the change of

the weight for each train in the network is more rapid learning. But,

it will not be stable and converge into a value. Then, the application

of soft computing is necessary to use for randomweight estimation.

The network trained with the feed-forward method started

by initialization of the network, which consists of the initial

random value of weights, building architecture of the network, and

determining the constant value of the learning rate. Then, process

the input data using a feed-forward network: the associated weights

and input layer is transformed using the preferred activation

function and passed forward to the hidden and output layer

through the network. After the estimated output of the trained

network is obtained, the estimated output has to be compared with

the actual value of output until getting the error. If the trained

error is less than a specified threshold, then the network is passed

forward to the validation process and the network’s algorithm is

terminated. Conversely, if the error is greater than a threshold

value, the network has to propagate the error. It means that the

error will be used to re-modify the previous weights and to compute

the change of gradient in error for changes in the weight values.

Finally, the network adjusts the old weights using the change of

gradient to minimize the error.

The training process is proposed to adjust the old weights using

the change of gradient. It means that the networks attempt to

minimize the error. The error for each k-th training data is defined

as follows:

Errk(W) =
1

2

Q
∑

j=1

(tkj − ykj)
2 (11)

where Q is the number of output units, tkj is actual data in j-th

output unit layer, and ykj is the training output in j-th output unit

layer. The total error of weightsW can be expressed as follows:

Err(W) =

m
∑

k=1

Errk(W) (12)

for kth training output data and m as the number of the training

output data. An input vector is defined as xk = (xk1, xk2, . . . , xkN)
T

in input layer of the networks. The input layer distributes its input

units into every unit in the hidden layer as follows:

inhkp =

N
∑

i=1

wh
pixki + wh

p0 (13)

where wh
pi as the weight between ith input unit and pth hidden

unit, wp0 as the bias, and h as the hidden layer. Assume that the

activation function of the unit layer associated with the hidden

layer is denoted as f hp . Therefore, the new value for each unit in the

hidden layer is calculated as follows:

ikp = f hp (in
h
kp) (14)

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2023.1045218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Devianto et al. 10.3389/fams.2023.1045218

The hidden layer distributes its hidden units into every unit in

the output layer to obtain inkj and then transforms the value of inkj
using the activation function f oj in the output layer as follows:

inokj =

L
∑

p=1

wo
jpikp + wo

j0 (15)

ykj = f oj (in
o
kj) (16)

where o as the representative of output layer, wo
jp as the weight

pth hidden unit which is associated to jth output unit, and wo
j0 as

the bias.

Let the error of j single output unit in kth training data is

denoted as δkj = (tkj − ykj), where tkj is the observational or

actual data and ykj is the j output data in training networks. The

adjustment of the weights can be processed in the hidden and

output layers.

1. Adjust the weights in the output layer.

The error function of the weights in the hidden layer

associated with the output layer is obtained by using the partial

derivative as follows:

Errk(W) =
1

2

Q
∑

j=1

(tkj − ykj)
2

∂Errk(W)

∂wo
jp

= −(tkj − ykj)
∂f oj

∂ino
kj

∂ino
kj

∂wo
jp

(17)

where Q is the number of output units. Then substitute the

value of ino
kj
in the Equation (15) to

∂ino
kj

∂wo
jp

so we have

∂ino
kj

∂wo
jp

=
∂

∂wo
jp

(

L
∑

j=1

wo
jpikp + wo

j0) = ikp (18)

Therefore, Equation (17) can be replaced to be

−
∂Errk(W)

∂wo
jp

= δokjikp (19)

In substituting Equation (19) into Equation (10), the weights

of the output layer can be obtained as follows:

wo
jp(t + 1) = wo

jp(t)+ 1kw
o
jp(t) (20)

where

1kw
o
jp = η(tkj − ykj)f

′o
j (inokj)ikp (21)

δokj = (tkj − ykj)f
′o
j (inokj) (22)

2. Adjust the weights in the hidden layer.

Based on Equation (11), Errk(W) can be described as

follows:

Errk(W) =
1

2

Q
∑

j=1

(tkj − ykj)
2 =

1

2

Q
∑

j=1

(tkj − f oj (

L
∑

p=1

wo
jpikp + wo

j0))
2

The gradient of Errk(W) is obtained by using the partial

derivative with respect to the weight of the input layer associated

with the hidden layer wh
pi so we have

Errk(W) =
1

2

Q
∑

j=1

(tkj − ykj)
2

∂Errk(W)

∂wh
pi

= −

Q
∑

j=1

(tkj − ykj)
∂ykj

∂ino
kj

∂ino
kj

∂ikp

∂ikp

∂inh
kp

∂inh
kp

∂wh
pi

(23)

∂Errk(W)

∂wh
pi

= −

Q
∑

j=1

(tkj − ykj)f
o′

j (inokj)w
o
jpf

h′

p (inhkp)xki (24)

By substituting the Equation (24) into Equation (10), the

change of weight in the hidden layer can be calculated as follows:

1kw
h
pi = ηf h

′

p (inhkp)xki

Q
∑

j=1

(tkj − ykj)f
o′

j (inokj)w
o
jp (25)

1kw
h
pi = ηf h

′

p (inhkp)xki

Q
∑

j=1

δokjw
o
jp (26)

Therefore, the adjustment of weights in the hidden layer can

be expressed as follows:

wh
pi(t + 1) = wh

pi(t)+ 1kw
h
pi = wh

pi(t)+ ηδhkpxki

where the value of 1kw
h
pi is obtained by substituting the

Equation (26) and

δhkp = f h
′

p (inhkp)

Q
∑

j=1

δokjw
o
jp (27)

The adjustment of weights can be used for readjusting the weights

of the networks which have not fulfilled the stop criterion in

training processing. After terminating the training processing, the

adjustment of the weights will be substituted to the preferred FFNN

model, and it can be applied to adjust the heteroscedasticity of the

time series model.

2.2.2. The building of ARIMA-GARCH-FFNN
model

After building the ARIMA model and adjusting the

heteroscedasticity effects using the GARCH model, this ARIMA-

GARCH model is then continued to be combined with FFNN to

determine whether this new proposed model of ARIMA-GARCH-

FFNN is better performance than ARIMA-GARCH. The hybrid of

the ARIMA-GARCH-FFNN model is obtained by combining the

algorithms of ARIMA, GARCH, dan FFNN in Equations (4), (8),

and (16), respectively.

2.3. Measures accuracy and goodness of fit

After the proposed model is obtained, the model will be

evaluated the performance based on the fit of the forecasting
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or time series to historical data. There are many statistical

measures to describe how well a model fits a given sample of

data. The measuring accuracy should always be evaluated as part

of a model validation effort. When more than one technique

of model seems reasonable for a particular application, these

accuracy measurements can also be used to discriminate between

competing models.

In this research, there are two measures of model accuracy are

used. First, Mean Absolute Percentage Error (MAPE) is applied to

measure the model’s accuracy using particular methods in a given

observational data set. MAPE can be calculated as follows:

MAPE =
1

N

N
∑

t=1

|Yt − Ŷt|

Yt
× 100 (28)

Second, Mean Square Error (MSE) is applied to measure the

average error of a model. MSE can be calculated as follows:

MSE =
SSE

N
=

∑N
t=1(Yt − Ŷt)

2

N
(29)

where SSE is the sum of squared errors, N is the number of data set,

yi is the actual output data, and Ŷt is the estimated output using a

certain forecasting method.

In fitting the ARIMA model, first, determine the order of

the ARIMA model, estimate unknown parameters, and collect

model candidates with a p-value of less than the significance level,

carrying out regression assumption of the estimated residuals; and

forecasting the future values using the known data. The fitting

of ARIMA models requires the use of autocorrelation function

charts. If the candidate model has been selected, then the best

model selection is based on the AIC and BC values. Systematically

the equations of AIC and BIC can be written respectively as

the following:

AIC = n ln(σ̂ε
2)+ 2k (30)

BIC = n ln(σ̂ε
2)+ kln(n) (31)

for n is the number of observations, σ̂ 2
ε is the maximum likelihood

estimator of σ 2
ε , and k is the number of parameters estimated. The

best model is the model that has the smallest value of AIC and BIC.

In determining whether there is a significant difference between

the two models or having better predictive accuracy, the Diebold-

Mariano test is required. The two forecasted model is selected and

then compared in their error measurement using the statistic test of

Diebold-Mariano as follows [26]:

DM =
d̄

√

(γ0 + 2
∑h−1

k=1 γk)/n

(32)

where d̄ represents the mean of the difference between two squared

errors or loss-differential, γk represents the autocovariance at lag k,

and n is the number of observational data.

After estimating the best model, the ratio of sums of squares of

regression (SSR) to the sums of squares total (SST) can be compared

to obtain the coefficient determination R2. This measurement has

the range on the closed interval [0, 1]. If the value of R2 approaches

the lowest value of 0, then it indicates a poor fit for the estimated

TABLE 1 Augmented Dickey–Fuller test.

Observations
used

Lag
order

Critical
value

ADF test

Statistic
value

p-value

1% :−3.4564

245 2 5% :−2.8730 −2.1341 0.2310

10% :−2.5729

model. In contrast, if the value of R2 approaches the highest value of

1, then it indicates well fit for the estimated model. Let ȳ is defined

as the mean of data set yi, i = 1, 2, · · · , n so the R2 can be calculated

as follows:

R2 =

∑n
i=1(y

′
i − ȳ)2

∑n
i=1(yi − ȳ)2

(33)

The value of R2 is defined as the proportion of variance in the

response variable accounted for by knowledge of the predictor

variable(s). R2 is also simultaneously the squared correlation

between observed values on yi and predicted values y′i based on the

data processing [27].

3. Data processing to adjust the
heteroscedasticity e�ects

This study uses a monthly period of the financial data of

exchange rates between two countries, that are the United States

and Indonesia. The exchange rate data of the US dollar against

the ID rupiah select 245 data which started from January 2001 to

May 2021.

3.1. The classical model of ARIMA-GARCH
for exchange rate

Firstly, we have to know how the fluctuation of the data will be

used. The plotting of the exchange rate of the US dollar - ID rupiah

can be displayed in Figure 2.

Based on Figure 2A, the variance of the data seems to change

over time so that the data is not stationary against the variance.

In order to produce the variance of the observational data to be

stationary, Box-Cox transformation is purposed to minimize the

fluctuation of the data. The Box-Cox transformation results give the

parameter’s value of λ is −1.6768 and 1. It expresses that the data

will be transformed once to get the new data. At the same time, the

plotting data shows that it has a trend so the dataset should fluctuate

in around the mean. It is also reinforced by the results of the ADF

test with a p-value of 0.2310, which is greater than the significance

level of 0.05 and displayed in the following Table 1.

Based on Table 1, the observational dataset of 245 has the

optimum lag order of 2, where this optimal value is obtained based

on the smallest value of AIC. The results of the ADF test indicate

that the mean of the data is not stationary yet. Furthermore,
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FIGURE 2

The exchange rate of the US dollar-ID rupiah of (A). Actual data and (B). Stationary data.

TABLE 2 BDS test results.

Epsilon
for
close
points

Embedding dimension

Dimension 2 Dimension 3

Statistics
value

Probability
value

Statistics
value

Probability
value

1085.117 64.6372 < 0.0001 96.4474 < 0.0001

2170.235 108.4054 < 0.0001 138.4736 < 0.0001

3255.352 65.4758 < 0.0001 73.8236 < 0.0001

4340.470 46.1021 < 0.0001 46.8945 < 0.0001

the exchange rate data has to make a difference. The stationary

data using the ADF test and Box-Cox transformation is shown in

Figure 2B.

The presence of the nonlinearity pattern in the dataset can be

checked by using the Brock-Dechert-Scheinkman (BDS) test. The

result of BDS test in Table 2 shows that all the probability values are

lower than the significant level of 5%. It means that all the exchange

rates of the US dollar - ID rupiah series have a nonlinear pattern.

After the data are already stationary, the order p and q of the

model can be obtained using the ACF and PACF chart. Figure 3

below shows the ACF and PACF chart for determining the order p

and q of the ARIMA model.

Based on Figure 3, the ACF chart shows that the cut-off data

movement after lag 2 and is assumed to be the order of MA

q = 2 and the PACF chart shows that the cut-off data movement

after lag 2, so AR order is suspected p = 2. Because the data is

stationary, it is assumed that the initial conjecture model formed is

the ARIMA(2,1,2). After estimating the parameters model in some

possible models using the combination of the order of the ACF and

PACF chart, the significant parameters of the model are determined

using the p-value, which is lower than the significance level of 0.05.

The significant parameters among the combination of the ACF

and PACF chart order that is possible to build the ARIMA model

are ARIMA(1,1,2) and ARIMA(2,1,1). Their estimation parameters

can be shown in the following Table 3.

Then, the most important step in the classical time

series method is the regression assumptions of normality,

homoscedasticity, and auto-correlation for the residual possible

ARIMAmodel in Table 3. The following Table 4 represents that the

p-value for the regression assumption of the residual ARIMA(1,1,2)

and ARIMA(2,1,1).

Based on Table 4, the residual of ARIMA(1,1,2) and

ARIMA(2,1,1) contain the heteroscedasticity effect, non-auto-

correlation and non-normally distributed. Although the data

are not normally distributed, this model is still suitable since

this is often occurred with the economic data due to fluctuating

movements. Before solving the heteroscedasticity effect of the

residuals ARIMAmodel, the possible ARIMAmodel can be chosen

by using the Akaike or Bayesian Information Criterion as displayed

in the following Table 5.

The preferred model is selected regarding the smallest value

of BIC or AIC. Based on Table 5, ARIMA(2,1,1) has the smallest

value of AIC and BIC among the other possible ARIMA models.

Therefore, ARIMA(2,1,1) model can be applied in the next step to

break the effect of heteroscedasticity by repairing its variance of the

residual model. The ARIMA(2,1,1) model can be written as follows:

φ1(B)(1− B)Xt = θ2(B)εt (34)

with φp(B) = (1+0.6137B) and θ2(B) = (1−0.6413B+0.1542B2).

After getting the fitted ARIMA(2,1,1) model, graphically, it

can be analyzed to illustrate how its actual data is associated

to its residual and fitted ARIMA(2,1,1) model in Figures 4A, B,

respectively, as shown as in the following Figure 4.

The forecasting accuracy of the fitted ARIMA model is more

closely approaching the actual data if the set of points between

actual and fitted data forms a straight line y = x. Based on

Figure 4A, it shows that the trend of the points set, which is

established by the actual and fitted data, has formed a straight

line y = x. It means that the fitted ARIMA(2,1,1) model almost

approaches the actual data. Therefore, it can be concluded that the

fitted ARIMA(2,1,1) model has been good enough to model the

exchange rate US dollar against the ID rupiah.

The relationship between the values of the residual term

is one of the regression assumptions that have to be fulfilled,

namely non-auto-correlation. The residual data does not have

the auto-correlation effect if the positive and negative error

values are random. During the same period, if the fitted model

almost approaches the actual data, then the residual of the fitted

data will be getting smaller and even closer to zero. Based on

Figure 4B, the residual of the fitted data has distributed around
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FIGURE 3

The chart of (A) Auto-Correlation Function (ACF) and (B) Partial Auto-Correlation Function (PACF) for determining the order of ARIMA model.

TABLE 3 Estimation significant parameters of ARIMA model.

Model Estimation parameter

Parameter Estimate z value Pr(> |z|)

ARIMA(1,1,2)

φ1 0.5413 2.3373 0.0194

θ1 –0.5198 –2.2814 0.0225

θ2 –0.1434 –2.2916 0.0219

ARIMA(2,1,1)

φ1 0.6413 2.5944 0.0095

φ2 –0.1542 –2.2922 0.0219

θ1 –0.6137 –2.4913 0.0127

TABLE 4 Residual diagnosis checking for possible ARIMA model.

Model Regression assumption

Normality Homoscedasticity Auto-
correlation

ARIMA(1,1,2)
560.8800 14.5050 p-values > 0.05∗

(0.0000) (0.0007)

ARIMA(2,1,1)
546.1600 15.5340 p-values > 0.05∗

(0.0000) (0.0004)

The symbol “∗” indicates the significant parameter.

TABLE 5 Comparison of the possible ARIMA models.

Model The best model selection

Akaike Information
Criterion (AIC)

Bayesian
Information

Criterion (BIC)

ARIMA(1,1,2) 3, 576.7874 3, 590.7754

ARIMA(2,1,1) 3, 576.3979 3, 590.3863

zero, and it doesn’t form a pattern. In other words, the residual

of the fitted ARIMA(2,1,1) model has been randomly distributed

around zero. It also has fulfilled the regression assumption

of non-auto-correlation.

After obtaining the Autoregressive Integrated Moving Average

Model, there is a heteroscedasticity effect in the residual ARIMA

model so the advanced model for adjusting the model is required.

The following subsections describe three alternative methods that

can be applied to solve the heteroscedasticity effects, such as

GARCH, FFNN, and models of GARCH-FFNN.

The GARCHmodel is one of the methods which can be used to

improve the classical model for getting the smallest variance in the

residuals of the ARIMA model. The order of the GARCH model

was obtained using ACF and PACF charts. The following Figure 5

shows ACF and PACF charts for the GARCHmodel.

Based on Figure 5, it shows that ACF and PACF charts are

significant in lag 3. Furthermore, the initial conjecture models

for orders P and Q are the combinations of 0, 1, 2, and 3. After

estimating the parameters model in some possible models using

the combination of the order of the ACF and PACF chart, the

significant parameters of the model are determined using the p-

value, which is lower than the significance level. The significant

parameters among the combination of the order of the ACF

and PACF chart that is possible to build the GARCH model are

GARCH(1,0), GARCH(1,1), and GARCH(2,0). Their estimation

parameters of the GARCHmodel with the value of AIC or BIC can

be shown in the following Table 6.

The best model is selected by using the smallest value of AIC

or BIC. Based on Table 6, GARCH(1,1) has a smaller value AIC

and BIC than the other possible models. Therefore, GARCH(1,1)

model is the best model to improve the residual estimation of the

ARIMA(2,1,1) model. The residual model of GARCH(1,1) can be

written to be:

σ 2
t = 11666.4024+ ε2t−1 + 0.2555σ 2

t−1 + ǫ∗t (35)

where εt = σtet , et ∼ N(0, 1), and ǫ∗t as the residual of the GARCH

model. By combining the ARIMA and GARCH models, this new

model of ARIMA(2,1,1)-GARCH(1,1) can be one of the alternatives

to do forecasting the exchange rate value US dollar against the ID

rupiah in the future.

3.2. Hybrid model of ARIMA-FFNN for
exchange rate

As in the previous research [28], the exchange rate change

among some currencies against US Dollar applies the time series

Multilayer Perceptron (MLP) models in order to predict exchange

rate change among Turkish, American, and European currencies.

Thus, in determining the FFNN model by applying soft computing
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FIGURE 4

The actual data point with (A) fitted ARIMA (2,1,1) data and (B) residual ARIMA (2,1,1) data.

FIGURE 5

The chart of (A) auto-correlation function (ACF) and (B) partial auto-correlation function (PACF) for determining the order of GARCH model.

TABLE 6 Estimation of significant parameters of the GARCHmodel with their AIC or BIC value.

Model Estimation parameter The best model selection

Parameter Estimate z value Pr(> |z|) AIC BIC

GARCH(1,0)
Intercept 33, 470 6.4050 1.5× 10−10

14.1525
14.1954

α1 1.0000 5.6400 1.7× 10−8

GARCH(1,1)

Intercept 11, 666.4024 2.761 0.0058 14.1000

14.1572α1 1.0000 5.5600 2.7× 10−8

β1 0.2555 3.7960 0.0002

GARCH(2,0)

Intercept 11, 666.4024 3.7772 0.0002 14.1065 14.1637

α1 1.0000 5.6964 19, 311.5400

α2 0.2640 2.0122 0.0442

for the case of the exchange rates US Dollar - ID Rupiah, firstly,

the input and output data are determined. Input data used are

the residual of the ARIMA(2,1,1) model of the exchange rate US

dollar against the ID rupiah. It can be determined by using the

ACF and PACF chart so that the input data are obtained by the

first, second, and third lag, or inputs data can be denoted as the

(t − 1)-th, (t − 2)-th and (t − 3)-th data, respectively. At the

same time, the target data is denoted by the t-th data. The second

one is the standardization of the data. All observational data have

to transform into a proper interval of numbers between 0 and 1

because it depends on the sigmoid’s activation function used in

networks. Then, the feed-forward neural network architecture will

be constructed to know how many units for each layer are. Based

on the data, the feed-forward neural network architecture applied

is 3−4−2−1. The networks consist of three input units, four units

in the first hidden layer, two units in the second hidden layer, and

one output unit.

The process of the dataset is continuing for training the

network. The next step is the learning algorithm of the feed-

forward neural networks, it consists of the initialization of the

instruments of networks, feed-forward of the networks, error

evaluation, backpropagation, and adjustment of single weight. In

the initialization of the network, the network is usually generated

by random weights. In the training process, the instruments use

182 data as input units and the sigmoid function as the activation

function between two layers. The gradient descent procedure uses
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TABLE 7 Iteration summary for training and testing process.

Process Mean squared error The number of data

Training 2, 686.11485 182

Testing 2, 681.43311 60

the learning rate (η) of 0.01 while repeating the training process

until the algorithm is stopped based on the threshold limit of 0.001.

In feed-forward, each input unit (xki, i = 1, 2, 3) receives input

observational data and propagates the summed results between

the data and its associated weight into each hidden unit. Then,

the stopping criterion is available if the error evaluation has the

difference between observed output and training output is less than

0.001. In backpropagation, the correction value of weights and bias

are used to make the error lower than 0.001. The new weight will

be obtained in the adjustment process, from feed-forward until the

adjustment process will be repeated if the error has not obtained

lower than 0.01.

The fifth step is the validation of the network. For 182 data of

training and 60 data of testing, the sample of training and testing

data will be compared to determine whether the iteration of the

network processes will be continued or stopped. The result of the

validation can be shown in Table 7.

Based on Table 7, the result shows that the Mean Squared Error

(MSE) value of the training process is greater than the testing

process. It indicates that feed-forward neural networks have the

capability in recognizing new data. Therefore, the training process

can be terminated and the optimal weights of neural networks

can be applied to build a nonlinear model of residual ARIMA.

After repeating the iteration processes, the input units of the first

(Xt−1), second (Xt−2), and third (Xt−3) lags of the residuals of

ARIMA(2,1,1) with four units in the first hidden layer and two units

in the second hidden layer are applied to build the architecture of

the FFNN model that will be shown in Figure 6.

For detail, the parameter estimation for each unit of the layers

as the result of the iteration will be explained in two following

Tables 8, 9.

Based on Tables 8, 9 hidden layer 1 model of FFNN(3,4,2,1) can

be written to be:

H(1 : 1) = f h1p (wh1
10 +

3
∑

i=1

xtiw
h1
1i ) = f h1p (0.1381

− 0.4920xt1 + 0.4948xt2 − 0.2449xt3)

H(1 : 2) = f h1p (wh1
20 +

3
∑

i=1

xtiw
h1
2i ) = f h1p (−0.4155

+ 1.7115xt1 + 0.5550xt2 − 1.1275xt3)

H(1 : 3) = f h1p (wh1
30 +

3
∑

i=1

xtiw
h1
3i ) = f h1p (1.8737

+ 1.0247xt1 + 0.0447xt2 − 0.9432xt3)

H(1 : 4) = f h1p (wh1
40 +

3
∑

i=1

xtiw
h1
4i ) = f h1p (−1.1538

+ 0.0809xt1 + 1.6870xt2 + 0.4606xt3)

The hidden layer 2 models of FFNN(3,4,2,1) can be written to be:

H(2 : 1) = f h2p (wh2
10 +

4
∑

i=1

xtiw
h2
1i )

= f h2p (0.7067− 0.1091H(1 : 1) − 0.0399H(1 : 2)

+ 1.3958H(1 : 3) + 0.9053H(1 : 4))

H(2 : 2) = f h2p (wh2
20 +

4
∑

i=1

xtiw
h2
2i )

= f h2p (0.1896− 1.9812H(1 : 1) − 1.7884H(1 : 2)

+ 0.0013H(1 : 3) − 0.5018H(1 : 4))

By substituting the units of the hidden layer 1 and 2 into yt1
as the output layer, the residual model of ARIMA(2,1,1) using

FFNN(3,4,2,1) can be written as follows:

εt = yt1

= f oj (w
o
10 + wo

11H(1 : 1) + wo
12H(1 : 2))

=
1

1+ e−(−0.6267+1.2718H(2 : 1)−0.2512H(2 : 2))
(36)

where xt1, xt2, xt3 and yt1 are normalized data from t-th actual data,

that is the residual model of ARIMA(2,1,1).

3.3. Hybrid model of ARIMA-GARCH-FFNN
for exchange rate

The model of GARCH-FFNN is the combination of the

GARCH and FFNNmodels to fix the residual of the GARCHmodel

since violating the normality assumption. The GARCH(1,1) model

is obtained, then the residual model of GARCH(1,1) is constructed

with the nonlinear model, FFNN. Analogically with the FFNN

method, the input and output data are firstly defined as X1 and Y ,

respectively. the networks are determined by using the significant

order of the GARCH(1,1) model. The data will be normalized into

the value between 0, and 1, with the building architecture of the

networks, being 1 − 4 − 2 − 1. The network consists of one input

unit, four units in the first hidden layer, two units in the second

hidden layer, and one output unit. All sample data is separated into

two processes, that are the training and testing process.

In training the networks, the instruments use 183 data as input

units and the sigmoid function as the activation function between

two layers. The gradient descent procedure uses the learning

rate (η) of 0.01 while repeating the training process until the

algorithm is stopped based on the threshold limit of 0.001. In feed-

forward networks, each input unit (xki, i = 1, 2, 3) receives input

observational data and propagates the summed results between

the data and its associated weight into each hidden unit. Then,

in the error assessment, if the difference between observed output

and training output is greater than 0.001, then the network is not

available to be themodel of neural networks. Therefore, the training

of the network has not finished. In backpropagation, the adjustment

value of bias and weights used to make the error are lower than

0.001. The new weight will be obtained in the adjustment process,

from feed-forward until the adjustment process will be repeated if

the error has not obtained lower than 0.01.
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FIGURE 6

Architecture 3− 4− 2− 1 of FFNN model with their weights for each unit.

TABLE 8 Parameter estimation of FFNN model from input layer to hidden

layer 1.

Parameter estimation
Hidden layer 1

H(1 : 1) H(1 : 2) H(1 : 3) H(1 : 4)

Input layer

Bias 0.1381 –0.4155 1.8737 –1.1538

Lag 1 –0.4920 1.7115 1.0247 0.0809

Lag 2 0.4948 0.5550 0.0447 1.6870

Lag 3 –0.2449 –1.1275 –0.9432 0.4606

The next step is the validation of networks. In the validation

process, the networks have 61 of the testing data. The following

table is the average error of the networks using MSE value.

Table 10 shows that the Mean Squared Error (MSE) value of

training is greater than testing. It means that the feed-forward

neural network has the capability in recognizing new input data.

Furthermore, a training model can be proposed to forecast the

exchange rate US dollar against the ID rupiah. The last step is to

build the residual of the GARCH model by using the new weights

from the iteration process. The architecture of the FFNN model

after repeating the iteration will be shown in the following Figure 7.

For detail, the parameter estimation for each unit of the layers

as the result of the iteration will be explained in two following

Tables 11, 12.

Based on Tables 11, 12, hidden layer 1 model of ARIMA(2,1,1)

using FFNN(3,4,2,1) can be written to be:

TABLE 9 Parameter estimation of FFNN model from hidden layer to

output layer.

Predictor Parameter estimation

Hidden layer 2 Output

H(1 : 1) H(1 : 2) Layer (Y)

Hidden layer 1

Bias 0.7067 0.1896

H(1:1) –0.1091 –1.9812

H(1:2) –0.0399 –1.7884

H(1:3) 1.3958 0.0013

H(1:4) 0.9053 –0.5018

Hidden layer 2

Bias –0.6267

H(2 : 1) 1.2718

H(2 : 2) –0.2512

TABLE 10 Iteration summary for training and testing processes.

Process Mean squared error The number of data

Training 0.0217 182

Testing 0.0156 60

H(1 : 1) = f h1p (wh1
10 +

1
∑

i=1

xtiw
h1
1i ) = f h1p (−5.1808+ 9.6782xt1)

H(1 : 2) = f h1p (wh1
20 +

1
∑

i=1

xtiw
h1
2i ) = f h1p (−1.0122+ 0.0022xt1)
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FIGURE 7

Architecture 1− 4− 2− 1 of FFNN model with their weights for each unit.

TABLE 11 Parameter estimation of FFNN model from input layer to

hidden layer 1.

Predictor
Hidden layer 1

H(1 : 1) H(1 : 2) H(1 : 3) H(1 : 4)

Input layer
Bias –5.1808 –1.0122 26.4964 32.2706

Lag 1 9.6782 0.0022 –26.2384 46.5490

TABLE 12 Parameter estimation of FFNN model from hidden layer to

output layer.

Predictor

Parameter estimation

Hidden layer 2 Output

H(1 : 1) H(1 : 2) Layer (Y)

Hidden layer 1

Bias –0.9056 –0.6699

H(1:1) 0.7243 1.7773

H(1:2) 1.2778 –5.1904

H(1:3) –2.5755 1.3778

H(1:4) –0.6406 –0.8576

Hidden layer 2

Bias 0.4739

H(2 : 1) –4.5480

H(2 : 2) 0.5115

H(1 : 3) = f h1p (wh1
30 +

1
∑

i=1

xtiw
h1
3i ) = f h1p (26.4964− 26.2384xt1)

H(1 : 4) = f h1p (wh1
40 +

1
∑

i=1

xtiw
h1
4i ) = f h1p (32.2706+ 46.5490xt1)

and also the hidden layer 2 models of ARIMA(2,1,1) using

FFNN(3,4,2,1) can be written to be:

H(2 : 1) = f h2p (wh2
10 +

4
∑

i=1

xtiw
h2
1i )

= f h2p (−0.9056+ 0.7243H(1 : 1) + 1.2778H(1 : 2)

− 2.5755H(1 : 3) − 0.6406H(1 : 4))

=
1

1+ e−0.9056+0.7243H(1 : 1)+1.2778H(1 : 2)−2.5755H(1 : 3)−0.6406H(1 : 4))

H(2 : 2) = f h2p (wh2
20 +

4
∑

i=1

xtiw
h2
2i )

= f h2p (−0.6699+ 1.7773H(1 : 1) − 5.1904H(1 : 2)

+ 1.3778H(1 : 3) − 0.8576H(1 : 4))

=
1

1+ e−0.6699+1.7773H(1 : 1)−5.1904H(1 : 2)+1.3778H(1 : 3)−0.8576H(1 : 4))

By substituting the units of the hidden layer 1 and 2 into yt1 as

the output layer, the residual model of ARIMA(2,1,1) εt using

FFNN(3,4,2,1) can be written as follows:

ǫt = yt1 = f oj (w
o
10 + wo

11H(1 : 1) + wo
12H(1 : 2))

=
1

1+ e−(0.4739−4.5480H(2 : 1)+0.5115H(2 : 2))
(37)

where xt1, xt2, xt3 and yt1 are normalized data from t-th actual data,

that is the residual model of ARIMA(2,1,1).
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FIGURE 8

The comparison of actual currency exchange rate against its predicted values of ARIMA with (A) GARCH, (B) FFNN, and (C) GARCH-FFNN.

FIGURE 9

Comparison between data of actual currency exchange rate against predicted values of ARIMA with GARCH, FFNN, and GARCH-FFNN.

3.4. The comparison between three models
of exchange rate US dollar - ID rupiah

After getting the three estimated numerical models, such as

ARIMA(2,1,1)-GARCH(1,1), ARIMA(2,1,1)-FFNN(3,4,2,1), and

ARIMA(2,1,1)-GARCH(1,1)-FFNN(1,4,2,1), graphically, it can be

analyzed to illustrate how the actual data associate to its

fitted ARIMA(2,1,1) model and its three estimated model of

ARIMA(2,1,1)-GARCH(1,1), ARIMA(2,1,1)-FFNN(3,4,2,1), and

also ARIMA(2,1,1)-GARCH(1,1)-FFNN(1,4,2,1) in Figures 8A–C,

respectively, as shown as in the following Figure 8.

Figure 8 shows how the ARIMA(2,1,1) model in Figures 8A, C

approaches the ARIMA(2,1,1) model. It can be described by the

set of points between actual and fitted data forming a straight

line y = x. The three ARIMA model data move closer to the

straight line for improving the residual of the ARIMA model,
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FIGURE 10

Comparison of 113th until 144th actual currency exchange rate against predicted values of ARIMA with GARCH, FFNN, and combination of GARCH

and FFNN.

which contains the heteroscedasticity effect. Therefore, it can be

concluded that the fitted ARIMA(2,1,1) with three models has

been good enough to model the exchange rate US dollar against

the ID rupiah. Graphically, the result of the estimated values

for ARIMA(1,1,1)-GARCH(1,1), of ARIMA(1,1,1)-FFNN(3,4,2,1),

and of ARIMA(1,1,1)-GARCH(1,1)-FFNN(1,4,2,1) model will be

shown respectively in Figure 9.

The result in Figure 9 shows that all ARIMA models with

GARCH, FFNN, and GARCH-FFNN approach the actual value of

currency exchange rate US dollar against ID rupiah. So that the

results can reach good forecasting in application to real problems,

and it will reduce the proportionality of the risks in running a

business. To know what the best model is, the graphs in Figure 10

show the comparison of all ARIMA models graphically for 113th

until 144th data.

Based on Figure 10, there are four lines that are actual value

(black) and three lines that are ARIMA model with GARCH

(green), FFNN (red), and GARCH-FFNN (blue). The red line is

more dominant in approaching the actual data than the green and

blue lines. It shows that the ARIMAmodel with FFNN is better than

other models. In contrast, the blue and green lines are almost close

to the same value. It shows that the ARIMA with GARCH-FFNN

is no significant difference from ARIMA with GARCH because the

green line is always followed by the blue line. Besides, the argument

based on Figure 10 is also evidenced by using measuring of forecast

accuracy. Based on the result forecasting data for the currency

exchange rate between the US dollar and ID rupiah, Table 13 shows

the MSE and MAPE values.

The result of Table 13 states that the model of ARIMA-FFNN

has the smallest model accuracy of MSE and MAPE values. It

shows that the model of ARIMA-FFNN is better used to forecast

future value than the other twomodels. The ARIMA-FFNN obtains

the currency exchange rate model using the numerical approach,

and it is also the nonlinear model. As the numerical approach

has a larger iteration, this method proposes the application of

soft computing to obtain the estimation of the optimal weights

precisely. Thus, the estimated parameters obtained by FFNN is

getting better and approaching the actual value than linear model

such as GARCH.

4. Discussion

In adjusting the heteroscedasticity on the time series model,

some additional models linear or nonlinear are required. By using

the case of the currency exchange rate, the heteroscedasticity

effect that is included in the residual of the ARIMA(2,1,1)

model can be adjusted by using the model of GARCH(1,1), the
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TABLE 13 Comparison of the ARIMA model with GARCH, FFNN, and GARCH–FFNN using model accuracy and the best model selection.

Model Model accuracy The best model selection

MSE MAPE Log-Likelihood AIC BIC

ARIMA-GARCH 264, 507.7239 0.0387 % 12.4856 3, 068.9783 3, 086.4783

ARIMA-FFNN 124, 002.6848 0.0201 % 11.7281 2, 885.3845 2, 906.3920

ARIMA-GARCH-FFNN 294, 273.1199 0.0394 % 12.5922 3, 101.0890 3, 129.0991

TABLE 14 The diebold-mariano test.

Value
Model selection

(a)–(b) (a)–(c) (b)–(c)

Statistics test of DM -0.9106 0.9051 0.7447

Probability value 0.3634 0.3663 0.4572

model of FFNN(3,4,2,1), or the hybrid model of GARCH(1,1)-

FFNN(1,4,2,1).

These three additionalmodels are then compared by calculating

the model accuracy and the best model selection that is mentioned

in Table 13. The result in Table 13 shows that the ARIMA-FFNN

model is the best model for adjusting the heteroscedasticity. In

addition, the prediction case of the exchange rate of the US

Dollar against the Sri Lankan Rupee (USD/LKR) also showed

that the ANN model performs better when compared with the

GARCH model [17] and the techniques of SVR, GBM, and

ARIMA to predict agricultural prices in Odisha, India [30]. For

the other two models, the ARIMA-GARCH-FFNN has the MSE

and MAPE value which is smaller than the ARIMA-GARCH,

so the ARIMA-GARCH-FFNN is good enough to be used in

modeling currency exchange rate US dollar - ID rupiah to

solve heteroscedasticity problem such as the ARIMA-GARCH.

These results are also reinforced by the previous research [31]

where the hybrid algorithm has outperformed precision than the

algorithm without hybridization. The comparison between the

three additional models also shows that the ARIMA-GARCH-

FFNN model, which is improving the ARIMA-GARCH model, is

not always having better performance than the ARIMA-GARCH

model. This result shows that there is a limitation of this study.

Overall, although the result shows that the ARIMA-FFNN

be the best model for adjusting the heteroscedasticity effect,

however, the presence of trend and time series data patterns

have to be identified to know how the characteristics of these

three additional model while adjusting the heteroscedasticity effect.

By using the Diebold-Mariano Test, all models are checked to

determine whether there is a significant difference between the two

predictedmodels. Table 14 shows the result of the Diebold-Mariano

Test for ARIMA-GARCH, ARIMA-FFNN, and ARIMA-GARCH-

FFNN as follows:

Based on Table 14, all probability values are greater than the

significant level of 0.05. It means that there is no significant

difference in solving the heteroscedasticity effect between the trend

and time series data pattern of the two models of GARCH with

FFNN, FFNN with hybrid GARCH-FFNN, and GARCH with

hybrid GARCH-FFNN. In other words, the volatility effect that

containing in the exchange rates data can be solved by using the

model of ARIMA-GARCH, ARIMA-FFNN, and ARIMA-GARCH-

FFNN. This statement is also stated by the previous research in

estimating the Czech crown/Chinese yuan exchange rate where the

additional parameters can help the equalized time series to retain

order and precision [29]. Besides, the Diebold Mariano (DM) test

was also applied to confirm the prediction accuracy of the wavelet-

ANN model to forecast the occurrence of spiders in the pigeon

pea [32].

5. Conclusion

In financial activities, the fluctuation of the financial data is

a crucial problem in building a suitable time series. The classical

time series model has usually analyzed its residual assumptions,

such as autocorrelation, heteroscedasticity, and non-normality, to

obtain the optimal fitted model. The heteroscedasticity effect often

occurs in the model building because of the unstable fluctuations

in the financial data. This study uses the financial data of currency

exchange rate between US Dolar and ID Rupiah to build a suitable

model of Autoregressive Integrated Moving Average (ARIMA). In

adjusting the heteroscedasticity effect on the residual of ARIMA,

this research uses three alternative methods, such as Generalized

Autoregressive Conditional Heteroscedasticity (GARCH), Feed-

Forward Neural Network (FFNN), and the combined model

of GARCH-FFNN.

The three fitted performance models are observed monthly

with 245 data using Mean Square Error (MSE) and Mean

Absolute Percentage Error (MAPE). The results show that

the accuracy model for the ARIMA(2,1,1)-GARCH(1,1), the

model of ARIMA(2,1,1)-FFNN(3,4,2,1), and the model of

ARIMA(2,1,1)-GARCH(1,1)-FFNN(1,4,2,1), respectively, are

99.9613%, 99.9799%, and 99.9606%. It shows that the ARIMA with

FFNN has an accuracy value getting closer to 100%. It means that

the ARIMAmodel with FFNN will be more approaching the actual

value than the other two models because ARIMA-FFNN as the

nonlinear model applies soft computing. The application of soft

computing makes solving the numerical methodology easier in

order to estimate the optimal fitted parameter precisely. Therefore,

the estimated parameter of the FFNN method is more adjusting

the heteroscedasticity effect than the classical method GARCH.
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