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Coronavirus disease 2019 (COVID-19) management and response is a challenging

task due to the uncertainty and complexity of the nature surrounding the virus.

In particular, the emergence of new variants and the polarizing response from

the populace complicate government e�orts to control the pandemic. In this

study, we developed a compartmental model that includes (1) a vaccinated

compartment, (2) reinfection after a particular time, and (3) COVID-19 variants

dominant in the Philippines. Furthermore, we incorporated stochastic terms

to capture uncertainty brought about by the further evolution of the new

variants and changing control measures via parametric perturbation. Results show

the importance of booster shots that increase the vaccine-induced immunity

duration. Without booster shots, simulations showed that the dominant strain

would still cause significant infection until 31 December 2023. Moreover, our

stochasticmodel output showed significant variability in this case, implying greater

uncertainty with future predictions. All these adverse e�ects, fortunately, can be

e�ectively countered by increasing the vaccine-induced immunity duration that

can be done through booster shots.

KEYWORDS
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1. Introduction

Since the emergence of coronavirus disease 2019 (COVID-19) in Wuhan, its causative

agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been rapidly

evolving into new variants [1]. This emergence is expected as, like any virus, SARS-CoV-

2 continues to mutate from time to time. So far, the World Health Organization (WHO) has

identified five variants of concern, namely, Alpha, Beta, Gamma, Delta, and Omicron. These

are the variants considered the most transmissible and dominant that are circulating the

world [2]. While vaccine has been available, the campaign has suffered a series of setbacks

and there are many issues leading to vaccine hesitancy [3, 4]. In the Philippines, the slow

vaccine rollout, limited testing capacity, weak genomics surveillance, a fragile healthcare

system, and a large informal economy contributed more to the many issues related to

COVID-19. The latter is a social cost as few people can afford not to work but are forced to

stay home in overcrowded housing. These factors exacerbated the situation as they gave the

virus a perfect environment to mutate, feeding through a continuous supply of susceptibles.
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Hence, a question of much importance is how to reduce

COVID-19 transmission. In doing so, an approach of balancing

the efforts on the vaccination campaign (booster shots amidst

reinfection because of mutating variants and waning immunity),

and preparedness of the healthcare system coupled with public

health and social measures is a must. While the government is

trying to strike a balance, the race between vaccination and fast

mutating variants remains the biggest challenge.

Many computational modeling studies have investigated

COVID-19 dynamics in the Philippines. For instance, in Arcede

et al. [5], an SEIR-type model is constructed whose infected can

either be symptomatic or not. The result shows that treating

symptomatic alone does not reduce the spread. However, managing

the number of susceptible does, which containment and vaccines

have a significant impact role to play. Later, the same model

was used to investigate the implemented non-pharmaceutical

interventions (NPI) in the country [6]. Here, NPIs include

lockdown, social distancing, mass testing, and strengthening the

healthcare system. The study provided a choice for the government

to implement the control by indicating economic cost (low,

high) given no vaccine availability. In Bock et al. [7], an agent-

based SIR model was used to investigate the prevalence of

COVID-19 in two neighboring cities in Northern Mindanao,

particularly in Iligan and Cagayan de Oro. The result shows

that social distancing and age-specific quarantine can effectively

slow down contagion. Furthermore, social distancing combined

with an effective testing strategy can keep the epidemic at bay

and prevent it from becoming a critical epidemic. In Arcede

et al. [8], a regional COVID-19 model has been constructed

in the cities mentioned earlier and in the Northern Mindanao

region as a whole. The model is tailored to fit early transmission;

hence appropriate models are suggested when laboratory-based

disease reports are available. In [9], Mammeri et al. extended

their SEIR-type model to account the spatial movement of

individuals. Given five main islands and five main airports in

the Philippines as nodes with index case assumed to start from

Manila airport on day 1, their simulation show remarkably

close similarity to what happened in the Philippines during its

first 140 days. Studies mentioned do not deal with vaccination

control. However, recent articles deal with vaccination strategies

in the Philippine context. For instance, in [10], optimal control

was used to investigate existing policy interventions, including

vaccination rollouts, community quarantines, and simulated virus

outbreaks. They found that early and effective implementation

of precautionary measures such as community quarantines are

crucial for containing outbreaks. They also found that even if

vaccinations do not suffice, expanding the vaccine supply reduces

the need for more resource-intensive interventions. Moreover, in

Caga-anan et al. [11], a model with a delay on the vaccination

compartment was constructed to study the impact of vaccination

efforts on disease progression and herd immunity. The result shows

that timely vaccination is preferred to maximize impact. They

also assessed the performance of different vaccine brands in the

model, showing Pfizer-BioNTech with the best results. Finally,

some models were proposed for allocating resources. For instance,

optimizing the location of vaccination sites implemented in San

Juan Philippines [12] and distribution of COVID-19 testing kits

in DOH-accredited testing centers in the country [13]. All studies

mentioned earlier do not account explicitly for COVID-19 variants

and randomness.

In this study, we evaluate the impact of vaccination and its

waning induced immunity, as well as the uncertainties related to

future mitigation policies and the further evolution of the virus,

given the three variants that are circulating dominantly in the

country.

2. Model formulation

2.1. Deterministic model

In this study, we divided the population into eight

compartments, namely, susceptible (S), vaccinated (V), infected

by the original strain (I1), infected by the Delta variant (I2),

infected by the Omicron variant (I3), confirmed (C), recovered

(R), and dead (D). Figure 1 shows the dynamics of the model. The

model considers the following facts. First, vaccines do not provide

lasting immunity. Hence, vaccinated people will be back to being

susceptible after some time. Second, reported confirmed cases

do not show the full extent of the infection. Third, estimates of

unreported cases are not being accounted for. Finally, recovered

individuals (from natural infection) also do not have lasting

immunity against the virus; hence, both vaccinated and recovered

individuals may return to the susceptible population after some

time. In the model, we assume density-dependent transmission

rates.

An infected individual by any of the variants can infect people

in compartment S. We assume that vaccinated people in V are

immune to any of the variants. The parameter βi denotes the

transmission rate of the disease caused by the ith strain. The

parameter α represents the level of control measures implemented

to limit the transmission. The parameter ν denotes the vaccination

rate of susceptible people. The parameters λ1 and λ2 denote the

vaccine immunity waning rate and natural immunity waning rate,

respectively. The parameter ǫ denotes the proportion of infections

detected and confirmed through testing also known as detection

rate. We also have the removal rate from C given by δ. Finally, the

recovery rate from unconfirmed infections caused by the ith strain

is denoted as γi and the probability to recover from the infection is

denoted as ρ. The parameters are summarized in Table 1.

In this study, we adapted a closed population model, i.e., we

did not consider natural birth and death rates. We denote by N0

the total number of population at the start. The dynamics of our

model is governed by the following system of ordinary differential

equations (ODE):

dS

dt
= −α(β1I1 + β2I2 + β3I3)

S

N0
− νS+ λ1V + λ2R (1)

dV

dt
= νS− λ1V (2)

dI1

dt
= αβ1I1

S

N0
− (γ1 + ǫ)I1 (3)

dI2

dt
= αβ2I2

S

N0
− (γ2 + ǫ)I2 (4)

dI3

dt
= αβ3I3

S

N0
− (γ3 + ǫ)I3 (5)
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FIGURE 1

Model dynamics of COVID-19 with three strains.

TABLE 1 Parameters of the model.

Parameter Description Unit

βi Transmission rate due to Ii 1/day

α Transmission reduction Dimensionless

ν Vaccination rate 1/day

λ1 Vaccine immunity waning rate 1/day

λ2 Natural immunity waning rate 1/day

ǫ Detection rate 1/day

γi Recovery rate from Ii 1/day

δ Removal rate from C 1/day

ρ Probability to recover Dimensionless

dC

dt
= ǫI1 + ǫI2 + ǫI3 − δC (6)

dR

dt
= γ1I1 + γ2I2 + γ3I3 + δρC − λ2R (7)

dD

dt
= δ(1− ρ)C. (8)

2.2. Stochastic model

As will be seen in Section 5, the third strain will become

dominant as time goes on. We acknowledge that we need to

accommodate future uncertainties in our simulation. Hence, we

modify our ODE model to add stochasticity. We apply parametric

perturbation to the reduced transmission rate αβ3. The resulting

system with stochastic differential equations (SDE) is as follows:

dS =

[

−α(β1I1 + β2I2 + β3I3)
S

N0
− νS+ λ1V + λ2R

]

dt

−σ I3
S

N0
dB

dV = [νS− λ1V] dt

dI1 =

[

αβ1I1
S

N0
− (γ1 + ǫ)I1

]

dt

dI2 =

[

αβ2I2
S

N0
− (γ2 + ǫ)I2

]

dt (9)

dI3 =

[

αβ3I3
S

N0
− (γ3 + ǫ)I3

]

dt + σ I3
S

N0
dB

dC = [ǫI1 + ǫI2 + ǫI3 − δC] dt

dR = [γ1I1 + γ2I2 + γ3I3 + δρC − λ2R] dt

dD = [δ(1− ρ)C] dt,

where dB/dt is the white noise, i.e., the derivative of the standard

Brownian motion B(t), and σ > 0 denotes the intensity of

that noise.

3. Qualitative analysis of the ODE
model

Since we have a close system and N0 = S+ V + I1 + I2 + I3 +

C+R+D, we may just consider the system (1)–(7), i.e., withoutD.

To find the disease-free equilibrium (DFE) (a steady-state solution

of an epidemic model with all infected variables equals to zero), we

equate Equations (1)–(7) to zero and the infective compartments

I1, I2, I3, and C equal to 0. We obtain a solution, which is the DFE

given by (S∗,V∗, 0, 0, 0, 0, 0), where S∗ =
λ1V

∗

ν
.

3.1. Reproduction number

By definition, the basic reproduction number R0 denotes the

average number of individuals directly infected by a single infected

individual over the duration of its infectious period in a population

without any deliberate intervention to stop its spread. We will

compute R0 using the next generation matrix method defined by

Diekman et al. [14] and van den Driessche and Watmough [15].

Let X be the vector of the infected classes and Y be the vector of

the other classes. Let F(X,Y) be the vector of new infection rates

(flows from Y to X) and let V(X,Y) be the vector of all other rates

(not new infections). Then, we have

F =



















αβ1I1
S

N0

αβ2I2
S

N0

αβ3I3
S

N0
ǫI1 + ǫI2 + ǫI3



















,V =









(γ1 + ǫ)I1
(γ2 + ǫ)I2
(γ3 + ǫ)I3

δC









.

Evaluating the derivatives of F and V at the DFE, we are led to

the following matrices

F =



















αβ1
S∗

N0
0 0 0

0 αβ2
S∗

N0
0 0

0 0 αβ3
S∗

N0
0

ǫ ǫ ǫ 0



















,V =











γ1 + ǫ 0 0 0

0 γ2 + ǫ 0 0

0 0 γ3 + ǫ 0

0 0 0 δ











.
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Hence, the next generation matrix is given by

K = FV−1 =























(

αβ1

γ1 + ǫ

)

S∗

N0
0 0 0

0

(

αβ2

γ2 + ǫ

)

S∗

N0
0 0

0 0

(

αβ3

γ3 + ǫ

)

S∗

N0
0

ǫ

γ1 + ǫ

ǫ

γ2 + ǫ

ǫ

γ3 + ǫ
0























.

The eigenvalues of K are the following: η1 =

(

αβ1

γ1 + ǫ

)

S∗

N0
,

η2 =

(

αβ2

γ2 + ǫ

)

S∗

N0
, η3 =

(

αβ3

γ3 + ǫ

)

S∗

N0
, and η4 = 0. The

eigenvalue η1 is associated with strain 1 and gives rise to the

basic reproduction number R1 =

(

λ1αβ1

ν(γ1 + ǫ)

)

V∗

N0
. Similarly,

eigenvalue η2 associated with strain 2 corresponds to the basic

reproduction number R2 =

(

λ1αβ2

ν(γ2 + ǫ)

)

V∗

N0
, and eigenvalue η3

associated with strain 3 corresponds to R3 =

(

λ1αβ3

ν(γ3 + ǫ)

)

V∗

N0
.

Finally, we takeR0 = max{R1,R2,R3}.

3.2. Stability analysis of the DFE

Theorem 3.1. The disease-free equilibrium x0 =

(S∗,V∗, 0, 0, 0, 0, 0,D∗), where

S∗ =
λ1V

∗

ν
and D∗ = N0 − (S∗ + V∗) of system (1)-(8) is globally

asymptotically stable.

Proof. Consider that

D(t)− D(0) =

∫ t

0
δ(1− ρ)C(s) ds (10)

and

D∗ − D(0) =

∫ +∞

0
δ(1− ρ)C(s) ds. (11)

This is finite, since D is bounded. Hence, δ(1− ρ)C(t) → 0 as

t → +∞. Since δ(1 − ρ) > 0, we have C(t) → 0 as t → +∞.

Using the same argument and noting that

C∗ − C(0) =

∫ +∞

0
ǫ I1(s)+ ǫ I2(s)+ ǫ I3(s)− δ C(s) ds, (12)

we also have I1(t), I2(t), I3(t) → 0 as t → +∞. Similar deduction

can be used to show that R(t) → 0 as t → +∞, using Equation

(7). 2

We may define the effective reproduction number associated

with strain i by

R
e
i (t) =

(

λ1αβi

ν(γi + ǫ)

)

V(t)

N0
. (13)

Compared to the basic reproduction number R0, the effective

reproduction number Re
i (t) denotes the average number of new

infections associated with strain i, at time t, caused by a single

infected individual, considering that in the population at this time,

there are already some individuals who are no longer susceptible.

4. Existence of solution for the SDE
Model

Let (�,F , {Ft}t≥0,P) be a complete probability space with

filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is

increasing and right continuous while F0 contains all P-null sets).

Let R8
+ = {xi > 0 : i = 1, 2, ..., 8}. Let B(t) be a Brownian motion

defined on the complete probability space �. Then, we have the

following theorem showing that the stochastic system (9) has a

unique non-negative global solution.

Theorem 4.1. For any given initial value x0 ∈ R
8
+, there is a unique

solution x(t) of system (9) on t ≥ 0, and the solution will remain

in R
8
+ with probability 1, namely, x(t) ∈ R

8
+ for all t ≥ 0 almost

surely.

Proof. Since the coefficients of system (9) satisfy the local Lipschitz

condition, it implies that for any given initial value x0 ∈ R
8
+, there

is a unique local solution x(t) for every t ∈ [0, τe), where τe is the

explosion time. To prove that the solution is global, we need to

show that τe = ∞. To do so, we let s0 ≥ 1 be sufficiently large

so that all components of x0 are contained in the interval [1/s0, s0].

For each integer s ≥ s0, we define the stopping time by

τs = inf{t ∈ [0, τe) : at least one of S,V , I1, I2, I3,C,R, orD ∈ (1/s, s)}.

Clearly, τs is increasing as s → ∞. Let τ∞ = lim
s→∞

τs, then

τe ≥ τ∞ almost surely. If we can show that τ∞ = ∞ a.s., then

τe = ∞ and x(t) ∈ R
8
+ a.s. for all t ≥ 0.

Suppose τ∞ < ∞, then there exists T > 0 such that P{τ∞ ≤

T} > ǫ for all ǫ ∈ (0, 1). Hence, there is an integer s1 ≥ s0 such that

P{τs ≤ T} > ǫ, for every s ≥ s1. (14)

Let a C2− function U :R
8
+ → R

8
+ be defined by

U(x) = S− 1− ln(S)+ V − 1− ln(V)+ I1 − 1− ln(I1)

+ I2 − 1− ln(I2)

+ I3 − 1− ln(I3)+ C − 1− ln(C)+ R− 1− ln(R)

+ D− 1− ln(D). (15)

Using Itô formula on Equation (15), we have

dU = LUdt + σ
I3

N0
dB− σ

S

N0
dB,

where

LU =

(

1−
1

S

)[

−α(β1I1 + β2I2 + β3I3)
S

N0
− νS+ λ1V + λ2R

]

+
1

2
σ 2 I23

N2
0

+

(

1−
1

V

)[

νS− λ1V

]

+

(

1−
1

I1

)

[

αβ1I1
S

N0
− (γ1 + ǫ)I1

]

+

(

1−
1

I2

)

[

αβ2I2
S

N0
− (γ2 + ǫ)I2

]

+

(

1−
1

I3

)

[

αβ3I3
S

N0
− (γ3 + ǫ)I3

]

+
1

2
σ 2 S

2

N2
0

+

(

1−
1

C

)
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[

ǫ(I1 + I2 + I3)− δC

]

+

(

1−
1

R

)

[

γ1I1 + γ2I2 + γ3I3 + δρC − λ2R

]

+

(

1−
1

D

)[

δ(1− ρ)C

]

≤ ν + λ1 + (γ1 + γ2 + γ3)+ 3ǫ

+δ + λ2 +
1

2
σ 2 I23

N2
0

+
1

2
σ 2 S

2

N2
0

+ αβ1
I1

N0
+ αβ2

I2

N0

+αβ3
I3

N0
≤ ν + λ1 + (γ1 + γ2 + γ3)+ 3ǫ + δ + λ2

+σ 2N
2
0

N2
0

+

[

αβ1 + αβ2 + αβ3

]

N0

N0
≤ ν + λ1

+(γ1 + γ2 + γ3)+ 3ǫ + δ + λ2 + σ 2 + αβ1 + αβ2 + αβ3

: = K.

Note that K is a positive constant independent of the variables

S, V , I1,I2, I3, C, R, and D, and time t.

Thus,

dU = Kdt + σ
I3

N0
dB− σ

S

N0
dB. (16)

Therefore, if t1 ≤ T,

∫ τs∧t1

0
dU ≤

∫ τs∧t1

0
Kdt +

∫ τs∧t1

0

σ

N0
(I3 − S)dB(t), (17)

where τs ∧ t1 = min{τs, t1}. Taking expectations to both sides of

(17), we obtain

E

[∫ τs∧t1

0
dU

]

≤ E

[∫ τs∧t1

0
Kdt

]

+ E

[∫ τs∧t1

0

σ

N0
(I3 − S)dB(t)

]

.

(18)

By properties of Itô integral, we have

EU(F(τs ∧ t1),C(τs ∧ t1), ρ(τs ∧ t1)) ≤ U(F(0),C(0), ρ(0)) (19)

+ E

[∫ τs∧t1

0
Kdt

]

≤ U0 + KT < ∞,

where U0 = U(x0). By Gronwall’s inequality,

EV(F(τs ∧ t1),C(τs ∧ t1), ρ(τs ∧ t1)) ≤ U0e
KT < ∞. (20)

Let �s = {τs ≤ T} for any s ≥ s1. Then, by (14), we have

P(�s) ≥ ǫ. Note that for every ω ∈ �s, there is at least one of

S(τs,ω),V(τs,ω), I1(τs,ω), I2(τs,ω), I3(τs,ω), C(τs,ω), R(τs,ω), and

D(τs,ω) that is equal to either s or 1/s. Consequently, U(x(τs,ω)) is

no less than either

s− 1− ln(s) or
1

s
− 1− ln

(

1

s

)

=
1

s
− 1+ ln(s).

Thus,

U(x(τs,ω)) ≥

[

s− 1− ln(s)

]

∧

[

1

s
− 1+ ln(s)

]

.

TABLE 2 Values of the parameters used in the simulations.

Parameter Value Source

β1 0.15094 Fitted

β2 0.30187 (Day 130 onward) Estimated [17]

β3 0.90561 (Day 334 onward) Estimated [18]

α 0.99964 (Day 0–Day 86)

0.83186 (Day 87–Day 165)

0.61940453 (Day 166–Day 366) Fitted

0.22039 (Day 367–Day 454)

0.26799 (Day 455 onward)

ν 270000/N0 (Day 87 onward) Estimated [19]

λ1 1/180, 1/365, 1/540 (Day 87

onward)

Simulated

λ2 1/365 Estimated [20]

ǫ 0.03677 [11]

γi 1/12 [11]

δ 1/7 [11]

ρ 0.98 [21]

TABLE 3 Initial conditions used in the simulations.

Initial condition Value Source

S(0) 107,222,344 Estimated [11, 21, 22]

I1(0) 17,494 Fitted

I2(0) 4,523 Fitted

I3(0) 3,825 Fitted

C(0) 26,677 [21]

R(0) 1,759,580 Estimated [11, 21]

D(0) 9,248 [21]

At Day 0, V(0) = 0 and N0 = 109035343, based on the Philippine Statistics Authority’s 2020

estimated population of the country [22].

It then follows from Equation (14) and Equation (21) that

U0e
KT ≥ E[1�s (ω)U(x(τs,ω))]

≥ ǫ

[

s− 1− ln(s) ∧
1

s
− 1+ ln(s)

]

,

where 1�s is an indicator function of �s. Letting s → ∞, then we

have

∞ > U0e
KT ≥ ∞,

which yields the contradiction. Therefore, we must have τ∞ = ∞,

almost surely.2

5. Numerical simulations

Data on confirmed cases used in parameter calibration are from

the COVID-19 Data Repository by the Center for Systems Science
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FIGURE 2

Output of the model with calibrated parameters compared with data. The gray curves represent the other outputs of the approximate Bayesian

computation approach, while the red curve represents the best fit model output (i.e., using the parameters in Table 2). The green dots are the data

from the COVID-19 data repository of JHU CSSE.

FIGURE 3

Plot of the three dominant COVID-19 variants in the Philippines as given by the model. The gray curves are the other outputs of the approximate

Bayesian computation approach. The red, blue, and orange curves represent the best fit model output associated with the original strain (I1), Delta

(I2), and Omicron (I3) variants, respectively.

and Engineering (CSSE) at Johns Hopkins University (JHU) [16].

The data are publicly available and so ethical approval is not

required. The data are from 1 January 2021 (Day 0) to 28 June

2022 (Day 543). Values of some parameters and initial conditions

are taken or estimated from sources as indicated in Tables 2, 3. We

note that the parameter α varies over time as controls implemented

by the government also vary. Hence, we considered α as a piecewise

constant function, as shown in Table 2, where the dates correspond

to the noticeable changes in the control measures implemented by

the government.

To obtain the fitted values for the parameters β1 and

α, and the initial conditions I1(0), I2(0), and I3(0), we

minimized a non-linear least square function given by the

sum of the square of the difference of the data and the

model output. The optimization problem is solved using the

approximate Bayesian computation approach combined with

the Levenberg–Marquardt algorithm [23–25]. Visualization

of the optimization result is given in Figure 2. In Figure 3,

we plotted the evolution of the three variants based on the

optimization result.
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FIGURE 4

Projection on the e�ects of di�erent levels of vaccine-induced immunity duration. The green vertical line is at Day 543, the end of the data used. One

may interpret the case when λ1 = 1/180 to be the case when individuals only opt to be fully vaccinated. The cases λ1 = 1/365 and λ1 = 1/540 may

correspond to the cases when individuals are also getting first and second booster shots, respectively.

5.1. Deterministic simulations on waning
vaccine-induced immunity

The Philippines started its vaccination campaign last 1 March

2021, with the two-dose Sinovac vaccine [26]. We estimated that

it would need 4 weeks or 28 days to be fully protected from the

vaccine [11], so we started the parameters ν and λ1 by Day 87 (29

March 2021). It is estimated that the vaccine-induced immunity

wanes after 6 months and that booster shots are recommended

after that time interval [27]. Some people are unwilling to take

booster shots due to vaccine hesitancy. Accounting for this social

behavior in the model, we consider three different vaccine-induced

immunity duration through the parameter λ1 by setting it to 1/180

(6 months). This accounts for the case when the population only

takes full vaccination but no booster shots. On the contrary, we set

λ1 = 1/365 (12 months) when the people finished taking the first

booster shot, while λ1 = 1/540 (18 months) when they completed

the second booster shot.We simulate up to 31 December 2023 (Day

1094). The result is shown in Figure 4.

5.2. Stochastic simulations on the
dominant transmission rate

As shown in Figure 4, our simulation suggested that the original

and Delta variants are to die out even with the minimum vaccine-

induced immunity duration of 6 months. But it is not the case

with regard to the Omicron variant. However, we acknowledge that

much uncertainty can affect the reduced transmission rate αβ3—for

instance, the changing control measures of the government and the

further evolution of the variant. Hence, we also want simulations

incorporating noise on αβ3. In Figure 5, we show the result of

our stochastic simulations. The curves are for the confirmed

compartment. The figure can be viewed as a 3 × 2 matrix where

the rows correspond to the cases corresponding to the different

vaccine-induced immunity duration, given by the value of λ1. The

columns show the results concerning different noise intensities,

given by the value of σ . The stochastic simulations start after Day

543 and run up to 31 December 2023 (Day 1094). The numerical

simulations are implemented using the Euler–Maruyama scheme

[28].

6. Discussion

With our deterministic model, we have obtained parameters

fitting observed data on confirmed cases in the Philippines. Our

model has the added value that it could estimate the progression of

the three main variants circulating the Philippines. Our simulations

showed that the Omicron variant would be the dominant variant

as we advance and the other variants die out (Figure 4). Moreover,

it showed the significantly faster transmission of the Omicron

variant compared with the other two, as reported [29] and validated

by some studies [30, 31]. Our population is a closed model, and

Theorem 3.1 showed that the Omicron variant would eventually die

out. However, the time of its realization depends on the vaccine-

induced immunity duration. With a duration of approximately 6

months, the simulation shows a noticeable presence of the Omicron

variant by 31 December 2023. However, this presence is reduced

significantly with vaccine-induced immunity durations of 12–18

months. We note that these vaccine-induced immunity durations

can be achieved with booster shots in the population. Looking

at the effective reproduction number given in (13), by Day 543

and vaccine-induced immunity duration of 6 months, we have

R
e
1 = 0.1731, Re

2 = 0.3463, and R
e
3 = 1.0390. By Day 5000,
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FIGURE 5

Stochastic simulations with respect to the vaccine-induced immunity duration λ1 and noise intensity σ . The curves are for the confirmed

compartment. The black curve is the deterministic model output, while the colored curves are the realizations of the 100 runs of the stochastic

model. The cases are as follows: (A) λ1 = 1/180, σ = 0.1; (B) λ1 = 1/180, σ = 0.5; (C) λ1 = 1/365, σ = 0.1; (D) λ1 = 1/365, σ = 0.5; (E) λ1 = 1/540,

σ = 0.1; (F) λ1 = 1/540, σ = 0.5.

we only have R
e
3 = 0.9998. However, with a vaccine-induced

immunity duration of 12 months and at Day 543, we already

haveRe
3 = 0.5124.

We acknowledge that a lot of changes can happen in the future.

For instance, the ongoing evolution of the virus and the ever-

changing control measures being implemented by the government.

Hence, incorporating these uncertainties in our simulations can

prove beneficial. Our stochastic simulations (Figure 5) reveal that

uncertainties, represented as noise in our model, can significantly

affect future outcomes when vaccine-induced immunity duration

is only 6 months, as seen in the spread of the stochastic model

output. An increase in vaccine-induced immunity duration means

a decrease in the variability of our model output and hence better

projection. The government can then use better projection to

design more robust and refined intervention strategies to control

the virus effectively.
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