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Convolutional Neural Networks are widely known and used architectures in

image processing contexts, in particular for medical images. These Deep

Learning techniques, known for their ability to extract high-level features,

almost always require a labeled dataset, a process that can be computationally

expensive. Most of the time in the biomedical context, when images are used

they are noisy and the ground-truth is unknown. For this reason, and in the

context of Green Artificial Intelligence, recently, an unsupervised method that

employs Convolutional Neural Networks, or more precisely autoencoders, has

appeared in the panorama of Deep Learning. This technique, called Deep

Image Prior (DIP) by the authors, can be used in areas such as denoising,

superresolution, and inpainting. Starting from these assumptions, this work

analyses the robustness of these networks with respect to di�erent types of

initialization. First of all, we analyze the di�erent types of parameters: related

to the Batch Norm and the Convolutional layers. For the results, we focus on

the speed of convergence and themaximum performance obtained. However,

this paper aims to apply acquired information on Computer Tomography

noised images. In fact, the final purpose is to test the best initializations of the

first phase on a phantom image and then on a real Computer Tomography

one. In fact, Computer Tomography together with Magnetic Resonance

Imaging and Positron Emission Tomography are some of the diagnostic tools

currently available to neuroscientists and oncologists. This work shows how

initializations a�ect final performances and, in addition, how they should be

used in the medical image reconstruction field. The section on numerical

experiments shows results that on the one hand confirm the importance of

a good initialization to obtain fast convergence and high performance; on the

other hand, it shows how the method is robust to the processing of di�erent

image types: natural and medical. Not a single good initialization is discovered,

but many of them could be chosen, according to specific necessities of the

single problem.

KEYWORDS

Deep Image Prior, initialization, Computer Tomography, image reconstruction, Deep

Learning robustness, Convolutional Neural Networks, GreenAI
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1. Introduction

X-ray Computed Tomography (CT) [1] is a fundamental

imaging method in clinical routine. Moreover, it is applied

also in other areas such as engineering and arts, due to

its ability to extract information about the inner structure

of an object. Computed Tomography was developed in

1970 as the first non-invasively method able to acquire

images of the inside of the human body that were

not biased by the superposition of distinct anatomical

elements. It was considered an enormous step during

the 70 s.

Nowadays, medical CT research is mostly focused on

developing safer protocols and reducing the radiation dose. Not

only would it be of interest to medicine, but it also would

prevent damage to materials science and cultural heritage. One

possible method in order to do that is to minimize the number

of X-rays projection, with the purpose of a sparse tomography

(or sparse-view). In traditional, non-sparse, CT about one-

thousand’s projections are executed over the 360◦ trajectory.

On contrary, sparse tomography requires a wider angular step

between two adjacent scans. In addition, in special cases where

there are practical limitations, the X-ray source could walk only a

semi-circular path. Therefore, the resulting imagesmay probably

be incomplete, and streaking artifacts will corrupt them.

For this reason, the main problem of CT is the

reconstruction of an object from its projections. This paper aims

to artifacts removal on tomographic image reconstructions.

Tomographic image reconstruction is one of the most

important challenges in the fields of mathematical oncology

and neuroscience. In fact, mathematical advanced tools could

be concretely applied in order to improve medical diagnosis.

Deep Convolutional Neural Networks (DCNNs) have become a

popular tool for inverse image reconstruction, image generation,

and restoration, setting the state-of-the-art for these problems.

Many applications exists, such as Adversarial Networks [2],

Variational Autoencoders [3], Direct Pixelwise Minimization

[4], Deep Image Prior (DIP) [5], Image Super Resolution [6].

The purpose of this paper is to improve CT images’ quality,

exploiting a particular Autoencoders’ skill. It is the ability of

learning, given an image, first structures and, then, noise. We

think this could be an important resource if exploited in image

reconstruction tasks.

Despite their good performances, the learning process of

Deep Neural Networks (DNN) has not yet been explained

in detail. How they generalize depends on different aspects,

some of them still unknown. One significant element of the

training process is the parameters initialization choice. Since

DNNs are strongly non-convex and non-linear, they may have

multiple local minima, hence finding a good initialization of the

parameters is critical in order to achieve good performances and

limited training time. This paper aims to a better understanding

of how initialization affects on performance and training time of

an Autoencoder, or more in general a Deep Convolutional Neural

Network.

Through this experimental study, we try to depict the

influence of the initialization techniques on performances and

training time. Finding an appropriate range for the initial

weights could really change the final results.

The chosen Autoencoder [5, 7] belongs to the DIP category,

and it is prone to semi-convergence. Regarding the choice of the

CNN architecture, in particular the autoencoder architecture,

in this work we fix it as one of the networks proposed in

Ulyanov et al. [5], that is an autoencoder with five downsampling

and five bilinear upsampling layers with convolutional skip

connections. This phenomenon of semi-convergence is based

on the fact that the Autoencoder, trained for a denoise-

image reconstruction on a single image, first rebuilds the

cleaned image, then adds noise. As stated by Ulyanov et al.,

“In other words, the parametrization offers high impedance

to noise and low impedance to signal” [5]. For this reason,

convergence, on the ground-truth image, is obtained before

the end of the training process and, after this peak, the

Autoencoders learn not only the real image, but the image

plus noise. For this reason, after a certain number of epochs

the performance decrease. The convergence is evaluated by

computing the Peak Signal-to-Noise Ratio (PSNR) and saving

the best of PSNR. We have chosen this particular problem

because evaluating its convergence point and the optimal

performance is clear.

In order to obtain experimental results, four initialization

strategies were differently permuted for weights and biases

of Convolution layers and weights and biases of Batch

Normalization (BN), for a total of 44 = 256 initialization

combinations per image.

Therefore, we investigated the robustness of these particular

Autoencoder architectures, observing how significant the

initialization impact on both criteria is, in terms of performance

values and convergence time.

This particular architecture, explained in detail in section 3,

is used inmany applications.While all the hyperparameters were

fixed, the architecture is initialized in different ways.

First, initialization experiments are trained on real RGB

images, not concerning the medical field. Second, the same

experiments are repeated on a gray-scale phantom image (with

two different resolutions). In addition, both qualitative and

quantitative analyses have been reported. Finally, the best

initialization selected from previous experiments is used for the

last autoencoder training, computed on a real chest CT medical

image representing a section of two lungs on a patient affected

by COVID-19 [8]. In this conclusive phase, due to the absence

of ground-truth in real medical images, a comparative analysis

is provided, but not the quantitative one.

To sum up, contributions of this paper are:
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• To improve the autoencoder model taken from Ulyanov et

al. [5] through different initialization methods.

• To use this specific autoencoder in a different field, CT

images.

• To combine new information from different images,

not medical-related, and use them in an state-of-the-art

medical problem such as image reconstruction.

The reminder of this paper is organized as follows. Section

2 presents the state-of-the-art initialization strategies and past

experimental studies about them. Experimental details about the

methods used, with specificmotivations, are presented in section

3. The obtained analysis and results on the first part are discussed

in section 4. In the end, concluding remarks are given.

2. Related Work

A key to a successful DNN implementation could be

improving the generalization ability. In order to achieve

this, during the implementation different aspects have to be

considered. The purpose of this paper consists in exploring

how initialization affects the performance of a Convolutional

Autoencoder and how, in this specific case, initialization and

robustness are related.

The contribution of this paper is mostly experimental,

since it is quite utopian to draw theoretical results on

the effect of different initializations in the non-convex and

stochastic framework of the neural networks. Even in the

standard variational deterministic case, in order to obtain

convergence results for non-convex objective functions very

strong conditions are imposed on either the objective function

and the initialization [see e.g., the Capture Theorem in Bertsekas

[9] to guarantee convergence to a minimum point] and/or the

optimization algorithm itself [see e.g., the negative curvature

directions methods in Gould et al. [10] for convergence to

second order stationary points]. On the other hand, Goodfellow

et al. themselves in their famous book [11] state that “Modern

initialization strategies are simple and heuristic. Designing

improved initialization strategies is a difficult task because

neural network optimization is not yet well-understood. [...] Our

understanding of how the initial point affects generalization is

especially primitive, offering little to no guidance for how to

select the initial point.”

Different papers have explored parameters initialization in

DNNs, in order to improve specific NN performances and

contrast vanishing/exploding gradient problems. Especially, the

most widely faced problem is initialization for classification

models, whereas our paper is focused on initialization in

Autoencoders. Recently many initialization methods were

compared and proposed, for example in the following work,

where the authors apply different types of initialization to

datasets that are well-known in the literature. In Mishkin

and Matas [12] different initializations for classification cases

are analyzed, particularly with datases: CIFAR10, CIFAR100,

and MNIST. In Aghajanyan [13], the author applied different

initializations to IMDB Movie Review, a binary sentiment

analysis dataset consisting of 50, 000 reviews from the Internet

Movie Database (IMDb). In Arpit et al. [14], a particular family

of CNNs is considered, instead of a particular dataset, thus this

work analyzes how different initializations affect the training

phase of the ResNet (Residual Network) family.

Due to the non-convexity of DNN problems, the initial

point is fundamental. On the other hand, a too large or too

small parameter scale could lead to information vanishing or

exploding, especially in very DNNs (more than eight layers),

when the backpropagation is applied to a long chain of

gradients. Indeed, initialization has a substantial impact on the

final performance of the networks and on the convergence

time. We will prove that initialization plays a key-role, also

in Deep Learning Explainability, because it affects all the

training processes and in particular the convergence process.

Since extensive literature about initialization schemes exists, we

resume in this paper some of the most widely used initialization

strategies.

In the literature three main initialization techniques have

been identified: Data Independent, Data Dependent [15], and

Pre-Training approach. In our case, the problem addressed

is an unsupervised one, thus not adapted to Pre-Training

techniques. Moreover, since the purpose of our experimental

study is an analysis of generalization properties, Data Dependent

techniques were excluded.

Recent DNNs, especially CNNs [16], are usually initialized

by random weights with a Gaussian or Uniform distribution.

With a fixed standard deviation, very deep models have

difficulties to converge without techniques that avoid exploding

gradient, therefore we choose them combined with a BN process,

to reduce the problem.

Also more elaborated initialization strategies exist, which

tried to solve the vanishing/exploding gradient.

Xavier initialization was proposed by Glorot and Bengio

[17] and consists in a Gaussian distribution, where the standard

deviation is not fixed, but it depends on the number of input

and output channels of the layers. The idea is to investigate the

variance of the responses in each layer. This method has a big

constraint: it assumes the non-linearity between layers, imposing

nlVar[ωl] = 1

where nl is the number of connections of a response in the l-

th layer and ωl represents each element of the weight matrix

Wl. Although the restrictive assumption, this initialization has

promising results in many applications.

In He et al. [18] the authors derived a theoretically more

sound initialization by taking Rectifier Linear Unit non-linearity
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into account. The results are given by the constraint

1

2
nlVar[ωl] = 1

that leads to a zero-mean Gaussian distribution with standard

deviation equal to
√

2
nl
.

Moreover, in Mishkin and Matas [12] an orthonormal

matrix initialization is chosen instead of Gaussian noise, which

is only approximate orthogonal and works also for non-linearity

assumptions. An extension of this strategy to an iterative

procedure is done in Mishkin andMatas [12]. It could be seen as

an orthonormal initialization associated with a sort of BN only

in the first mini-batch.

All the aforementioned methods were mostly experimented

in order to avoid the vanishing/exploding gradient

phenomenon. This is not our case of study for the following

reasons: the Autoencoder selected for this paper includes in its

architecture a Batch Norm layer [19], which is a phenomenon

able to reduce the Internal Covariate Shift related to the

vanishing/exploding gradient phenomenon. The Internal

Covariate Shift is defined as the change in the distribution of

network activations, due to the change in network parameters

during training. This strategy makes normalization as a part of

the model architecture and performs the normalization for each

training mini-batch, for this reason avoids excessive gradient

growth.

Batch Normalization is usually compared to initialization

such as Xavier initialization, Kaiming initialization, or Layer-

sequential unit-variance[LSUV [12]]. Usually, one tool excludes

the other, because they are all strategies with the same purpose.

For this, considering that in our network a state of BN is already

present, we will exclude them from the study. On the other

hand, our experiments and analysis explore simpler initialization

composed of Batch Norm layers. Moreover, this paper could

enter into the robustness analysis context, different from the

other purposes. Additionally, the chosen architecture is not

usual: the Convolutional Autoencoder, which creates images

from noise, is explained in detail in section 3.

In Sandjakoska and Stojanovska [20] the authors present a

similar experimental study to ours, but with different DNNs and

the QM9 dataset, that provides quantum chemical properties

for a relevant, consistent, and comprehensive chemical space

of small organic molecules. It is interesting how they consider

initialization as a junction point between optimization and

regularization.

3. Methods

First of all we begin with the mathematical formulation

of the problem. The acquisition of an image often leads to

corrupted data. The purpose of many techniques aims at

recovering the real image from its observation. Mathematically,

a generic method could be express as the following linear inverse

problem: given v ∈ R
m, we want to find u ∈ R

n such that

v = Au + η, where v ∈ R
m is the observation, A :R

n → R
m is

a linear operator and η ∈ R
m is the noise corrupting the data.

In particular, we assume η is an additive Gaussian noise with

zero mean. The method proposed in Ulyanov et al. [5] tries to

reconstruct the images, defining u = fθ (z), where z is an input

random variable, changing at each iteration, and fθ is a fixed

autoencoder parametrized by its weights θ . The DIP framework

is the optimization problem:

argmin
θ

1

2
‖Afθ (z)− v‖22. (1)

The explicit expression of the function fθ follows directly

from the architecture of the autoencoder described in the

Introduction, and the array θ collects all the parameter defining

the resulting structure. Given the strongly non-linear and non-

convex nature of autoencoders, the solution in θ turns out to be

non-unique, hence the importance of initialization.

In this experimental study, as mentioned above, we focus

on the impact of initialization techniques of the weights θ

on performances and convergence time. To make this, we set

the network to the encoder-decoder architecture described in

Ulyanov et al. [5]. It is an Autoencoder architecture with skip-

connections. The activation function is a Leaky ReLU [21]

(Leaky Rectified Linear Unit), which has the same characteristics

as ReLU from a differentiability point of view. We choose

bilinear upsampling, as the upsampling operation, and we use

reflection padding in the convolutions, to manage boundary

conditions.

The number of trainable parameters in this architecture

is 2, 184, 307, considering weights and biases for both

Convolutional and BN layers, each Autoencoder is trained

to learn how to reconstruct a single image.

In this experimental study, four types of parameters were

differently initialized:

1. Convolutional weights, 1, 945, 548 elements

2. Convolutional biases, 232, 031 elements

3. Batch Norm weights, 3, 364 elements

4. Batch Norm biases, 3, 364 elements.

Four initialization methods have been permuted in every

possible configurations:

1. standard (default) initialization, in which:

• For Convolutional weights and biases Uniform

distribution

• For Batch Norm weights: 1.0

• For Batch Norm biases: 0.0

2. Random numbers with Uniform distribution between −1

and 1
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3. Random numbers with Gaussian distribution (mean 0 and

standard variation 0.01)

4. Random numbers with Gaussian distribution (mean 0 and

standard variation 0.001)

Therefore, with four initializationmethods for the four types

of parameters, a total of 256 experiments are possible.

As we said in the previous section, the elimination of

Internal Covariate Shift [19], namely the change in the

distributions of internal nodes of a DNN, offers a promise of

faster training. One way to solve this problem could be the

x-normalization:

x̂ = norm(x,χ)

where x is one input of a layer and χ is the entire training

set. This framework is too expensive in backpropagation terms,

therefore BN works in an alternative way. It performs input

normalization in a way that is differentiable, and it does

not require the analysis of the entire training set after every

parameter update. For each activation x(k), a pair of parameters

γ (k) (considered as the weights of the BN) and β(k) (the biases

of the BN) is introduced, which scale and shift the normalized

value x̂(k):

y(k) = γ (k)x̂(k) + β(k) where x̂ = x(k) − E[X]√
Var[X]

.

In general a 2D Convolution is the application of a filter

over an image. In a continuous context, the convolution

operator is defined between two function h and f as

follows:

(h ∗ f )(t) : =
∫ ∞

−∞
h(τ )f (t − τ )dτ .

In a discrete context, the value of each pixel of the

image is replaced with a weighted combination of its

neighborhoods. These weights are given by the filter (or

kernel) and the parameters of the kernel are subject to

optimization. More in details, given a M × M filter w

and the N × N input x, the resulting output y is given

by

ym,n =
N−1
∑

k=0

M−1
∑

l=0

xm−k,n−lwk,l + bm,n.

In DCNNs kernel values are optimized

through backpropagation. While x is the given

input, w and b, the parameters, must be

initialized.

Our purpose is to investigate how different initializations

of Convolutional kernels (w and b) and Batch Norm

parameters (γ and β), combined in different permutations,

affect the final performance and convergence speed of

the Autoencoder. To the best of our knowledge, different

initialization strategies have already been compared, but

never combined and permuted with respect to the different

types of weights and biases. This could be a great starting

point for DNNs interpretability and robustness. Secondly,

obtained experiments and results are applied to the field

of image reconstruction. Particularly, different initializations

are tried and compared also on a CT phantom and a

CT real image. Original observations emerge, based on the

comparison between three different kinds of experiments:

real images, the CT phantom image, and the CT real

image.

FIGURE 1

The four images analyzed. Image with noise (target, on the left),

what is achieved from the CNN (best, center), and what is the

unknown ground-truth (GT, on the right).

FIGURE 2

This figure represents the occurrence distribution of the best 10

configurations (out of a total of 256 experiments), that is, with

the highest PSNR values, on the four input images.
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TABLE 1 The range of PSNR-best values for each image. The min

PSNR and max PSNR represent the minimum and maximum

PSNR-best among all experiments, respectively.

Images Min PSNR Max PSNR

Butterfly 19.75089511971038 23.92899673311191

Watercastle 20.644380379786114 25.333330065707557

F16 21.638582020414585 25.902823348196918

Peppers 21.353324555944614 25.160264261207534

4. Numerical experiments

We report and motivate below the main choices, made with

respect to the hyperparameters of the CNN, that we will analyze:

we use the AdaM [22] optimizer, in all our experiments, and

PyTorch as a framework. We decided to use AdaM optimizer

inspired by Cascarano et al. [23]. In Cascarano et al. [23] the

authors analyzed the first order stochastic methods (Stochastic

gradient, Momentum, and AdaM) in the DIP framework from

a convergence speed and semi-convergence point of view. In

particular the conclusion in that AdaM is the fasted from a

convergence point of view, on the other hand AdaM is also the

method most subject to semi-convergence phenomena. With

this elements and from a GreenAI point of view we decide to

analyze AdaM optimizer. The learning rate, for the optimizer, is

fixed at 1e3 as the default value and the number of iterations is

a maximum of 10, 000, as in the original paper [5]. We perform

all the experiments on a desktop PC with Ubuntu 18.04, 64 bit,

multi core 8 CPU Intel core i7-7700 K a 4.20 GHz, GPUGeForce

RTX 2080 (8 GB). The time for each full training is about 28min.

For each experiment we apply as input a uniform noise, that

is updated every step of the training process, according to the

original paper [5], and the CNN, starting from this image of

pure noise, must be able to reconstruct the assigned image. In

the next section we show the results regarding the influence of

initialization techniques on performance and training number

of iterates for four different images, depicted in Figure 1.

Unfortunately, in CT context, or more in general in medical

context, real images do not exist without noise, therefore some

artificial images must be used in order to compare results with a

ground-truth. For these reasons, in our experiments we choose

both a real CT image and a simulated CT one, called the Shepp-

Logan phantom. It is a standard test image, first introduced in

1974 by Shepp and Logan [24]. It is widely known and used as a

model of a human head in the image reconstruction field.

4.1. Results on natural images

In Figure 2 we collect the best K (with K set to 10)

experiments (different configurations), that are, with the highest

PSNR values, for each of the four images. Out of a total of

40 experiments, 10 settings for four images, we show how

many combinations of them are in the top-10 for one, two,

three, or four images. In column three, we can see that two

configurations are among the best for three out of four images,

imposing themselves as good candidates for analysis because

of their ability to give good results on a variety of different

images. On the other hand, Figure 2 shows that there is a low

correlation between the best experiments for one image and the

best experiments for the other images. Therefore, a universal

initialization, on the 10-top initializations for each example, does

not exist. This is probably a consequence of the high number

of initialization methods chosen (256). However, from Table 2,

which contains details of the initialization of the experiments

depicted in Figure 2, some recurrent patterns stand out for

both the weights of the Convolutional layer and the BN layer,

but especially for all the pictures. The best experiments, across

all images, with the highest PSNR values are those with the

Convolutional weights initialized by a Gaussian with µ = 0 and

τ = 0.01 (3), and with the BN weights initialized by a Gaussian

with µ = 0 and τ = 0.01, 0.001 (3, 4). This probably means that

biases initialization affect less the final performance.

In general, parameter initialization plays a crucial role

in determining the final model performance and training

time. This is evident by observing the range of PSNR-best

obtained with the same image, same architecture, but different

initialization methods from Table 1. In some cases the reason is

a problem of convergence: the best PSNR has not been reached

yet (3, 000 epochs). We define a number of epochs, risking not to

reach the convergence, because we fit into a context of GreenAI

where epochs are limited. On the other hand, setting an epoch

number beforehand can be hazardous for those configurations

that lead to semiconvergence. That is why in DIP-type models

having a good Early Stopping criterion is crucial, a topic that is

beyond the scope of this paper but will surely be included in the

future.

In Figures 3, 4 we show two different experiments; one

among the trials with the best results (Figure 3) and one

among the trials with the worst results (Figure 4). In detail, we

analyzed for all 256 experiments the maximum PSNR reached

for all four images. We then ranked among all PSNR maxima,

for each of the four images, noting that one configuration

emerged. This specific initialization, for which all learning

curves performed well, shows early semi-convergence. On the

other hand, analyzing the worst PSNR results, we noticed that

one network gives bad performance for all images. What, in

fact, can be noticed observing the images is that: on the left the

PSNR grows very fast, reaching its peak before the 1, 000 epochs,

which, associated with a good criterion of Early Stopping, can

lead to a very good performance in few epochs, good result also

in view of the GreenAI. While, observing the figure on the right,

it can be seen that not even in 3, 000 epochs has reached a result

comparable to the peak of the best initialization.
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The experiment depicted in Figure 3 has the following

initialization: the Convolutional weights with a Gaussian

distribution (4: mean 0 and standard variation 0.001), the

Convolutional biases with a Gaussian distribution (4: mean 0

and standard variation 0.001), the Batch Norm weights with

a Gaussian distribution (3: mean 0 and standard variation

0.01), and the Batch Norm biases are set to zero (1). On

the other hand, the experiment depicted in Figure 4 has

the following initialization: the Convolutional weights with a

Uniform distribution between [−1, 1] (2), the Convolutional

biases with a uniform distribution between [0, 1] (1), the Batch

Norm weights are set to one (1), and the Batch Norm biases

are set to zero (1), very close to the initialization originally

proposed in the paper [5]. In these two experiments we can

observe that the first one reaches the maximum PSNR value,

while the second one does not converge, not even in 3, 000

TABLE 2 This table shows the details of the experiments depicted in Figure 2.

Occurrences Conv2d BatchNorm2d

Weights Biases Weights Biases

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

4

3 X X X X

X X X X

2 X X X X

X X X X

X X X X

X X X X

X X X X

1 X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

Each row, grouped by occurrences on different images, represents the type of experiment initialization for the four different components: convolution weights, convolution biases, BN

weights, and BN biases. The type of initialization is represented by a number from 1 to 4, where 1 stands for the “default” initialization, 2 for uniform between [-1, 1], 3 for Gaussian

(µ = 0, τ = 0.01), and 4 for Gaussian (µ = 0, τ = 0.001).
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FIGURE 3

One of the experiments with the best results for all four images.

This figure shows the PSNR curve. An example of the

semiconvergence phenomenon.

FIGURE 4

One of the experiments with the worst results for all four

images. This figure shows the PSNR curve.

FIGURE 5

One of the experiments with the best results for all four images

at the epoch 3, 000. This figure shows the PSNR curve.

epochs. Both examples confirm what had already been observed

in Table 2.

FIGURE 6

One of the experiments with the worst results for all four images

at the epoch 3, 000. This figure shows the PSNR curve.

Also in Figures 5, 6 we show two different experiments, but

from another point of view. We decided to consider the best

PSNR at 3, 000 epochs. In Figure 5 we can see the experiments

with the best results and in Figure 6 the experiments with the

worst results. In this case the observations that can be made

are the mirror of the previous ones. In fact, the initializations

that reach an early semi-convergence are the most penalized,

starting soon to learn how to add noise to the image. While,

the slower initializations, not being affected by semiconvergence,

continue to grow, or at most stall up to 3, 000 epochs. However,

this phenomenon is only evident by performing a large number

of epochs, leading training times to be more than triple that of

the best configuration.

The experiment depicted in Figure 6 has the following

initialization: the Convolutional weights with a Gaussian

distribution (4. mean 0 and standard variation 0.001), the

Convolutional biases are set with Uniform distribution between

[0, 1] (1), the Batch Norm weights are set to one (1), and the

Batch Norm biases are set with Uniform distribution between [-

1, 1] (2). On the other hand, the experiment depicted in Figure 5

has the following initialization: the Convolutional weights with a

Gaussian distribution (4: mean 0 and standard variation 0.001),

the Convolutional biases with a Gaussian distribution (4: mean

0 and standard variation 0.001), the Batch Norm weights with a

Gaussian distribution (4: mean 0 and standard variation 0.001),

and the Batch Norm biases are set with Uniform distribution

between [-1, 1] (2).

Another interesting result, which can be seen in Figures 7,

8, is the one concerning the convergence speed. In these

four figures, we can see for the best 10 configurations

mean and variance in statistical boxplot referred to the four

different configuration types (x-axis) and epoch number (y-

axis). For the best experiments, where we have seen that

both the Convolutional weights and the Batch Norm weights

are initialized with a Gaussian (Table 2), on average they are

also the ones that reach convergence first, another time great
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FIGURE 7

Initialization with respect to the convergence speed of the first top-K experiments (with K set to 10) with higher PSNR values for the butterfly

image (A) and watercastle image (B).

for a context of GreenAI. From the point of view of the

distribution of the weights at the end of the training, the only

thing we can observe is that the weights distribute according

to a Gaussian of zero mean, as known in the field of deep

learning.

4.2. Results on CT images

In the second part of experiments we will conduct some tests

on images derived from biomedical CT examinations. As is well-

known in the literature, this is a rather complex inverse problem
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FIGURE 8

Initialization with respect to the convergence speed of the first top-K experiments (with K set to 10) with higher PSNR values for the F16 image

(A) and peppers image (B).

due to several factors including: noise, limited angles image

acquisition, and ill-conditioning of the matrix representing the

tomographic transform. As an application of the DIP technique

we will deal with noise removal on both CT images derived from

a phantom, where we therefore know the ground-truth, and real

biomedical images.

4.2.1. Experiments on the phantoms

In this section, we deal with the experiments conducted

on the phantom. Experimentation was conducted on two

sides for the purpose of approaching the problem of good

biomedical image reconstruction. On the one hand, we

tried the various experiments in different-resolution image
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FIGURE 9

Phantom experiments in the version 256× 256.

contexts; to understand how resolution impacts the different

initializations, and then shifted the focus, as with natural images,

to the initializations that demonstrated good convergence

behavior from the beginning. We chose to use the same

phantom image, to which we added noise similar to the

real tomographic image that we will use in the next section,

amounting to about 5%. Thus, the idea is to take the

image without noise and add Gaussian noise with zero

mean and 0.05 variance. We considered two versions of the

phantom image in the noisy version with different resolution,

specifically we four specific initializations, in particular those

configurations used in the study with the natural images.

Similar to Figures 3–5 we looked for the best initialization

in terms of convergence speed by validating the fact that

configuration 4,431 (Figure 3) proves to be among the fastest,

while configuration 4,442 (Figure 5) shows slower learning

phase. In addition to this validation step, from Table 1 we

identified another good initialization in configuration 4,141 (the

Convolutional weights with a Gaussian distribution: mean 0

and standard variation 0.001, the Convolutional biases with a

Uniform distribution, the Batch Norm weights with a Gaussian

distribution: mean 0 and standard variation 0.001, and the

Batch Norm biases are set to zero). It is important to note

that with the phantom the phenomenon of semiconvergence

is much less evident, suggesting that initializations that lead

to fast improvement will be the best in terms of the final

performance.

In Figure 9 we can see the phantom experiments in the

resolution version 256× 256. On the rows we observe, from top

to bottom:

• the standard initialization proposed by the original paper

[5],

• one of the best initializations for natural images, from the

point of view of convergence speed (Figure 3),

• another good initialization found for natural images

(second row of the Table 2),

• an initialization considered to be slow to converge for

natural images (Figure 5).

On the columns, however, we can observe different stages of

learning, indicated by the number of epochs. In the last column

the noisy input image and in the penultimate column the

ground-truth.

In Figure 10 we can see the same experiments for the

phantom in the resolution version 512×512. A first observation

that can be made is that image resolution does not impact

behavior with respect to different initializations. A second

observation, no less important, is that the fast or slow behavior

of different initializations found with experiments on natural

images can be transferred also for this image. This is very

important, as it leads us to be able to use the information about

initializations acquired with natural images for tomographic

ones. The good or bad reconstruction of images is particularly
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FIGURE 10

Phantom experiments in the version 512× 512.

FIGURE 11

Some relevant details of the reconstruction of the phantom with di�erent initializations.
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FIGURE 12

Reconstruction in di�erent epochs for CT real image.

evident in Figure 11 where we can see the zoom of some details

of the reconstructed image. Indeed, we can well see from the

details how the best initializations found for natural images

(4,431, 4,141) are very good, in terms of PSNR. While we can

observe how neither the original configuration of the original

paper [5] nor the initialization that has been shown to be slow to

converge for the natural images achieve at such good results.

4.2.2. Experiments on the real CT image

As a final experiment, an experiment was conducted on

a real biomedical image. In this context, the analysis is

complicated for several reasons: the noise percentage is not

known, the ground-truth is not known for this reason there is

no way to quantify the calculated PSNR against the real image,

the image is much more complex and rich in detail, and it is

not easy to make comparisons between reconstructions. For the

percentage of noise in the biomedical image, a method known

in the literature for estimating noise was used, arriving at a

percentage of noise just under five percent. As for the qualitative

assessment of the images, we relied on a literature paper [7]

where the same image is already used, with specific details

referenced to evaluate its accuracy.

In Figure 12 we can see a table similar to the previous one

for the phantom.What is observed, more in the Figure 13, is that

even in the case of the tomographic image the (4,431 and 4,141)

configurations show good initial behavior, while the (4,442)

and the original paper initialization are shown to be slower in

capturing image details.

5. Conclusion and future works

As mentioned in the introduction, the main purpose of this

work is to study how the choice of parameter initialization of

an Autoencoder impacts performance and computation time.

In particular, we analyzed a denoising problem approached

with an unsupervised learning technique called DIP. This

technique suffers from a phenomenon called semi-convergence,

i.e., the Autoencoder initially learns to transform an image

of pure noise into the assigned image, first incorporating the

image characteristics, and then incorporating the noise as well.

For the reasons just mentioned, the speed of convergence

as a function of performance is essential. Recent works have

attempted to study convergence speed from the point of view

of the optimizer used, while others have tried to propose ad

hoc Early Stopping techniques [25]. In this context, this paper
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FIGURE 13

Same details of the reconstruction CT image in di�erent epochs for CT real image.

aims to study the interpretability of this model through the

various initializations in the literature. What we have observed,

in conclusion, is that the different initializations of the weights

have a great impact on the final performance, but in particular

on the speed of convergence, which is fundamental in this

context. On the other hand, we observed robustness concerning

the analysis of different images, therefore the considerations

made are portable to all images. In general, what we can

conclude is that uniform initializations tend to bring slower

results and thus require more training time. On the other

hand, Gaussian initializations tend to be faster and, associated

with Early Stopping techniques, can be considered better in a

GreenAI context. Building on this initial work, the idea is to

continue to analyze the weight distribution during the training

phase, introduce pruning techniques and also examine the

response with biomedical images, using, for example, Computed

Tomography (CT).
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