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Anti CTLA-4 therapy is aimed at blocking the Cytotoxic T-lymphocyte

antigen-4 (CTLA-4), a key cancer immunity cycle checkpoint. The mechanism

of action of CTLA-4 may be described as a dynamic competition for the

B7 ligand which, subsequently, interferes with the CD28-B7 costimulatory

pathway. Anti CTLA-4 blockade enhances the process of cognate T cell

activation and leads to a broadening of the T cell repertoire. In the present

work, we used an agent-based modeling (ABM) platform of T cell immune

response development, to explore hypothetical modes of anti CTLA-4 action.

The model features a selected number of activated T cell clones, calculated

based on combined random and chemotactically-driven encounters with

antigen-presenting dendritic cells (DCs) and a distribution of individual T cell

a�nities to the antigen of interest. The proposed model can be used as a

quantitative tool to explore various hypotheses on T cell immunity regulation

and validate these against experimental data. A comprehensive ABM model

analysis of immune response dynamic simulations revealed several putative

anti CTLA-4 mechanisms of action, including: (i) an increase in the probability

of primary activation of lymphocytes; (ii) T cell activation enhancement via

a prolongation of short contacts with dendritic cells; and (iii) an increase in

the maximum level of activation signal (or saturation), accumulated through

a series of short contacts with DCs. The modeling work further demonstrates

that it is only when considering jointly these various modes of anti CTLA-4

e�ects on the T cell immune response dynamics that a biologically meaningful

increase in both the production of activated cells and the expansion of

the T cell repertoire is observed. These model-based results are overall

consistent with the collective biological knowledge on the functional role

of CTLA-4. Furthermore, the ABM presented here may allow to interrogate

various mechanistic scenarios underlying adverse events mediated by anti

CTLA-4 pharmacologic therapies.
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Introduction

Cytotoxic T-lymphocyte antigen-4 (CTLA-4) expressed

on the surface of activated T cells is a critical immune

checkpoint, given its role in the early-stage T cell response

development. A dynamic competition for B7 ligands expressed

on the surface of antigen-presenting cells (APCs) occurs,

between CD28 co-stimulatory and CTLA-4 inhibitory

molecules. CTLA-4 exhibits a 20-fold higher affinity for

the B7 ligand vs. CD28, resulting in a decrease in T cell

activation [1, 2]. The critical role of this immune checkpoint

molecule in maintaining self-tolerance and protecting the

body from autoimmune reactions has been demonstrated

experimentally in CTLA-4 knockout mice, an animal model

which exhibits fatal autoimmune disease at 3–4 weeks of

age [3, 4].

CTLA-4 may thus affect multiple effector functions in

immune cells. For example, based on in vitro migration tests

and in vivo two-photon laser-scanning microscopy, Schneider

et al. showed that CTLA-4 increases T cell motility by blocking

the formation of the immunological synapse between a T

cell and an antigen-presenting cell (APC), which subsequently

resulted in reduced cytokine production and T cell proliferation.

The role of CTLA-4 as a gatekeeper of conjugation and

stable immune synapses formation has been demonstrated

[5]. In addition, CTLA-4 engagement has been reported to

block the activation of transcription factors such as NF-κB,

NF-AT, and AP-1, as well as Ca2+ mobilization and PLC-γ1

phosphorylation in activated T cells in vitro [6]. Studies using T

cells derived from CTLA-4-deficient mice revealed that CTLA-4

also controls the expression of a negative intercellular adaptor

protein, Cbl-b, critical to the threshold for T cell activation

[7]. Additionally, CTLA-4 engagement inhibits IL-4-dependent

signaling and activation of STAT6, leading to a tight control

over Th2 cell differentiation [8]. Anothermechanism underlying

CTLA-4-mediated T cell suppression may involve its ability

to influence the cell cycle, e.g., via cell cycle arrest in the G1

phase [9].

In addition to its direct effects on T cell activation, CTLA-4

may also attenuate the ability of APCs to activate T cells.

For example, Qureshi et al. further revealed a mechanism

of CTLA-4 action via decreased B7 molecule density on the

surface of APCs, through trans-endocytosis [10]. High CTLA-4

expression on Tregs and B7 (CD80/86) ligation by CTLA-4

enhanced indoleamine 2,3-dioxygenase (IDO) activity of DCs

and monocytes [11]. IDO is an immuno-modulatory enzyme

involved in tryptophan catabolism. Upon inflammation, IDO

production may reduce T cell proliferation and promote T cell

anergy. IDO expression by plasmatic DCs (pDC) in a lymph

node (LN) at steady-state is dependent on MHCII-restricted

Ag-specific interactions with Treg. Treg CTLA-4 molecules

binding to cell-surface expressed costimulatory molecules

promote IDO production by pDCs through IFN-γ or IFN-α/β

signaling. As a result, a mutual activation of Treg and

DC may occur, leading to an increase in the suppressive

properties of the system. CTLA-4-binding also promotes

IDO production at tumor sites. Across all pDC populations

in tumor-draining LNs, IDO has been associated with

differentiating and suppressive functions [11–13]. Thus, natural

Tregs may critically require CTLA-4 to suppress immune

responses, by affecting the potency of DCs to activate other T

cells [14].

With such pleiotropic effects at molecular and cellular

levels, it can be expected that CTLA-4 plays a pivotal role

as a master regulator within the cancer immunity cycle [15].

This view has been exploited clinically in immuno-oncology,

with the recent successes of several anti CTLA-4 therapies,

which have resulted in improved survival in patients with

metastatic cancers [16]. Phenotypically, Robert et al. showed

an expansion of unique TCR Vβ CDR3 sequences in T

cells in blood, following the administration of the anti

CTLA-4 antibody tremelimumab in patients with metastatic

melanoma, demonstrating an enhancement of T cell diversity

[17]. However, while increases in the number of unique

productive sequences and absolute lymphocyte counts were

observed, there was no expansion of tumor antigen specific

clones [17]. Conversely, Kvistborg et al. demonstrated that

treatment with the anti CTLA-4 ipilimumab resulted in a

broadening of melanoma-specific CD8+ T cells repertoire,

with tumor recognition potential [18]. It has also been shown

that ipilimumab treatment in patients with metastatic castrate-

resistant prostate cancer resulted in further diversification of

the T cell repertoire, potentially causing a higher incidence

of immune-mediated adverse effects (imAEs) [19]. Similar

trends have been observed in patients with advanced melanoma

[20] and metastatic pancreatic cancer [21]. In particular,

a majority of patients who exhibited TCR diversification

with both low baseline clonality and a higher number of

expanded clones also experienced significantly longer survival

times [21].

Despite the growing and continued accumulation of

clinical data, there are still knowledge gaps in the mechanistic

understanding of CTLA-4 action [22]. For example, it is

not fully understood which of the aforementioned anti

CTLA-4-dependent effects would drive clinical anti-tumor

response and related imAEs [23]. In this modeling study,

we explored a number of hypotheses on anti CTLA-4

modes of action, using a previously developed agent-based

modeling platform [24]. Specifically, we quantitatively

explored how the duration and dynamics of T cell-to-DC

contacts in a lymph node may affect T cell repertoire

diversification and the related intensity of the immune

response, along with key parameters which may control

these processes.
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Model

Description of the agent-based modeling
framework

The present work is based on a previously presented

agent-based modeling (ABM) framework that describes the

development of an immune response in the context of lymph

nodes (LN) [24]. Briefly, this two-dimensional spatial ABM

considers the collective behavior of two agent types—T cells

and antigen-presenting DCs—within the LN T zone. The

simulation space represents a portion of the LN T zone as a

lattice of 100 × 100 patches, resulting in an effective physical

surface area of 500× 500 µm2 (or 5× 5µm2 per patch). In past

simulation scenarios, 2,000 naïve T cells were randomly placed

in the domain, along with eight antigen-bearing DCs which were

placed randomly in eight fixed positions, with the assumption

that antigen-presenting DCs have limited motility in the LN T

zone. The T cell number-to-DC number ratio (8:2,000) in the

model was chosen to reflect physiological values [25]. Each 5 ×

5 µm2 patch was set to contain, at most, one T cell. DCs are

typically larger than T cells; thus, it was assumed that a given

DC would cover for a space of 5 patches, with DCs thereby

forming cross patterns in the lattice. All details of the model are

presented graphically in Figure 1. These initial conditions, in the

given geometric design, would allow each DC to interact with up

to 11 neighboring T cells simultaneously [24].

The work used the following time scale: one time step

(tick) in the NetLogo software (see section Software packages)

would correspond to 30 s of the simulated biological system. All

parameters describing T cell movement were taken from the

previously published work [24].

The 2D ABM model was specifically designed to

efficiently reproduce experimentally observed T cell motility

characteristics. In a 2D model framework, it is not possible to

consider the spatial network of reticular fibroblasts, which T

cells may mobilize to “glide over.” Also, it is not possible to link

the physical density of T cells in the LN T zone with the 2D

density in the ABM model. The number of T cells was chosen

empirically to avoid “traffic jams” in the 2D model space while,

at the same time, maintain realistic motility characteristics of

T cells.

Periodic boundary conditions were applied to the left-

and right-hand sides of the computational domain: if a T

cell were to leave the domain through one side, it would be

allowed to immediately re-appear from the other side of the

domain, moving in the same direction. In contrast, T cells

were not allowed to randomly go through the top and bottom

boundaries of the computational domain. These boundaries,

instead, contained “open patches,” functionally corresponding

to medullary sinuses (MS) and efferent lymphatics in a LN.

Accordingly, if a T cell were to leave the computational domain

through an MS patch at either the top or bottom side, a

new T cell would be allowed to enter the computational

domain, from a random position within the modeled LN.

These settings thus allowed to maintain an overall constant

T cell density in the system under study. In the model, we

implemented 32 open patches, as MS-like escape structures for

T cells. An optimal total number of open patches was estimated

in the previously published article [24]. Using this MS size,

experimental mean transit times of T cells through the T zone

were correctly reproduced. Importantly, new T cells appearing

in the simulation space (to compensate for those having left

through MS-like open patches) were introduced with a random

affinity number and only if the current count of total T cells in

the T zone remained below 2,000.

A key modification in the present work, as compared to

the previously published ABM framework, is the computational

implementation of a continuous distribution of TCR affinities to

specific antigen presented on the surface of DCs. Thus, instead of

a Bernoulli type distribution that corresponds to either cognate

or non-cognate lymphocytes generated in the computational

domain, we used a Gamma type distribution. Accordingly, the

affinity of a newly appearing lymphocyte may range from 0

to 1, where a value of “0” captures a completely non-cognate

lymphocyte and a value of “1” defines a T cell with a very high

TCR affinity to the presented antigen. The affinity of a newly

appearing lymphocyte is randomly generated so that, overall,

TCR affinities of all T cell clones are distributed according to an

exponential law, with a single parameter E
[

Aff
]

acting as the

mean TCR affinity over all T cells in the LN. A forced cutoff

value of “1” (maximal cognate affinity) was applied to simulated

affinities larger than one.

The resulting probability density function can thus be

expressed as Equation 1:

fX (Aff)=















0, Aff < 0

1

E[Aff ]
e
−

Aff
E[Aff ] , 0 < Aff ≤ 1

0 , Aff > 1

(1)

where E
[

Aff
]

effectively represents the distribution mean value.

An exponential distribution was used to obtain a reasonable

balance between cognate (high TCR affinities) and non-

cognate (low TCR affinities) T cell clones. The proposed model

modification is in good agreement with immunology basics, as it

allows for a description of the physiological distribution of TCR

affinities for multiple naïve T cell clones, whereby lymphocytes

with highly specific TCRs constitute a minority.

For simplification, only single specific antigens were

considered in the model. Thus, the phenomenon of cross-

reactivity, i.e., the ability of T cells to recognize more than one

antigen structure was not considered.

According to our previously published work, T cell motion

may switch from a random walk mode to a more directed

chemokine concentration gradient motion toward the DC [24].

In order to account for chemotaxis strength, a specific parameter

representing the probability of performing a directed step

(instead of a random step) toward the nearest DC center was

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2022.993581
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Azarov et al. 10.3389/fams.2022.993581

FIGURE 1

(A) The agent-based modeling (ABM) framework: Schematic of states and processes of the two main agents, T cells and dendritic cells (DCs)

represented in the model. (B) 2D ABM model simulation snapshot at the beginning of a simulation: 2,000 naïve T cells (dark gray circles) are

present. (C) Snapshot of that particular simulation on Day 28: A number of naïve and activated T cells (pink circles) proliferated and di�erentiated

into e�ector T cells (orange circles). (D) Enlarged fragments of snapshots (B,C), with the upper left DC seen in (B,C) surrounded by a chemokine

cloud and T cells at various stages of activation. The upper panel corresponds to the simulation start, the lower panel corresponds to the 28th

simulation day.

introduced. A probability of 1/3 for a directed step was used in

all simulations, as used in our previous modeling work [24].

We assumed that the probability of T cell priming, Pprime,

depends on its TCR affinity to the antigen, and used a Hill

equation (Equation 2) to describe this dependence:

Pprime=
Affn

Affn+Kn
prime

(2)

where Aff is the affinity of a T cell receptor to the antigen

presented on a DC; n is the Hill coefficient; Kprime is an arbitrary

constant of priming (affinity corresponding to a priming

probability of 0.5). There is no experimental information to

precisely estimate n and Kprime; we thus set n = 5 and Kprime

= 0.2 as default values. Model sensitivity to key parameters was

evaluated in simulation exercises using a simple “one-at-a-time

approach,” which does not allow to explore the entire parameter

space but gives an idea of each parameter contribution.

A naive T cell, which should have been primed according

to Equation 2, was set to form a first stable contact with a DC

for ∼24 h. The duration of contact for each T cell was modeled

as a random value generated from a normal distribution, with a

mean of 24 h and a variance of 2 h; a T cell may become activated

only upon completion of such a contact.

Short contacts may further occur between DCs and T cells

that have already been activated; these short contacts result in

an incremental activation and subsequent divisions. Similarly

to the model by Bogle et al. [25, 26], we assumed that the

TCR activation signal could be accumulated over time during

serial contacts with antigen-presenting DCs. When, during a

short contact, the T cell activation level (S) exceeds such a

key parameter as activation level threshold Sthr , the T cell may

initiate the cell division process.

We described the duration of short contacts using Equation

3, a formula which has been adapted from previously published

ABM work [26]:

Tcontact=
Tmax × Affn

Affn+Kn
prolif

(3)

where Aff is the TCR affinity to the antigen presented on the

DC; n is the Hill coefficient. Kprolif represents the affinity of
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T cells with a short contact duration corresponding to the half

of the maximal duration Tmax. Tmax, in turn, is independent

of the affinity of a particular clone and is distributed according

to a lognormal law (µ = 20min, σ2 = 10), to avoid a complex

relationship between affinity and duration of short contacts.

As long as a contact between a T cell and a DC is maintained,

and upon each additional DC encounter, an activation signal

keeps building up. To account for this mechanistic behavior, the

activation level of a T cell, S(t), was set to start increasing to a

certain saturation level along a sigmoid curve and according to

a logistic equation as described by Equation 4:

S (t) = S0 +
α

1+ e−βt
(4)

where S0 is the T cell activation level at the beginning of

the cognate contact; α controls the saturation level of the

activation signal—its value is directly related to the activation

level threshold; β is the time to reach that activation level

threshold. During a short contact and while the activation

signal builds up, only a small percentage of T cells would reach

activation status; to this end, we set default values for α and

β of, respectively, 2.0 and 0.02 min−1. The value of β was

chosen to be sufficiently small, to prevent the maximal T cell

activation level (S0 + α) to be reached within the duration of

a single short contact. This allowed to model the hypothetical

dependence between short contact duration and the activation

level dynamics.

For activated T cells situated outside any DC contact

zone, the activation level was set to decrease according to an

exponential law, as described by Equation 5, a formula taken

from previously published ABM work [25]:

S (t) = S0 × e−λt (5)

where λ is a half-life period of 8 h and S0 is the activation level

at the start of activation level decay.

Figure 2 illustrates typical model-simulated T cell activation

level S(t) dynamics. The T cell activation level threshold value,

Sthr , is a critical model parameter, as it ultimately affects the

proliferation intensity of activated T cells. For the simulations

presented here, we selected a value of Sthr = 2.0, close to the

average S(t) value for all activated T cells represented in the

computational domain.

Two factors appeared to limit the proliferation of activated

T cells: (i) the minimal time between T cell divisions (random

value generated from a normal distribution with a mean of 8 h

and a variance of 1.25 h, for each newly formed T cell)—this time

was set between successive T cell divisions as the minimal time

interval between two divisions; and (ii) the maximal number

of activated T cell divisions allowed (uniformly distributed,

random value from 2 to 18 divisions, with an average of

10 divisions).

Once a T cell reached effector status, it was no longer allowed

to divide further and was eliminated from the computational

FIGURE 2

Examples of T cell activation dynamics, for two di�erent

saturation levels of the activation signal (parameter α in Equation

4); α = 1 (lower curve); α = 3 (upper curve).

domain within 24 h. Also, to avoid a supra-physiologic increase

in overall T cell density (due to multiple T cell divisions), the

following rule was added to the agent-based model: “if the total

number of T cells exceeds the pre-set equilibrium value of 2000,

then no new T cells would be allowed to enter the domain.”

Simulations of quantitative outcomes via
ABM numerical experiments

Given our modeling objective to better understand potential

CTLA-4-dependent effects, we sought to quantitatively assess

the number and distribution of activated T cells in a lymph node.

To this end, we investigated the following outcome measures:

• Dynamics of activated T cells and numbers of effector T

cells in the computational domain – in simulations of up

to Day 28;

• The cumulative outflux of activated and effector T cells –

we considered this measure as a characteristic outcome of

the adaptive immune response intensity;

• Mean affinity values of activated T cells and T cell

effectors leaving the LN compartment through medullary

sinuses over the 28 days of simulation, along with a

calculated distribution of affinities. These characteristics

may quantitatively illustrate CTLA-4 effects on the TCR

repertoire diversity and expansion.

Calculations of prediction intervals (90% PI) for each

of the model outcomes were performed via 50 independent

ABM simulations, using identical model parameter values, yet

different randomly generated initial T cell and DC positions

within the computational domain.
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The hypothetical mechanisms of anti
CTLA-4 e�ect consideration

Based on the proposed ABM agents and rules, two subsets

of model parameters may be delineated: (i) those parameters

associated with T cell activation dynamics; and (ii) those

parameters related to the influence of TCR affinity on T

cell priming and expansion. Parameters within each subset

were measured using consistent units and drove similar

biological processes.

The first subset of parameters relates to the level of T cell

activation, which increases during contacts with DCs. It includes

the threshold activation level, Sthr , and the saturation value of

the activation level during one contact, α. Here, we fixed Sthr = 2

and varied α to account for CTLA-4 blocking, e.g., “1” for

control immunosuppressive conditions and “3” for anti CTLA-4

blocking effect. These parameter values agree with experimental

observations showing that anti CTLA-4 blockade does not alter

the settings for intercellular interactions (Sthr), but rather makes

the TCR activation signal stronger [27].

The second set of parameters includes the T cell mean

affinity, E
[

Aff
]

, and the half-maximal effective affinity (similar

to an EC50 value), with effects on the primary activation,

Kprime, and the duration of short contacts, Kprolif. Here we fixed

E
[

Aff
]

= 0.02, since there was no literature-based evidence of

an increase in affinity across activated cells and/or effector cells;

only an expansion of the clonal repertoire has been reported [17,

18]. Therefore, Kprime and Kprolif values were varied to mimic

CTLA-4 blockade; i.e., higher Kprime and Kprolif values of 0.02

meant higher required affinities for activation and corresponded

to control conditions, while lower Kprime and Kprolif values of

0.01 were used to model anti CTLA-4 therapy.

Software packages

All scripts and program modules were written using

NetLogo, an agent-based programming language [28].

Calculations were carried out within the NetLogo 6.1.1

computational tool. Data processing and visualization of

simulation results were performed in the R 3.5.1 statistical

language using the tidyverse 1.2.1 set of packages, which

includes ggplot2 3.3.2 and dplyr 0.8.3. All calculations were

performed on a desktop computer with an Intel Core i9-9980XE

CPU (18 cores, 3.00 GHz each with 2 logical threads). We used

one thread per one ABM run. An average CPU time of ∼50

mins per ABM simulation was estimated. Additional details

on model development and analyses, such as the setting of

parameter values, results of explorations of the model parameter

space, as well as NetLogo 6.1.1 model scripts are provided in

the Supplementary material. The NetLogo 6.1.1 model code, as

well as the R scripts representing the plot production have also

been uploaded to an open-source repository and are available

under: https://github.com/Potamophylax/ABM_anti-CTLA-4/.

Results

Based on the currently available experimental data, we

investigated three primary hypotheses of CTLA-4-dependent

modes of action in a LN: (I) an increase in the probability

of priming [18, 21]; (II) an increase in the duration of short

contacts [17]; and (III) an increase in the magnitude of

the activation signal during short contacts [27]. As a fourth

hypothesis, we also investigated outcomes for combinations

of these mechanisms. To test the hypothesis (I), CTLA-4 was

allowed to modulate the value of the Kprime parameter in

Equation 2, which links the TCR affinity to the probability

of priming. To test hypothesis (II), CTLA-4 was allowed to

regulate T-cell proliferation by modulating the Kprolif parameter

in Equation 3, which links the TCR affinity to the duration

of short contact. To test hypothesis (III), CTLA-4 was allowed

to regulate the α parameter in Equation 4, which modulates

the activation signal accumulation during the short-contacts

phase of T cell proliferation. We then also explored all possible

combinations of these three CTLA-4 mechanisms of action.

Corresponding numerical experiments were performed using

the proposed 2D ABM framework. All graphs representing

activated T cell dynamics (Figures 3A, 4A, 5A, 6A) are based

on measurements from 50 simulations of 28 days each. Lines

represent median values; shaded areas represent 90% PI. The

comparative T cell affinity distributions (Figures 3B, 4B, 5B, 6B)

were built based on LN T cell production during long steady-

state periods – 280 days of simulation. TCR affinity distributions

of activated T cells represent the TCR repertoire diversity in

control and anti CTLA-4 blocking therapy conditions.

Numerical experiments testing single
hypotheses

In a first set of ABM numerical experiments, we investigated

the effect of CTLA-4 inhibition on the probability of T

cell priming. Here, we assumed that the administration of

an anti CTLA-4 blocking antibody would cause a two-fold

decrease in Kprime, as compared to control conditions. As

shown in Figure 3, the model-based application of a CTLA-

4 inhibitory effect led to a ∼two-fold increase in the steady-

state level of activated T cells in the system. In addition, an

increase in the priming probability caused by the anti CTLA-

4 action significantly boosted the rate of activated T cells

accumulation. The CTLA-4 blockade also led to a faster (1.25 vs.

7 days) attainment of a steady state in the immune activation

level, potentially caused by an accelerated T cell proliferation

(Figure 3A). As shown in Figure 3B, the corresponding mean
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FIGURE 3

(A) Population dynamics of activated T cells in the LN T zone during immune response initiation: Control conditions (red) and after

administration of an anti CTLA-4 blocking antibody (blue). (B) A�nity distributions of activated T cells: Dotted vertical lines represent mean

a�nities for control and anti CTLA-4 conditions. Scenarios used di�erent a�nities corresponding to a 50% priming probability Kprime: 0.1 (blue;

anti CTLA-4 blocking antibody) and 0.2 (red; control). Corresponding data files are available at the free repository GitHub at: https://github.com/

Potamophylax/ABM_anti-CTLA-4/tree/main/Numerical%20Results/Hypothesis%20I.

FIGURE 4

(A) Population dynamics of activated T cells in the LN T zone during immune response initiation: Control conditions (red) and after

administration of an anti CTLA-4-blocking antibody (blue). (B) A�nity distributions of activated T cells: Dotted vertical lines represent mean

a�nities for control and anti CTLA-4 conditions. Simulations were run under scenarios with di�erent a�nities that corresponded to a

semi-maximal duration of short contacts, Kprolif: 0.1 (blue; anti CTLA-4 conditions) and 0.2 (red; control). Corresponding data files are available

at the free repository GitHub at: https://github.com/Potamophylax/ABM_anti-CTLA-4/tree/main/Numerical%20Results/Hypothesis%20II.

affinities of activated T cell distributions were 0.120 and 0.085

for control and CTLA-4 inhibition scenarios, respectively.

It is noteworthy that a change in the priming probability

resulted in a bimodal affinity distribution of activated T

cells (Figure 3B). This can be explained by the fact that

the balance between the number of T cells with a certain

affinity in the computational domain and the affinities of semi-

maximal priming probability and semi-maximal duration of

short contacts, Kprime and Kprolif values, are important. In the

described system, two local maxima appear. Presumably, the first

distribution density peak may be associated with the primary

activation of low-affinity cells, due to low requirements on

Kprime. The second peak may be the result of primary activation

and further slow proliferation of higher affinity clones, which

represent aminority of cells. If we remove the difference between

Kprime and Kprolif, the two affinity density peaks coalesce. A
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FIGURE 5

(A) Population dynamics of activated T cells in the LN T zone during immune response initiation: Control conditions (red) and after

administration of an anti CTLA-4 blocking antibody (blue). (B) A�nity distributions of activated T cells: Dotted vertical lines represent mean

a�nities for control and anti CTLA-4 conditions. Simulations were run under scenarios with di�erent values for the activation signal amplitude: α

= 3 (blue; anti CTLA-4 conditions) and α = 1 (red; control). Corresponding data files are available at the free repository GitHub at: https://github.

com/Potamophylax/ABM_anti-CTLA-4/tree/main/Numerical%20Results/Hypothesis%20III.

FIGURE 6

(A) Population dynamics of activated T cells in the LN T zone during immune response initiation: Control conditions (red) and after

administration of an anti CTLA-4-blocking antibody (blue). (B) A�nity distributions of activated T cells: Dotted vertical lines represent mean

a�nities for control and anti CTLA-4 conditions. Values used for simulations: α = 3, Kprime = 0.1, Kprolif = 0.1 (blue; anti CTLA-4 conditions); and

α = 1, Kprime = 0.2, Kprolif = 0.2 (red; control conditions). Corresponding data files are available at the free repository GitHub at: https://github.

com/Potamophylax/ABM_anti-CTLA-4/tree/main/Numerical%20Results/Hypothesis%20IV.

similar behavior with two peaks was observed when considering

the action of anti CTLA-4 on the two model parameters: Kprime

and α (see Supplementary Figure S2).

In a second set of numerical experiments, we considered an

anti CTLA-4 action during the proliferation stage of T cells and

its effect on the duration of short contacts between activated

T cells and DCs. A decrease in Kprolif and, consequently,

an increase in the number of sufficiently long contacts for

incremental activation of clones with low TCR affinity led to

an increase in the steady-state level of activated T cells in the

system. Figure 4 shows the effect of a two-fold decrease in Kprolif

from a control value of 0.2, as caused by CTLA-4 inhibition.

Interestingly, under this simulation scenario, the dynamics of

the immune response activation appear to be significantly slower

compared to the case where anti CTLA-4 affects the T cell

priming probability. The number of activated T cells thus

reaches a plateau around Day 14, under anti CTLA-4 conditions,

vs. Day 7 under control conditions. Under anti CTLA-4
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conditions, the steady-state value fluctuates around 80 T cells.

In this second scenario of CTLA-4 blockade, the TCR affinity

distribution has broadened: corresponding standard deviations

were 0.034 vs. 0.026 (see Table 1). Also, this scenario resulted in

a moderate decrease in the mean of TCR affinity distributions

(0.10 vs. 0.12; see Figure 4B). Therefore, an increase in the

duration of short contacts for activated T cells, with further

cell division and proliferation, led to a spreading of affinity

distribution, with sub-populations of cells of lower affinities in

the computational domain, as compared to control conditions

(no CLTA-4 inhibition).

In a third set of in silico experiments, we explored effects

following modulation of the maximal signal level, α, which

can be reached during a single contact between an activated

lymphocyte and an APC. In these experiments, α was assumed

to be affected by CTLA-4 inhibition. The higher the saturation

level in a single short contact, the lower the number of short

contacts required to reach the threshold level, Sthr, and the

more intensive the activation of T cell clones in the system. We

tested values for α of 1 and 3 for control and CTLA-4 inhibition

scenarios, respectively (Figure 5). Similarly to the second set of

numerical experiments, slow dynamics in immune activation

were observed under treatment. The number of activated T cells

reached a plateau at ∼Day 11 (anti CTLA-4 conditions) vs.

∼Day 7 (control). Immune response activation led to a 1.5-fold

increase in the level of activated T cells (see Figure 5A). This

third hypothesized mechanism of action of CTLA-4 inhibition

exhibited the smallest and a nearly non-significant effect on the

final distribution of activated T cell affinities (see Figure 5B);

mean affinities of activated T cells were 0.120 and 0.124 for,

respectively, control and anti CTLA-4 conditions (Figure 5B).

Numerical experiments testing
combinations of hypotheses

In a fourth set of numerical experiments, we explored

the effects of combining all three hypothesized mechanisms

of action of an anti CTLA-4 blocking antibody, namely: (I)

an increase in the probability of priming; (II) an increase in

the duration of short contacts; and (III) an increase in the

magnitude of the activation signal during short contacts. As

shown in Figure 6 and Table 1, the combined effects of all three

mechanisms exceeded the sum of the effects at steady-state

regime incurred via each mechanism taken separately, which

allows us to declare the independence of these mechanisms and

dissect out additive vs. synergistic effects based on these multiple

mechanisms. Under CTLA-4 inhibition conditions, a nearly five-

fold increase in activated T cells and an accelerated proliferation

of activated T cells was reached: the number of activated T

cells—as observed in the control group—was reached within

1.25 days (see Figure 6A). Under this fourth scenario testing anti

CTLA-4 mechanisms of action in combination, a clear effect on

the final distributions of activated T cell affinities was observed,

during development of the immune response. For activated

T cells, mean affinities were 0.12 (control) vs. 0.07 (CTLA-

4 inhibition conditions) (Figure 6B). According to this fourth

scenario, the immune response development may thus result in

a significant shift in T cell affinities, away from the antigen of

interest, yet with a corresponding increase in T cell numbers.

A compelling observation was also made, when comparing

the numerical testing of single vs. combination hypotheses.

In single hypothesis scenarios, the density distributions plots

for control vs. CTLA-4 inhibition conditions overlapped

significantly; when combining hypotheses, these distributions

overlapped only slightly (Figure 6B). One explanation may be

that most of the rare high-affinity T cells simply lose most

of their “advantage” in search for contacts with DCs, under

conditions of combined mechanism-of-action hypotheses. The

main source of de novo added T cell clones (vs. control) to

participating in the immune response build-out would be low

affinity T cell clones. If so, the proportion of high-affinity clones

would decrease against an increase in low-affinity clones which

will have gained the opportunity to proliferate.

Simulation results and graphs for the single and

pairwise testing of anti CTLA-4 mechanistic hypotheses

(via testing of various parameter combinations) are given in the

Supplementary materials to this paper. A tabular comparison

of all tested anti CTLA-4 mechanistic hypotheses and their

combinations is presented here in Table 1.

To compare the effects of various anti CTLA-4 mechanistic

hypotheses, we used Equation 6 to describe the effect of anti

CTLA-4 blocking therapy:

Effhyp = NTChyp − NTCControl (6)

where Eff hyp represents the effect of blocking therapy according

to one of the enunciated hypotheses, NTChyp is the median

value of activated T cell numbers at steady-state (with anti

CTLA-4 inhibition according to one of the hypotheses), and

NTCControl is that same median value under control (no anti

CTLA-4) conditions.

To consider potential synergistic effects (1Eff hyp)

when simulating two or three mechanistic hypotheses in

combinations, we used Equation 7 to describe the “effect

differential” between the total effect of a given hypothesis

(Effhyp) and the sum of the effects which would have

resulted from the elementary mechanistic hypotheses taken

separately (Effhypi):

1Effhyp = Effhyp −
∑

i

Effhypi (7)

where Effhyp is calculated according to Equation 6.

As shown in Table 2, of the three individual anti CTLA-

4 mechanism-of-action hypotheses, it is the increase in the

priming probability which had the greatest effect on the

level of activated lymphocytes: EffI = 38. A super-additive
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TABLE 1 Comparison of various anti CTLA-4 mechanism-of-action hypotheses and their possible combinations, in terms of activated T cell

steady-state levels in LN and a�nity distributions of activated lymphocytes leaving the lymph nodes.

Hypothesis Median

activated T cell

SS level

Activated T

cell SS level,

90% PI

Time to SS,

days

Activated T

cells mean

affinity

SD of activated

cells affinity

IQR of

activated cells

affinity

0 (Control) 52 [39, 67] 7 0.120 0.026 0.031

I (Kprime) 90 [81, 99] 7 0.085 0.033 0.050

II (Kprolif ) 80 [66, 96] 14 0.100 0.034 0.046

III (α) 82 [86, 96] 11 0.124 0.029 0.033

I+ II 173 [158, 190] 8 0.067 0.024 0.030

I+ III 139 [125, 147] 6 0.085 0.034 0.053

II+ III 123 [106, 143] 12 0.102 0.036 0.046

I+ II+ III 257 [239, 274] 9 0.070 0.025 0.030

IQR means interquartile range (difference between the 75th and 25th percentiles).

TABLE 2 Calculated e�ects of anti CTLA-4 inhibition for the various

mechanistic hypotheses, as estimated using Equations 6, 7 (for

combinations of hypotheses).

Hypothesis NTChyp Effhyp Effhyp

0 (Control) 52 0 0

I (Kprime) 90 38 0

II (Kprolif ) 80 28 0

III (α) 82 30 0

I+ II 173 121 55

I+ III 139 87 19

II+ III 123 71 13

I+ II+ III 257 205 109

effect was observed and was greatest when considering a

combination of mechanisms (I + II), namely, the simultaneous

action of anti CTLA-4 inhibition on Kprime and on the

duration of short contacts (Kprolif): Eff I+II = 55. When the

three hypothesized anti CTLA-4 inhibition mechanisms were

considered jointly, this super-additive effect became even greater

with Eff I+II+III = 109.

Anti CTLA-4 inhibition reduced the mean affinity of

activated T cells, if implemented through mechanisms I and II.

On the contrary, an increase in the amplitude of the activation

signal α (mechanism III) slightly increased the mean affinity.

Combinations of mechanisms (I + II) and (I + II + III) thus

reduced the mean affinity by the greatest extent (by nearly 45%),

as shown in Table 1.

However, it is interesting to note that anti CTLA-4 inhibition

did not have a clear effect on the spread of the activated T cell

affinity distribution (Table 1). Hypothesized mechanisms (I +

II) and (I + II + III) resulted in a narrowing of the affinity

distributions by 7 and 3%, as compared to immunosuppressive

control conditions. All other hypothesized mechanisms led to

a more pronounced spread of the affinity distribution. The

greatest spread was obtained for a combination of mechanisms

(I+ III) and (II+ III)—to up to 71%.

Discussion

In this modeling study, we updated a previously developed

ABM framework [24] and used the extended model to

better characterize functional consequences under various

mechanisms of action underlying anti CTLA-4 inhibition. We

focused here on anti CTLA-4 modulation of T cell-to-DC

interactions in a LN and the subsequent development of T cell

immune response. Using multi-agent model simulations, we

revealed emergent system behavior characteristics which may

arise from multiple and specific cell-cell interactions.

Several laboratories have explored and reported anti CTLA-

4 inhibition dynamics, with their subsequent effects, at a

molecular level. Jansson et al. [29] developed a framework for

the quantitative analysis of costimulatory complex formation,

considering B7-ligand binding with CTLA-4 and CD28 receptor

molecules, respectively, within the immunological synapse. The

effects of antibody mediation on the complex formation at

synapse level were modeled by Ganesan et al. [30]; the authors

analyzed the effects of adding anti CTLA-4 antibodies, on

the immunological balance between co-stimulatory interactions

(formed by CD28 and B7 ligands) and co-inhibitory interactions

(formed by CTLA-4 and B7 ligands) at the synapse, using a

free diffusion model. In parallel, the current ABM work uses

molecular level representations and translates these into meso-

level effects within tissues and organs.

Spatial multi-agent ABM describing immune checkpoint

inhibitors (ICI) and their functional consequences have been

used previously. Gong et al. [31] examined the effects of

immunotherapy using a stochastic approach. However, this

earlier study was devoted to the action of anti PD(L)-1 therapies.
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Also, the main compartment considered by these authors was

the tumor tissue itself, while we focused here on the LN T

zone as the main site for immune response initiation and

CTLA-4 dependent effects. Additionally, agent-based modeling

might not represent the most appropriate modeling approach

when describing highly densely packed tissues such as solid

tumors, where newly dividing cells are in close proximity to each

other, thereby limiting spatial effects mediated by, e.g., cellular

migration [24].

Similar limitations may apply to the modeling work

presented by Kather et al. [32]; despite the abundance of anti-

cancer therapy types considered by the authors, they did not

consider direct effects of anti CTLA-4 inhibition, since their

work was focused on the in silico reproduction of tumor

structures, rather than systemic effects on immune T cell

response initiation.

A complex systems pharmacology model based on

differential equations has been presented by Wang et al.

[33]. This mechanistic, 4-compartment systems model

considered central, peripheral, tumor-draining LN, and

tumor compartments. The main quantitative output of this

modeling effort was the prediction of tumor tissue growth

dynamics (tumor diameter) under anti CTLA-4, anti PD-L1

mono-therapies and their combinations; the work also aimed

at revealing potential biomarkers linking treatment outcome

predictions to specific patient characteristics. The model was

able to describe T effector dynamics in the tumor-draining LN

compartment, although it ignored CTLA-4-dependent effects

on T cell repertoire diversity and expansion, which are crucial

for capturing anti CTLA-4 mechanism(s) of action [17, 18].

Butner et al. presented an even larger-scale immune-

oncology systems model of ICI therapies (including anti

CTLA-4), which relies on survival data and tumor size data

derived from CT scans, to potentially identify biomarkers

linking patient characteristics to response to immunotherapy

[34]. The model was retrospectively applied and calibrated on

patient survival data. However, such a model cannot take into

consideration stochastic processes at the micro-scale level of

immune activation, unlike the ABM framework presented here,

an approach more suited to describe complex adaptive systems

and more applicable given its sensitivity to initial conditions—

conditions which may allow for specific naïve T cells to play

an important role in the overall immune response, even when

initially present in low and stochastic abundances [35].

Using the presented ABM framework, we systematically

assessed, via simulations, a set of mechanisms potentially

driving anti CTLA-4 inhibition in the stimulation of an

immune response. T cell affinity distributions with higher mean

values clearly enhanced the density of activated clones in the

computational domain. However, using values of E
[

Aff
]

>

0.1 may not be immunologically relevant (unrealistically high

number of naïve T cells with high affinity to a particular

specific antigen) and yield misleading simulation results. We

thus considered a more plausible mechanism of action: since

CTLA-4 surface suppression is induced right after initial TCR

stimulation during the contact of a DC with a naive T cell

[36], we specifically hypothesized the following mechanisms of

action, to be tested via ABM simulations: (I) an increase in T

cell priming probability; (II) an increase in the duration of short

DC-to-T cell contacts, for the same TCR affinity values; (III)

an increase in the saturation level of the cumulative activation

signal; and combinations of these various mechanisms, which

may be applied and tested simultaneously within the model.

Of all three hypothesized individual mechanisms, it is

mechanism (I) above, an increase in the priming probability

(i.e., a decrease in Kprime) which resulted in the highest

level of T cell activation. Mechanisms (I + II), i.e., the

simultaneous actions of anti CTLA-4 inhibition on Kprime

and on the duration of short contacts (Kprolif), resulted in

the highest super-additive effect in terms of T cell activation,

when considering any two of the mechanistic hypotheses in

combination. When all three mechanisms (I + II + III) were

considered jointly, the highest synergistic effect on T cell

activation was observed, clearly indicative of the importance of

multi-level anti CTLA-4-dependent actions. Another important

observation based on these numerical simulations is that anti

CTLA-4 blockade significantly reduced (by nearly 45%) the

mean affinity of activated T cells, only when considering

combinations of mechanisms (I + II) and (I + II + III).

In summary, the present ABM study showed that only a

combination of anti CTLA-4 inhibition mechanisms, acting

jointly (i.e., effects on the priming probability and on the

motility of activated T cells) may possibly lead to the immune

cellular behavior and ‘signature’ observed in ICI clinical studies,

i.e., simultaneous increases in the number of activated T cells

[37–39] and in the respective TCR repertoire diversity [19–21,

40, 41]. Therefore, these simulations also support the hypothesis

that ICI therapies may rescue the ability of antigen-dependent

migration arrest and stabilize complexes of DC and activated T

cells [23]. Such simulation results are also fully consistent with

effects observed in both in vitro and in vivo studies [5, 42].

A better understanding of effects linked to various anti

CTLA-4mechanisms of actionmay have important implications

in the development of anti-cancer immunotherapies. In

particular, it has been shown that anti CTLA-4 blockade

correlates with a significant increase in immune-mediated

adverse events (imAEs), which may cause tolerability issues and,

in severe cases, treatment discontinuation [43]. It has also been

shown that the incidence rate of imAEs is dependent on the

dose and exposure of anti CTLA-4 therapies [44]; furthermore,

this dependence may be significantly amplified when combining

anti CTLA-4 with anti PD-(L)1 therapies [45]. Such tolerability

issues limit the clinical use of anti CTLA-4 plus anti PD-(L)1

combinations still today [22, 46]. While the exact mechanisms

causing the CTLA-4-dependent autoimmune adverse effects

have not yet been fully uncovered [47], one of the key factors
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identified relates to the accumulation of autoreactive cytotoxic

cells caused by the broadening of the TCR repertoire following

anti CTLA-4 blockade [19, 41]. There are clinically promising

strategies to overcome tolerability issues and uncouple these

from beneficial anti-tumor effects, e.g., by limiting the number

of anti CTLA-4 treatment cycles [48] or via intratumoral or

subcutaneous administration of CTLA-4 blocking antibodies

[49, 50]. The ABM simulation framework presented here may

provide rational mechanistic grounds to interrogate and support

alternative treatment scenarios and schedules envisaged in the

clinic. We propose that the integration of agent-based models

and quantitative systems pharmacology models (QSP) may

describe the entire chain of interactions and developments

between malignant tumors and the immune system ab initio,

starting with the primary activation of specific single T

lymphocytes. The QSP model, based on mechanistic differential

equations would, in turn, allow for the testing of different dosing

regimens and the quantitative evaluation of the effects of T cells

on the tumor.

Several limitations to the presented ABMmay be considered.

From a biological and immunological complexity perspective,

several simplifications needed to be made, to implement the

considered mechanistic scenarios while maintaining model

tractability. In particular, T cells do display hybrid properties;

for example, they may exist as mixed CD4+/CD8+ phenotypes.

We deliberately did not distinguish between, e.g., T helper and

cytotoxic T killer phenotypes and did not focus on secondary

interactions whereby CD4+ T helpers would influence the

activation of other immune cells. Also, interactions between

DCs and T cells are mediated by many additional factors

which have not been considered here and would significantly

increase the complexity of an immune response initiation.

Another obvious limitation is that we did not account for

pharmacokinetic and dose-exposure vs. response features of

an anti CTLA-4 therapy, with pharmacodynamic nuances that

could be achieved based on various anti CTLA-4 antibody

dosing regimens, as shown in previously published agent-

based and systems pharmacology modeling work [51]. Instead,

we used a constant, “uniform” inhibition of CTLA-4, to

reveal fundamental emerging properties of the system, in the

initiation and development of an immune response under

specific conditions described in this ABM framework. Another

limitation of the present model is that it can describe,

realistically, only the potential increase in the number of

activated clones and the subsequent achievement of steady-state

values of activated T cell numbers, and not the subsequent

decrease in T cell numbers. The elimination of specific antigens

presented on DCs, as a complex physiological process that

requires further careful study, remained outside the scope of this

work. The main scope of the present study was the effect of anti

CTLA-4 on T cell immune response initiation and magnitude,

and on activated T cell TCR affinity distribution.

These limitations being considered, the insights gained

via such an agent-based model may nevertheless provide

further mechanistic input to deterministic quantitative systems

pharmacology models (as “prior information” to set up

biological details within the model structure) previously

validated based on experimental data [45]. More granular,

micro-scale multi-agent ABM may be combined with a

deterministic systems model to formulate a hybrid mechanistic

modeling framework, whereby the spatial behavior, immune

development and T cell response dynamics may be described

with sufficient mechanistic details [32].

Further developments of the current model may certainly be

foreseen, to gain further quantitative insights and with increased

mechanistic granularity. For example, additional immuno-

suppressive cell types such as Treg may be implemented in

the model, to capture potential anti-tumor effects caused by

the antibody-dependent cell cytotoxic depletion of Tregs [52,

53]. The present ABM approach is sufficiently flexible to

include separate types of mobile immune agents, to further

characterize the complex behavior of the immune response.

Tregs in particular may be implemented; these cells exhibit an

increased membrane expression of CTLA-4 molecules and are

capable of interfering with the T cell activation process, during

interactions with APCs in the LN.

Also, the model may be expanded to introduce other

types of immuno-modulatory inhibitors and activators, such as

pharmacological agents which would affect the adaptive immune

tolerance process through an inhibition of the PD-1/PD-L1

regulatory axis. To take into account PD-L1 effects, it will

be necessary to augment the present model by implementing

a second compartment representing tumor tissue or another

tissue of interest. Anti PD-1/PD-L1 effects have been considered

and implemented recently, in several ABM publications. To

reproduce the blocking (e.g., using a monoclonal antibody) of

PD-L1 at the surface of tumor cells—thereby inhibiting PD-

L1 binding to PD-1 on effector T cell and thus limiting T

cell exhaustion, Gong et al. [31] altered parameter values that

govern T-cell suppression. Upon immunotherapy initiation,

these authors reduced the probability of a cytotoxic T cell being

suppressed by a PD-L1+ tumor cell. Kather et al. [32] included

the effect of anti PD-(L)1 immunotherapy by re-invigorating

exhausted lymphocytes and increasing their resistance in

response to suppression by macrophages. To incorporate PD-

1/PD-L1 checkpoints within the model, Storey and Jackson [54]

applied an additional multiplier on the probabilities capturing

(i) the innate immune-mediated activation of adaptive immune

cells and (ii) tumor cell-mediated T cell proliferation, by a

factor which represents the suppression of T cell activation and

proliferation via the PD-1/PD-L1 checkpoint. Ruiz-Martinez

et al. [55] introduced PD-1-dependent T cell exhaustion as a

separate state of CD8+ cells. Once these get exhausted, their

cytotoxic capability toward tumor cells would get suppressed.
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