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Double sampling (DS) control charts are widely regarded as an e�ective

process monitoring tool owing to their remarkable properties, such as the

ability to detect small and moderate process shifts e�ciently with the

reduced sample size. Since the shape of the run length distribution is highly

right-skewed for the process small shift size and becomes almost symmetric

when the process shift size is large, the use of median run length (MRL) as a

performance measure is therefore more representative. Existing works on the

DS np chart construction were performed by taking an approach that the shift

size of the process fraction nonconforming is assumed to be known. However,

the shift size of the fraction nonconforming is usually unknown by the quality

practitioners in practice. Herein, to address this issue, the expectedmedian run

length (EMRL) has been suggested as a performancemeasure for the unknown

shift size. This paper suggests an optimal design procedure for the DS np

chart based on the EMRL criterion. An example is provided to illustrate the

construction of the EMRL-based DS np chart. The DS np chart is compared

with a competing chart based on the EMRL criterion. Findings obtained reveal

that when the shift size is unknown, the EMRL is an alternative performance

measure for the DS np chart, with greater sensitivity observed for the DS np

chart in contrast to the standard np chart for detecting a wide range of shifts.

KEYWORDS

median run length, unknown shift size, fraction nonconforming, numerical

integration, standard np chart

Introduction

Control chart is one of the most useful tools in Statistical Process Control since

control charts play a key role in detecting the assignable cause(s) [1]. Other effective way

to mitigate the incidence of false alarm rate and to increase the control chart sensitivity

includes the fuzzy logic scheme [2–6], which combines the probability and fuzzy set

theories for enabling inference of process state based on fuzzified sensitivity criteria.

When the quality characteristics can only be classified into two possible outcomes, for

instance, “Yes or No,” “Good or Bad,” “Conforming or Nonconforming,” and “Defective

or Non-defective,” it is not possible to monitor the process using the variable control
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charts, such as the X̄, s, and R charts. In such a scenario, attribute

control charts will be the right choice.

The standard np chart is one of the attribute control charts

that has been widely used for process monitoring. Compared to

the p chart, the standard np chart is also easier to understand by

managers who are lack of statistical knowledge and new to the

quality control system. This provides more persuasive evidence

of quality issues to management [7]. However, the standard

np chart is well known to be slow in detecting moderate and

small process fraction nonconforming (p) shifts. Consequently,

considerable attentions have been devoted to develop np chart

with various approaches for enhancing the sensitivity of the

standard np chart in the literature, such as the optimal design

for the cumulative sum (CUSUM) np chart by Gan [8] and

the modified exponentially weighted moving average (EWMA)

np chart by Gan [9]. Adaptive technique to develop np control

chart has also been studied. Case in point, Epprecht and Costa

[10] investigated the np properties for sample size that fluctuates

between small and large sizes, while Luo and Wu [11] proposed

optimal designs of variable sample size and variable sampling

intervals np charts under steady-state mode.

Croasdale [12] was the first to introduce the DS scheme,

bringing the concept of DS process from the acceptance

sampling field and applying the technique to the X̄ chart.

Following Croasdale [12], Daudin [13] demonstrated that by

employing the sample size of n1 at stage 1 and combining two

samples of size n1 and n2 at stage 2 can improve the performance

of the X̄ chart and this reduces the number of items to be

inspected, resulting in a cost-saving benefit in themanufacturing

process. As a result, the DS scheme developed after 1992, such as

He and Grigoryan [14], Costa and Claro [15], Torng and Lee

[16], Khoo et al. [17], and De Araujo Rodrigues et al. [18], to

name a few, were based on themethod proposed by Daudin [13].

De Araujo Rodrigues et al. [18] were the first to introduce the DS

np chart. Chong et al. [19], Joekes et al. [20], Lee and Khoo [21],

and Tuh et al. [22] have since focused their studies around the

proposed DS np chart.

The performance of the control charts is usually evaluated

by the average run length (ARL). ARL is defined as the average

number of samples to be plotted on the control chart before the

out-of-control signal is observed. However, many researchers

criticized the sole dependence of the ARL as the performance

measure of control charts, for example, see Teoh et al. [23], Khoo

et al. [24], Lee and Khoo [25], Smajdorová and Noskievičová

[26]. In addition, as pointed out by Graham et al. [27], the ARL

as a performance measure has many drawbacks. It is noted that

the run length (RL) distribution is changing from highly right-

skewed when process shift size is small to almost symmetric

when process shift size is large. Consequently, utilizing the ARL

as a performance measure may neglect some vital statistical

properties of control charts. Chakraborti [28] recommended to

investigate the percentiles of the run length distribution such as

5, 25, 50 (median), 75, and 95th percentiles to have a better vision

and evaluation of the RL distribution. Utilizing the median run

length (MRL) that is the 50th percentile of the RL has some

additional benefits in designing control charts [29–31]. This is

due to the fact that the MRL is less impacted by the skewness

of the RL distribution. Thus, the MRL provides a more accurate

measure of the central tendency compared to the ARL [32].

Existing work on the DS np control chart based on MRL

by Tuh et al. [22] assumes the shift size is known. However,

the shift size of the process fraction nonconforming is usually

unknown by quality practitioners. The performance of control

charts may be negatively impacted if the determined shift size

differs from the actual value. To overcome this issue, it is crucial

to consider the expected median run length (EMRL) as an

alternative performance measure, where only a range of process

shift sizes is required. You et al. [33], Teoh et al. [34], Tang

et al. [35], Chong et al. [36], and Yeong et al. [37], to name

a few, evaluated the performance of control charts when the

process shift size is unknown. Motivated by these studies, we

suggest the optimal design of the DS np chart based on EMRL

in this paper.

The paper is structured as follows: Section Theories

and formulations begins with a brief introduction of the

standard np and DS np charts, followed by a discussion of

the RL distribution properties of the DS np chart. Section

Computational methods and results presents the optimization

design of the EMRL-based DS np chart, performance of the

DS np chart, and comparison to that of the standard np

chart. The operability of the DS np chart is also furnished

through an illustrative example incorporating event within a

data processing department. Finally, the conclusion is given in

section Conclusions.

Theories and formulations

The standard np chart

The goal of the standard np chart is to detect the

assignable causes for increasing shift in the process fraction

nonconforming. As a result, the standard np chart is designed

without a lower control limit. According to Lee and Khoo [29],

the probability that d < UCL is calculated as follows:

AS = P
(

d ≤ ⌊UCL⌋
)

=

⌊UCL⌋
∑

d=0

n!

d!
(

n− d
)

!
pd

(

1− p
)n−d

(1)

where p = p0 when γ = 1, and p = p1 when γ 6= 1. The d

and UCL represent the number of nonconforming items found

in a sample of size n and upper control limit of the standard np

chart, respectively.
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FIGURE 1

Regions at stages 1 and 2 of the DS schemes.

The DS np chart

In this section, we give a brief review of the DS np chart,

which was first introduced by De Araujo Rodrigues [18]. To

achieve the desired statistical performance, the DS np chart is

designed with five charting parameters. We define the set of

charting parameters as n1, n2, WL, CL1, and CL2, where n1, n2,

WL, CL1, and CL2 denote the size of the first sample, the size

of second sample, the stage 1 warning limit, the stage 1 control

limit, and the stage 2 control limit, respectively. The three non-

integer control limits are set asWL=Ac1 + 0.5, CL1 = Re – 0.5,

and CL2 = Ac2 + 0.5 to avoid doubt by quality practitioners

when the number of nonconforming items in a sample falls

within or outside the control limits. In these expressions, Ac1,

Re1, and Ac2 are the acceptance number in the first sample, the

rejection number in the first sample, and the acceptance number

in the stage 2, respectively. The operation of the DS np chart

is elaborated in the following steps. The graphical summary is

shown in Figure 1.

Step 1. Determine the limits that are WL, CL1, and CL2.

Step 2. Take the first sample of size n1 from the process and

check the number of nonconforming items (d1).

Step 3. At the stage 1 of the DS scheme,

a) if d1 < WL, the process is considered as in-control and

return to Step 2.

b) if d1 > CL1, the process is considered as out-of-control.

For the purpose of identifying and eliminating the

assignable cause(s), corrective measure is performed.

Repeat Step 2.

c) if WL < d1 < CL1, take a second sample with size n2.

Count the number of nonconforming items (d2) for the

second sample. Then, move to the next step, which is

stage 2 of the DS scheme.

Step 4. If (d1 + d2) < CL2, the process is considered to be

in-control and return to Step 2. Else, the process is deemed

to be out-of-control. To locate and remove the assignable

cause(s), corrective action is once again performed. Repeat

Step 2.

The run length properties of the DS np

chart

In general, RL denotes the number of sample points plotted

on the DS np chart before the first signal is observed. The

probability mass function (pmf) fRL (ζ ) and the cumulative

distribution function (cdf) FRL (ζ ) of the RL distribution for a

control chart are

fRL (ζ ) = (1− A)Aζ−1 (2)

and

FRL (ζ ) = P (RL ≤ ζ ) = 1− Aζ , (3)

respectively [38], where ζ ∈ {1, 2, 3, 4, . . .} and A is calculated

by Equations (5) and (6).
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As suggested by Chakraborti [28], the smallest integer of the

percentile run length, ζα , can be obtained from

ζα ≥
ln (1− α)

lnA
(4)

facilitates the computation for the 100αth (0< α < 1) percentile

of the RL.

The probability that the process is in-control is given by

A = A1 + A2. Here, A1 denotes the probability that d1 < WL

at the stage 1 of the DS scheme, while A2 is the probability that

WL < d1 < CL1 at the stage 1 of the DS scheme and (d1 + d2)

< CL2 at the stage 2 of the DS scheme, where

A1 = P
(

d1 ≤ ⌊WL⌋
)

=

⌊WL⌋
∑

d1=0

n1!

d1!
(

n1 − d1
)

!
pd1

(

1− p
)n1−d1

(5)

and

A2 = P
(

⌊WL⌋ < d1 < ⌈CL1⌉
)

∩ P
(

d1 + d2 ≤ ⌊CL2⌋
)

=

⌈CL1⌉−1
∑

d1=⌊WL⌋+1





n1!

d1!
(

n1 − d1
)

!
pd1

(

1− p
)n1−d1





⌊CL2⌋−d1
∑

d2=0

n2!

d2!
(

n2 − d2
)

!
pd2

(

1− p
)n2−d2







 , (6)

where ⌊ · ⌋ denotes the round down to the nearest integer and

⌈ · ⌉ represents the round up to the nearest integer.

The efficiency of the DS np chart is determined by how fast

the chart can detect an increasing shift in the process fraction

nonconforming p with the shift size γ =
p1
p0
, where p1 > p0.

Note that p= p0 and p= p1 for the in-control (γ = 1) and out-

of-control (γ > 1) states, respectively. According to De Araujo

Rodrigues et al. [18], the ARL and the average sample size (ASS)

can be computed as

ARL =
1

1− A
and (7)

ASS = n1 + n2Ps , (8)

respectively, where Ps = P
(

⌊WL⌋ < d1 < ⌈CL1⌉
)

. The in-

control ARL (ARL0) and ASS (ASS0) are calculated when p =

p0, while the out-of-control ARL (ARL1) and ASS (ASS1) can be

obtained when p= p1.

The MRL is the RL with a cumulative probability of at least

50% of the time. The MRL can be computed using Equation (4)

by putting α = 0.5, where Equation (4) can be rewritten as

ζ0.5 ≥
ln (0.5)

lnA
, (9)

where ζ0.5 = MRL. Note that MRL = MRL0 is the in-control

MRL when γ = 1, whereas MRL = MRL1 is the out-of-control

MRL when γ > 1.

The computation of the percentiles of the RL requires

the shift size to be known in advance. However, in

practical, it is usually tough for practitioners to quantify

the magnitude of process shift due to insufficient

historical data. Aside from that, the shift size varies

according to various undetermined or random events

[39]. Thus, the percentile of the RL can be replaced by

the expected percentile of the RL (E (ζα)). Herein, a

specific value for γ is not required and can be determined

as follows:

E (ζα) =

∫ γmax

γmin

fγ (γ )ζα (γ ) dγ. (10)

Hence, the expected median run length, EMRL, that is

E (ζ0.5) can be computed as

EMRL = E (ζ0.5) =

∫ γmax

γmin

fγ (γ )MRL (γ ) dγ. (11)

In this paper, the EMRL in Equation (11) is evaluated

by using a numerical integration over the probability density

function fγ (γ ) for a shift size interval of γmin (the lower

limit of the integral) to γmax (the upper limit of the

integral). The function fγ (γ ) is assumed to have a continuous

uniform distribution over the interval (γmin, γmax) [39], with

probability density function of fγ (γ ) = 1
(γmax−γmin)

, where

γmax − γmin denotes the interval length. To incorporate exact

shift sizes, γ ∈ {1.5, 2.0, 3.0}, that were considered in Tuh

et al. [22], two intervals of the shift size, therefore, are set

in this paper: (i) (γmin , γmax] = (1.1 , 2.0] and (ii)

(γmin , γmax] = (2.0 , 3.0]. For example, the interval

(γmin , γmax] = (1.1 , 2.0] and (γmin , γmax] =

(2.0 , 3.0] include γ = {1.5, 2.0} and γ = {3.0}, respectively.

Note that MRL(γ ) denotes the MRL1 at γ . The Gauss Legendre

Quadrature is employed to estimate approximately the definite

integral in Equation (11).

This paper also evaluates the expected average run

length (EARL) and the expected average sample size (EASS)

values through

EARL =

∫ γmax

γmin

fγ (γ )ARL (γ ) dγ (12)

and

EASS =

∫ γmax

γmin

fγ (γ )ASS (γ ) dγ, (13)

respectively.
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Computational methods and results

Optimal design of the EMRL-based DS np

chart

Tuh et al. [22] investigated the performance of the DS np

chart using the MRL as the performance measure. Interested

readers may refer to Tuh et al. [22] for the detailed optimization

procedure for the DS np chart based on the MRL.

Nevertheless, the actual process shift size is usually

unknown. Thus, the DS np chart can be designed for a given

range of shift sizes (γmin, γmax], which is an alternative method.

The optimization design of the DS np chart by minimizing the

out-of-control expected median run length (EMRL1) is given as

minn1,n2,WL,CL1,CL2EMRL1 (14)

subject to:

EMRL0 ≥ MRL0min and (15)

EASS0 = n. (16)

MRL0min [in Constraint (15)] and n [in Constraint (16)]

are denoted as the predetermined in-control median run length

and predetermined in-control average sample size, respectively,

where n1 < n < n2, with both n1 and n2 are integers. Note

that EMRL0 = MRL0 and EASS0 = ASS0 are considered in

this paper.

The procedure for searching optimal (n1, n2, WL, CL1, CL2)

combination, based on the optimizationmodel in (14)–(16), and

the DS np chart based on EMRL is outlined as follows:

Step 1: Specify the desired values of p0, n, MRL0min, γmin,

and γmax. Here, n is the average sample size in each

sampling when the process is in a state of control; n is also

the fixed sample size for the standard np chart.

Step 2: Initialize EMRL1min with a very large value, say 10
5.

EMRL1min is used to keep track of the lowest EMRL1 value.

Step 3: Begin with n1 = 1.

Step 4: With the current n1 value, determine the

combination of (n1, n2, WL, CL1) for a specified n when

γ = 1, such that the Constraint (16) is fulfilled. The value

of n2 is computed through the rearrangement of Equation

(8), that is, n2 = (n−n1)�P(⌊WL⌋<d1<⌈CL1⌉)
, and is rounded up

to the nearest integer, where 0 < WL < CL1.

Step 5: Then determine CL2 based on the Equation (9)

and Constraint (15), in which the computed EMRL equals

to EMRL0 when γ = 1, where CL2 > CL1. The values

of WL, CL1, and CL2 are determined based on operating

procedure discussed in Section 2.2. In this step, the possible

(n1, n2, WL, CL1, CL2) combination is identified.

Step 6: Once the possible (n1, n2, WL, CL1, CL2)

combination has been determined, EMRL1 will be

computed for p = p1, by means of Equation (11). If the

calculated EMRL1 is less than the current EMRL1min, the

EMRL1min value will be replaced by the newly computed

EMRL1. The current (n1, n2, WL, CL1, CL2) combination

is temporarily stored as the possible combination before

any new lower EMRL1 value is found. If the (n1, n2, WL,

CL1, CL2) combination obtained in the following search

yields similar EMRL1min, the combination will be saved

together as a possible combination. Otherwise, the (n1, n2,

WL, CL1, CL2) combination will not be considered if it

results in larger EMRL1 value.

Step 7: Once the search with n1 = 1 is complete, increase

n1 by one. Repeat Steps 4–6, for the remaining n1 = 2,

3. . . , (n − 1), to search for the possible (n1, n2, WL, CL1,

CL2) combinations that satisfy the Constraints (15)–(16)

and having the smallest value of EMRL1.

Step 8: If more than one combinations of (n1, n2,

WL, CL1, CL2) produce a similar lowest EMRL1 value,

the combination that yields the smallest out-of-control

expected average sample size (EASS1) value is selected as

the optimal combination.

An optimization MATLAB program is developed to execute

the above procedure to search for the optimal (n1, n2, WL, CL1,

CL2) combination for the EMRL-based DS np chart.

In this paper, based on the Gauss Legendre Quadrature rule,

the weights (wi) and nodes (xi) values are obtainable through

the MATLAB coding written by Winckel [40]. These values

are considered for the computation of E (ζα)1, EARL1, and

EASS1. According to Hale and Townsend [41], the fundamental

accuracy can be achieved for any number of ordinates (N)

that exceeds 100. Therefore, N = 200 is considered for all

these computations.

Comparative studies

In this section, the EMRL1 performance of the standard

np chart with unknown shift size is compared with that

of the DS np chart. The computational procedure for the

standard np chart based on the EMRL1 is to find the minimal

value of UCL given the sample size n, by attaining the

constraint EMRL0 ≥ MRL0min. The E (ζ0.5)0 (= MRL0) and

EARL0 (= ARL0) of the standard np chart are computed using

Equations (9) and (7), respectively, by replacing A with AS

from Equation (1). The optimal charting parameters of the

DS np chart are computed using the optimization procedure

described in Section Optimal design of the EMRL-based DS

np chart. The different combinations of input parameters as

follows are considered: p0 ∈ {0.005, 0.01, 0.02}, MRL0min ∈

{200, 370.4}, n ∈ {25, 50, 100, 200, 400, 800} , and two

intervals of process shift sizes: (1) ( γmin, γmax] = (1.1, 2.0]

and (2) (γmin , γmax] = (2.0 , 3.0]. We only provide
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TABLE 1 Charting parameters with corresponding (E(ζ0.05)0, EMRL0, E(ζ0.95)0) and EARL0 for standard np and optimal DS np charts, when MRL0min = 200.

Standard np chart DS np chart

Expected Percentile RL Expected Percentile RL

γmin γmax p0 n UCL (E(ζ0.05)0,EMRL0,E(ζ0.95)0) EARL0 (n1, n2, WL, CL1, CL2) (E(ζ0.05)0,EMRL0,E(ζ0.95)0) EARL0

1.1 2.0 0.005 100 3.5 (31, 414, 1,789) 597.63 (8, 2,340, 0.5, 2.5, 17.5) (16, 205, 882) 294.82

200 5.5 (91, 1,229, 5,311) 1773.23 (57, 4,298, 1.5, 4.5, 29.5) (15, 200, 861) 287.76

400 7.5 (49, 658, 2,841) 948.59 (151, 6,111, 2.5, 6.5, 41.5) (15, 200, 864) 288.73

800 10.5 (19, 251, 1,084) 362.20 (293, 8,333, 3.5, 8.5, 56.5) (15, 200, 863) 288.52

0.01 50 3.5 (33, 434, 1,876) 626.50 (24, 1,090, 1.5, 4.5, 16.5) (15, 203, 876) 292.60

100 4.5 (15, 202, 872) 291.35 (33, 1,557, 1.5, 4.5, 23.5) (16, 213, 920) 307.44

200 7.5 (51, 685, 2,958) 987.60 (80, 2,578, 2.5, 6.5, 36.5) (15, 200, 864) 288.80

400 10.5 (20, 258, 1,116) 372.71 (144, 4,459, 3.5, 9.5, 59.5) (15, 200, 862) 287.94

0.02 25 3.5 (36, 480, 2,071) 691.62 (2, 580, 0.5, 2.5, 17.5) (17, 221, 952) 318.03

50 4.5 (16, 216, 932) 311.55 (17, 740, 1.5, 4.5, 22.5) (15, 201, 868) 289.95

100 7.5 (56, 744, 3,214) 1,073.03 (39, 1,427, 2.5, 5.5, 39.5) (16, 206, 891) 297.69

200 10.5 (21, 274, 1,183) 395.16 (101, 1,882, 4.5, 9.5, 52.5) (15, 201, 866) 289.25

2.0 3.0 0.005 100 3.5 (31, 414, 1,789) 597.63 (23, 708, 0.5, 2.5, 8.5) (15, 200, 862) 288.00

200 5.5 (91, 1,229, 5,311) 1,773.23 (99, 1,143, 1.5, 5.5, 12.5) (16, 206, 888) 296.84

400 7.5 (49, 658, 2,841) 948.59 (233, 1,506, 2.5, 7.5, 16.5) (15, 202, 870) 290.61

800 10.5 (19, 251, 1,084) 362.20 (528, 2,135, 4.5, 9.5, 23.5) (16, 213, 920) 307.47

0.01 50 3.5 (33, 434, 1,876) 626.50 (34, 352, 1.5, 4.5, 8.5) (15, 202, 873) 291.78

100 4.5 (15, 202, 872) 291.35 (47, 658, 1.5, 5.5, 13.5) (16, 206, 887) 296.29

200 7.5 (51, 685, 2,958) 987.60 (116, 756, 2.5, 7.5, 16.5) (15, 200, 864) 288.60

400 10.5 (20, 258, 1,116) 372.71 (268, 994, 4.5, 9.5, 22.5) (15, 200, 865) 288.96

0.02 25 3.5 (36, 480, 2,071) 691.62 (7, 136, 0.5, 2.5, 7.5) (17, 218, 940) 314.11

50 4.5 (16, 216, 932) 311.55 (25, 282, 1.5, 4.5, 12.5) (17, 224, 967) 323.19

100 7.5 (56, 744, 3,214) 1,073.03 (60, 336, 2.5, 7.5, 15.5) (16, 208, 897) 299.89

200 10.5 (21, 274, 1,183) 395.16 (134, 500, 4.5, 9.5, 22.5) (15, 201, 868) 290.14
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TABLE 2 Charting parameters with corresponding and EARL0 for standard np and optimal DS np charts, when MRL0min = 370.4.

Standard np chart DS np chart

Expected Percentile RL Expected Percentile RL

γmin γmax p0 n UCL (E(ζ0.05)0,EMRL0,E(ζ0.95)0) EARL0 (n1, n2, WL, CL1, CL2) (E(ζ0.05)0,EMRL0,E(ζ0.95)0) EARL0

1.1 2.0 0.005 100 3.5 (31, 414, 1,789) 597.63 (38, 3,985, 1.5, 3.5, 27.5) (30, 393, 1,697) 566.84

200 5.5 (91, 1,229, 5,311) 1,773.23 (59, 3,979, 1.5, 4.5, 29.5) (28, 375, 1,617) 540.25

400 7.5 (49, 658, 2,841) 948.59 (144, 7,069, 2.5, 7.5, 48.5) (28, 372, 1,606) 536.36

800 11.5 (59, 786, 3,396) 1,133.91 (374, 10,324, 4.5, 10.5, 69.5) (28, 372, 1,605) 536.07

0.01 50 3.5 (33, 434, 1,876) 626.50 (23, 1,230, 1.5, 3.5, 19.5) (30, 393, 1,696) 566.43

100 5.5 (96, 1,297, 5,603) 1,870.79 (27, 2,454, 1.5, 4.5, 34.5) (29, 385, 1,661) 554.77

200 7.5 (51, 685, 2,958) 987.60 (66, 4,670, 2.5, 6.5, 60.5) (29, 382, 1,650) 551.07

400 11.5 (61, 816, 3,526) 1,177.46 (189, 4,974, 4.5, 10.5, 67.5) (28, 375, 1,621) 541.40

0.02 25 3.5 (36, 480, 2,071) 691.62 (11, 719, 1.5, 3.5, 21.5) (28, 371, 1,602) 535.00

50 5.5 (108, 1,450, 6,263) 2,091.10 (13, 1,373, 1.5, 4.5, 37.5) (29, 383, 1,652) 551.81

100 7.5 (56, 744, 3,214) 1,073.03 (37, 1,679, 2.5, 8.5, 46.5) (28, 371, 1,600) 534.37

200 11.5 (66, 882, 3,810) 1,272.00 (93, 2,728, 4.5, 9.5, 72.5) (28, 373, 1,609) 537.32

2.0 3.0 0.005 100 3.5 (31, 414, 1,789) 597.63 (58, 1,223, 1.5, 4.5, 12.5) (29, 389, 1,679) 560.71

200 5.5 (91, 1,229, 5,311) 1,773.23 (98, 1,175, 1.5, 5.5, 13.5) (28, 378, 1,631) 544.67

400 7.5 (49, 658, 2,841) 948.59 (143, 1,599, 1.5, 5.5, 17.5) (29, 381, 1,646) 549.64

800 11.5 (59, 786, 3,396) 1,133.91 (497, 2,850, 4.5, 11.5, 28.5) (28, 372, 1,608) 537.15

0.01 50 3.5 (33, 434, 1,876) 626.50 (32, 442, 1.5, 4.5, 10.5) (31, 416, 1,794) 599.25

100 5.5 (96, 1,297, 5,603) 1,870.79 (49, 590, 1.5, 5.5, 13.5) (28, 376, 1,623) 542.01

200 7.5 (51, 685, 2,958) 987.60 (116, 756, 2.5, 7.5, 17.5) (30, 399, 1,724) 575.89

400 11.5 (61, 816, 3,526) 1,177.46 (252, 1,340, 4.5, 10.5, 27.5) (28, 372, 1,605) 536.00

0.02 25 3.5 (36, 480, 2,071) 691.62 (16, 225, 1.5, 4.5, 10.5) (30, 399, 1,722) 575.27

50 5.5 (108, 1,450, 6,263) 2,091.10 (26, 253, 1.5, 4.5, 12.5) (29, 387, 1,671) 558.17

100 7.5 (56, 744, 3,214) 1,073.03 (58, 381, 2.5, 7.5, 17.5) (30, 395, 1,706) 569.92

200 11.5 (66, 882, 3,810) 1,272.00 (126, 675, 4.5, 12.5, 27.5) (28, 371, 1,602) 535.05
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the results for the combinations of n and p0 such that

np0 = {0.5, 1.0, 2.0, 4.0}. The and p0 combinations that

generate np0 = {0.5, 1.0, 2.0, 4.0} were also adopted by several

researchers [see [10], [29], and [19]] for clarity and unbiased

comparison between competing charts.

Performance of the standard np and DS np

charts based on EMRL

The charting parameter UCL for the standard np and the

optimal charting parameters (n1, n2, WL, CL1, CL2) of the

DS np chart based on the EMRL1 are listed in Tables 1, 2.

The corresponding values of E (ζ0.05)0, EMRL0, E (ζ0.95)0 , and

EARL0 are also provided in the tables. Note that E (ζ0.05)0 and

E (ζ0.95)0 denote the in-control 5th and 95th percentiles of the

RL, respectively. For example, Table 2 shows that when p0 =

0.01, n= 100 and ( γmin, γmax] = (1.1, 2.0], for the standard

np chart, while (n1, n2, WL, CL1, CL2) = (27, 2454, 1.5, 4.5,

34.5) for the optimal DS np chart. The DS np chart with these

charting parameters gives the smallest EMRL1 value, while the

EMRL0 is at least 370.4. Subsequently, the corresponding values

of (E (ζ0.05)0, EMRL0, E (ζ0.95)0, EARL0) for the standard np

and optimal DS np charts are computed as (96, 1,297, 5,603,

1,870.79) and (29, 385, 1,661, 554.77), respectively. The optimal

design makes the DS np chart easier to implement in practice.

Consider the case of a plastic component created via injection

molding, for which a rapid detection within the range of process

shift sizes ( γmin, γmax] = (1.1, 2.0] is required. Table 1

suggests (n1, n2, WL, CL1, CL2) = (24, 1,090, 1.5, 4.5, 16.5) as

the best charting parameter for detecting this range of shift sizes

if p0 = 0.01, n= 50, and MRL0min = 200.

In Table 3, the E (ζ0.05)1, EMRL1, E (ζ0.95)1 , and EARL1
values, for the out-of-control case, can be obtained using the

charting parameter UCL for the standard np and optimal

charting parameters (n1, n2, WL, CL1, CL2) of the DS np charts

(refer to Tables 1, 2). For instance, when p0 = 0.02, n = 50,

MRL0min = 200, and ( γmin, γmax] = (1.1, 2.0], Table 1

gives (n1, n2, WL, CL1, CL2) = (17, 740, 1.5, 4.5, 22.5) as the

optimal charting parameters for the DS np chart. With these

optimal charting parameters, (E (ζ0.05)1, EMRL1, E (ζ0.95)1,

EARL1)= (1.83, 18.50, 78.34, 26.49). The equations used for the

evaluation of E (ζ0.05)1, EMRL1, E (ζ0.95)1, and EARL1 values

can be found in Section The run length properties of the DS

np chart.

Numerical results in Tables 1, 2 clearly demonstrate that

the EMRL0 values are lower than EARL0, for both standard

np and optimal DS np charts for the in-control case (γ =

1). For instance, referring to Table 1, the DS np chart gives

EARL0 = 314.11 when p0 = 0.02, = 25, (γmin , γmax] =

(2.0 , 3.0], and MRL0min = 200. Practitioners may interpret

a false alarm happens by the 314th sample in half of the time.

In fact, this value is located in between 60 and 70th (= 378)

percentile of the RL distribution, and the false alarm actually

happens before 314th sample, that is by the 218th sample

(EMRL0 = 218), occurs in half of the time. On the contrary,

for the out-of-control case (see Table 3), when p0 = 0.02, n

= 100, (γmin , γmax] = (2.0 , 3.0], and MRL0min =

200, the DS np chart gives EARL1 = 2.06, while EMRL1 =

1.44, showing small difference between the EARL1 and EMRL1
values. This demonstrates that when the RL distribution is

highly right-skewed, the average is significantly larger than the

median. In contrast, the average is relatively closer to the median

in symmetric distribution. Consequently, we recommend the

EMRL over EARL as a performance measure which delivers

a clearer interpretation for the performance DS np chart. In

addition, based on the EMRL performance measure, Table 3

shows that the optimal DS np chart outperforms the standard

np chart for all shift sizes, (γmin, γmax], with the former giving

lower EMRL1 than the latter for identical p0, n, MRL0min, and

(γmin, γmax] combination.

Performance of the standard np and DS np

charts based on expected percentile of the RL
distribution

The percentiles of RL distribution can help to reveal more

information about the entire RL distribution, including the early

false alarm rates. In this paper, the E (ζ0.05) and E (ζ0.95) are also

analyzed to equip practitioners with a better view on the spread

of the entire RL distribution of the standard np and optimal DS

np charts.

The lower percentile, such as E (ζ0.05) evaluated in this

paper for the in-control case (γ = 1) , provides information

concerning early false alarm rates. Let us consider standard np

chart in Table 1, when p0 = 0.01, n = 50, MRL0min = 200, and

( γmin, γmax] = (1.1, 2.0], gives E (ζ0.05)0 = 33. This result

suggests a false alarm will occur by 33rd sample point in 5% of

the time. On the contrary, a false alarm will happen in half of

the time by the 434th sample
(

E (ζ0.5)0 = 434
)

, meaning that

sample 434 has a chance of 0.5 of detecting a false alarm, whereas

the EARL0 is indicated as 626.50.

On the other hand, the higher percentile of the RL

distribution, for example, E (ζ0.95)1, provides information about

the out-of-control condition which will be issued by the control

chart with a high possibility at a certain magnitude of the

shift. Based on DS np chart, as shown in Table 3, when p0 =

0.005, MRL0min = 370.4, n = 100, and ( γmin, γmax] =

(2.0, 3.0], this chart is anticipated to signal within the

first 20.83 samples with a probability of 0.95 (E (ζ0.95)1 =

20.83). In other words, practitioners can claim with 95%

confidence that an out-of-control signal will be discovered by

the 20.83rd sample.

Moreover, both the standard np and DS np charts, shown in

Tables 1, 2, clearly demonstrate that the in-control RL is subject

to significant variation. Expectedly, in Table 2, the in-control

extreme percentile of the DS np chart is 1,722 – 30 = 1,692 and
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TABLE 3 Performance of the DS np and standard np charts with MRL0min = 200 and 370.4.

MRL0min = 200 MRL0min = 370.4

Standard np chart DS np chart Standard np chart DS np chart

Expected percentile RL Expected percentile RL Expected percentile RL Expected percentile RL

γmin γmin p0 n (E(ζ0.05)1,EMRL1,E(ζ0.95)1) EARL1 (E(ζ0.05)1,EMRL1,E(ζ0.95)1) EARL1 (E(ζ0.05)1,EMRL1,E(ζ0.95)1) EARL1 (E(ζ0.05)1,EMRL1,E(ζ0.95)1) EARL1

1.1 2.0 0.005 100 (8.71, 111.50, 480.36) 160.69 (2.45, 27.62, 117.74) 39.65 (8.71, 111.50, 480.36) 160.69 (3.35, 38.73, 165.72) 55.66

200 (16.11, 211.50, 912.32) 304.86 (1.80, 18.69, 79.09) 26.73 (16.11, 211.50, 912.32) 304.86 (2.27, 24.92, 106.04) 35.74

400 (6.95, 87.11, 374.84) 125.46 (1.44, 12.42, 51.91) 17.67 (6.95, 87.11, 374.84) 125.46 (1.68, 15.88, 67.01) 22.71

800 (2.45, 26.60, 113.20) 38.12 (1.22, 7.82, 32.23) 11.10 (5.27, 65.39, 280.74) 94.06 (1.36, 9.85, 40.88) 14.00

0.01 50 (9.08, 116.26, 500.90) 167.54 (2.47, 27.91, 119.09) 40.08 (9.08, 116.26, 500.90) 167.54 (3.33, 39.35, 168.48) 56.57

100 (3.94, 46.33, 198.60) 66.63 (1.88, 19.12, 80.96) 27.36 (16.86, 221.47, 955.66) 319.34 (2.24, 24.84, 105.66) 35.61

200 (7.16, 89.97, 387.16) 129.58 (1.45, 12.33, 51.61) 17.58 (7.16, 89.97, 387.16) 129.58 (1.65, 16.13, 68.13) 23.07

400 (2.48, 27.09, 115.47) 38.89 (1.22, 7.81, 32.04) 11.05 (5.41, 67.17, 288.87) 96.75 (1.36, 9.86, 41.03) 14.04

0.02 25 (9.88, 126.99, 547.04) 182.93 (2.51, 28.45, 121.28) 40.82 (9.88, 126.99, 547.04) 182.93 (3.20, 37.50, 106.37) 53.86

50 (4.12, 48.91, 209.81) 70.38 (1.83, 18.50, 78.34) 26.49 (18.53, 244.00, 1052.93) 351.80 (2.23, 24.64, 105.00) 35.39

100 (7.60, 96.17, 413.94) 138.52 (1.46, 12.50, 52.26) 17.78 (7.60, 96.17, 413.94) 138.52 (1.68, 15.72, 66.41) 22.51

200 (2.57, 28.24, 120.35) 40.51 (1.24, 7.82, 32.28) 11.13 (5.70, 71.23, 306.20) 102.54 (1.34, 9.72, 40.41) 13.83

2.0 3.0 0.005 100 (1.96, 20.56, 87.20) 29.44 (1.00, 4.56, 18.15) 6.41 (1.96, 20.56, 87.20) 29.44 (1.00, 5.24, 20.83) 7.30

200 (1.88, 19.86, 84.05) 28.39 (1.00, 2.59, 9.54) 3.55 (1.88, 19.86, 84.05) 28.39 (1.00, 2.80, 10.48) 3.86

400 (1.00, 6.30, 25.64) 8.90 (1.00, 1.45, 5.08) 2.09 (1.00, 6.30, 25.64) 8.90 (1.00, 1.67, 5.86) 2.33

800 (1.00, 1.97, 7.04) 2.73 (1.00, 1.00, 2.74) 1.37 (1.00, 2.88, 10.73) 3.94 (1.00, 1.01, 2.91) 1.42

0.01 50 (2.01, 21.16, 89.81) 30.32 (1.00, 4.62, 18.41) 6.49 (2.01, 21.16, 89.81) 30.32 (1.00, 5.17, 20.79) 7.28

100 (1.00, 7.36, 30.15) 10.41 (1.00, 2.60, 9.66) 3.59 (1.93, 20.40, 86.51) 29.21 (1.00, 2.78, 10.38) 3.83

200 (1.01, 6.38, 25.95) 9.01 (1.00, 1.45, 5.03) 2.08 (1.01, 6.38, 25.95) 9.01 (1.00, 1.57, 5.45) 2.21

400 (1.00, 1.97, 7.05) 2.74 (1.00, 1.00, 2.71) 1.36 (1.00, 2.90, 10.78) 3.96 (1.00, 1.01, 2.86) 1.41

0.02 25 (2.13, 22.52, 95.71) 32.28 (1.00, 4.75, 18.92) 6.67 (2.13, 22.52, 95.71) 32.28 (1.00, 5.08, 20.37) 7.15

50 (1.01, 7.55, 31.03) 10.70 (1.00, 2.58, 9.48) 3.53 (2.02, 21.64, 91.88) 31.01 (1.00, 2.84, 10.58) 3.89

100 (1.02, 6.55, 26.69) 9.25 (1.00, 1.44, 4.96) 2.06 (1.02, 6.55, 26.69) 9.25 (1.00, 1.54, 5.34) 2.18

200 (1.00, 1.98, 7.08) 2.74 (1.00, 1.00, 2.67) 1.35 (1.00, 2.92, 10.88) 4.00 (1.00, 1.00, 2.83) 1.40
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TABLE 4 MRL1 computed using the optimal charting parameters of the EMRL-based DS np chart and the MRL-based DS np chart for p0 = 0.005,

n = 100, and EMRL0 ∈ {200, 370.4}.

MRL1

MRL0min Type of DS np chart (γmin, γmax] γ = 1.2 γ = 1.5 γ = 2.0 γ = 3.0

200 EMRL-based design chart (1.1, 2.0] 59 20 10 –

(2.0, 3.0] – – – 3

MRL-based design chart – 59 20 8 3

370.4 EMRL-based design chart (1.1, 2.0] 86 27 13 –

(2.0, 3.0] – – – 3

MRL-based design chart – 82 26 9 3

TABLE 5 MRL1 computed using the optimal charting parameters of the EMRL-based DS np chart and the MRL-based DS np chart for p0 = 0.01, n =

100, and EMRL0 ∈ 200, 370.4.

MRL1

MRL0min Type of DS np chart (γmin, γmax] γ = 1.2 γ = 1.5 γ = 2.0 γ = 3.0

200 EMRL-based design chart (1.1, 2.0] 45 12 5 –

(2.0, 3.0] – – – 2

MRL-based design chart – 41 12 4 2

370.4 EMRL-based design chart (1.1, 2.0] 59 15 7

(2.0, 3.0] – – – 2

MRL-based design chart - 56 15 5 2

TABLE 6 MRL1 computed using the optimal charting parameters of the EMRL-based DS np chart and the MRL-based DS np chart for p0 = 0.02, n =

100, and EMRL0 ∈ {200, 370.4}.

MRL1

MRL0min Type of DS np chart (γmin, γmax] γ = 1.2 γ = 1.5 γ = 2.0 γ = 3.0

200 EMRL-based design chart (1.1, 2.0] 29 7 4 –

(2.0, 3.0] – – – 1

MRL-based design chart - 28 7 2 1

370.4 EMRL-based design chart (1.1, 2.0] 38 8 4 –

(2.0, 3.0] – – – 1

MRL-based design chart - 37 8 3 1

the standard np chart is 2,071 – 36= 2,035 when p0 = 0.02, n=

25, ( γmin, γmax] = (2.0, 3.0], and MRL0min = 370.4.

However, by referring to Table 3 for the out-of-control

condition, the extreme percentile (the difference between the

E(ζ0.05) and E(ζ0.95)) reduces as n increases and the shifts

interval changes from ( γmin, γmax] = (1.1, 2.0] (small shifts

interval) to ( γmin, γmax] = (2.0, 3.0] (large shifts interval),

for both standard np and DS np charts. This trend suggests that

there is small variation for the out-of-control RL over large shift

interval and larger n values. For example, the out-of-control

extreme percentile of the DS np chart is 103.17 when MRL0min

= 370.4, p0 = 0.02, n = 25, and ( γmin, γmax] = (1.1, 2.0],

diminishes to 19.37 when ( γmin, γmax] = (2.0, 3.0], for

identical p0, n, and MRL0min. In addition, the numerical results

reveal that the optimal DS np chart has smaller variation in RL

distribution compared to the competing standard np chart for

small and large shift interval.

Performance of the DS np chart when shift size
is unknown

The most interesting finding emerges from the analysis

shown in Tables 4–6, utilizing the optimal parameters by

minimizing EMRL1 to compute the MRL1 when unknown shift

size is a viable option, providing γ ǫ (γmin, γmax]. The optimal

charting parameters for the EMRL-based DS np chart can be
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obtained from Tables 1, 2. For ease of reference and comparison,

the MRL1 of MRL-based design chart found by Tuh et al. [22] is

listed in Tables 4–6. For a comprehensive comparison, theMRL1
values for bothMRL-based and EMRL-based design charts when

γ = 1.2 are also added to this section. Due to space constraint,

we only present the results with n= 100.

FromTables 4–6, it is worth noting that theMRL1 computed

in Tables 4–6 bymeans of (n1, n2,WL, CL1, CL2) for DS np chart

with EMRL-based design is nearly identical to those based on

specific shift sizes (MRL-based design chart) for most cases, on

condition that γ ǫ (γmin, γmax]. For instance, in Table 5, when

n = 100, MRL0min = 200, p0 = 0.02, and ( γmin, γmax] =

(1.1, 2.0], the optimal charting parameters of the DS np chart

are (n1, n2, WL, CL1, CL2) = (39, 1,427, 2.5, 5.5, 39.5) (see

Table 1), obtained by minimizing EMRL1. This optimal charting

parameters yieldMRL1 = {29, 7, 4} for γ = {1.2, 1.5, 2.0}, while

the MRL-based design chart gives MRL1 = {28, 7, 2}. As a result,

the optimal parameters listed in Tables 1, 2 (as determined by

minimizing EMRL1) can be directly and reliably substituted for

the optimal parameters by assuming a known shift size, in the

event that γ ǫ (γmin, γmax].

An illustrative example

The performance of the DS np chart is assessed with the

use of an example, as follows. The information used in this

illustration was extracted from Gitlow and Hertz [42]. The

information is relevant to the keypunching operation that

normally takes place in a data processing department. To

establish the control chart, a sample size of 200 cards (n =

200) was selected at random from the output of each day’s

production over the course of 24 days (subgroups m = 24)

and inspected for defects. After establishing the control chart,

it was discovered that samples 8 and 22 were not within the

control limits andwere subsequently discarded following further

investigation. Using the remaining samples of m = 22 and n

= 200, revised control limits were computed. All the verified

points fall within the control limits, pointing toward in-control

process. This represents phase I analysis. As a result, we may

estimate the in-control process fraction nonconforming (p0)

using following equation:

p0 =

∑m
i=1 pi

m
=

∑m
i=1 di

m× n
=

73

22 × 200
≈ 0.02 (17)

We illustrate the proposed optimal EMRL-based DS np

chart by applying a simulated data generated using the RStudio

software. Herein, we use the optimal charting parameters based

on MRL0min = 200, ( γmin, γmax] = (1.1, 2.0], p0 = 0.02,

and n = 200 obtained from Table 1. The optimal parameter

combination for the DS np chart is (n1, n2, WL, CL1, CL2)

= (101, 1,882, 4.5, 9.5, 52.5). The data for the 30 samples are

TABLE 7 Dataset for the illustrative example.

Sample number DS np chart

d1 d2 d1 + d2

1 2

2 0

3 2

4 1

5 2

6 1

7 5 36 41

8 3

9 2

10 1

11 3

12 1

13 2

14 1

15 6 54 60

16 4

17 2

18 4

19 1

20 2

21 3

22 1

23 2

24 1

25 3

26 0

27 1

28 0

29 1

30 7 40 47

simulated, where the first eight samples come from the in-

control state with p0 = 0.02. The subsequent 22 samples depict

the out-of-control state with p1 = γ p0 = 1.3 × 0.02 = 0.026,

where a process shift of γ = 1.3 is presumed to have occurred.

Note that the number of nonconforming items in the first sample

d1 is simulated from the binomial distribution with parameters
(

n1, p0
)

= (101, 0.02) and
(

n1, p1
)

= (101, 0.026) for the in-

control and out-of-control states, respectively, while the number

of nonconforming items for the second sample d2 is generated

from the same distribution but with parameters
(

n2, p0
)

=

(1, 882, 0.02) and
(

n2, p1
)

= (1, 882, 0.026) for the in-control

and out-of-control cases, respectively.

The thirty samples from Table 7 are plotted in Figure 2’s DS

np chart. The solid dots (•) and hollow dots (◦) represent the

stages 1 and 2 of the DS scheme, respectively. One can observe
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FIGURE 2

DS np chart.

that the process remains at the stage 1 of the DS scheme for

samples 1 through 6 as the points lie lower than 4.5 (<WL) and

is deemed to be in-control. Note that at sample 7, d1 = 5 for the

first sample at the stage 1 of the DS scheme corresponds to size

n1 = 101. Since 4.5 < d1 < 9.5, the operation moves to the stage

2 of the DS scheme, which involves taking a second sample of

size n2 = 1,882 and number of nonconforming items d2 = 36

is observed. As a result, d1 + d2 = 5 + 36 = 41. Since d1 + d2

is below 52.5 (<CL2), this sample is considered as in-control.

The process remains in-control condition up to sample 14. At

sample 15, d1 = 6, d2 = 54 in which d1 + d2 = 60 exceeds

the control limit CL2 of 52.5. This indicates that sample 15 is

out-of-control. Clearly, DS np chart detects the process shift at

sample 15. Corrective action should be taken immediately to

identify and remove the assignable cause(s) that resulting to the

out-of-control condition in the process.

Conclusion

A good understanding of a control chart is crucial as it helps

to increase the confidence of quality practitioners. Therefore, in

this study, EMRL has been proposed as a performance measure

for designing DS np chart. The results obtained indicate that

the EMRL is an effective optional performance measure for

the DS np chart when it is not possible to specify the shift

size of the fraction nonconforming beforehand. Alternatively,

practitioners can utilize the recommended optimal charting

parameters based on EMRL1 minimization if the process shift

size is within the acceptable range ( γmin, γmax] . In the case

of inexperienced practitioners who are not familiar with the

establishment of process shift size, this approach can help

to minimize inaccuracy that may arise when practicing and

implementing the DS np control chart. It should be noted

that the conclusion in this research depends on the data

independence and binomially distributed assumptions. For

future research purposes, additional work can be carried out

without applying these assumptions. In addition, the effect of

parameter estimation may also be conducted for the unknown

shift size.
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