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di�erence method defined by an
unweighted least-squares
problem

Ricardo Román-Gutiérrez1, Carlos Chávez-Negrete2†,

Francisco Domínguez-Mota1,2*†, José A. Guzmán-Torres2† and

Gerardo Tinoco-Guerrero1†

1Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,

Morelia, Mexico, 2Facultad de Ingeniería Civil, Universidad Michoacana de San Nicolás de Hidalgo,

Morelia, Mexico

Density-driven groundwater flows are described by nonlinear coupled

di�erential equations. Due to its importance in engineering and earth science,

several linearizations and semi-linearization schemes for approximating their

solution have been proposed. Among the more e�cient are the combinations

of Newtonian iterations for the spatially discretized system obtained by either

scalar homotopy methods, fictitious time methods, or meshless generalized

finite di�erencemethod, with several implicit methods for the time integration.

However, when these methods are used, some parameters need to be

determined, in some cases, even manually. To overcome this problem, this

paper presents a novel generalized finite di�erences scheme combined with

an adaptive step-size method, which can be applied for solving the governing

equations of interest on non-rectangular structured and unstructured grids.

The proposed method is tested on the Henry and the Elder problems to verify

the accuracy and the stability of the proposed numerical scheme.

KEYWORDS

generalized finite di�erences, henry problem, elder problem, groundwater flows,

density-driven flows

1. Introduction

The study of density-driven groundwater flows is of special interest in groundwater

hydraulics. That interest comes from the intrinsic relation that exists between

density-driven groundwater problems, saltwater intrusion, and geothermal processes.

Groundwater is used in many regions as the main available source to supply freshwater

to their citizens and has become an increasingly valuable resource. Nowadays, seawater

intrusion problems are crucial issues to pay more attention to, especially in coastal areas.
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There are two important benchmark problems to test

numerical methods in the resolution of density-driven

groundwater flow problems, these are the Henry problem

[1–7] and the Elder problem [4–6, 8]. The Henry problem is

commonly used for describing salt concentration transport into

a freshwater aquifer where the transport mechanism is because

of fluid, while the Elder problem is frequently employed for

describing natural geothermal convection problems.

Since both problems are coupled and highly nonlinear,

the development of efficient, accurate, reliable, and simple

numerical schemes developed to solve them remains a

challenging task.

The Henry problem is named after Henry [1], who

was studying salt concentration problems. He considered a

vertical rectangular slice of a confined coast aquifer from

which he obtained the boundary conditions (Figure 1) and

developed a semi-analytical solution for the steady-state

problem. He assumed a double Fourier series solution, which,

after substitution into the governing equations and integration

over the entire domain relative to ad hoc weight functions, gives

rise to an infinite system of algebraic equations. Truncation

of this system and solving for Fourier coefficients leads to the

semi-analytical solution of the problem. A similar approach was

FIGURE 1

Henry problem computational domain.

presented in [9], where the Henry semi-analytical solution was

obtained by considering reduced dispersion.

Pinder and Cooper [2] obtained a semi-analytical solution

for the transient formulation of the Henry problem using the

method of characteristics, then considered two different initial

conditions. In the first one, the aquifer was assumed to be

fulfilled initially with fresh water, in the second condition a sharp

interface into the aquifer was assumed initially.

Segol et al. [3] used the Galerkin-finite element method

to solve the Henry problem. They obtained two solutions

using two different meshes, the first one with 108 nodal

points and 88 elements using linear basis functions, the

second with 107 nodal points and 28 elements using

quadratic basis functions. Their results are similar to other

approaches in the aquifer domain but differ in the zone

near the right boundary where a boundary modification

is required.

Simpson and Clement [10] solved the Henry problem

using the assumption of a double Fourier series solution and

considering a quadratic term involving a quadruple sum as a

known quantity. One feature of their solution is an iterative

change of a boundary condition at the right side of the

domain, which is transformed from amixed Dirichlet-Neumann
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boundary condition to a Dirichlet one. This was the key to

getting the problem of interest at the end.

The Elder problem is named after J. W. [8]. He was

investigating a natural convection phenomenon where the

driven force was produced by a temperature gradient. Simpson

and Clement [4] showed the value of the Elder problem

as a benchmark for testing numerical results. They test

the uncoupled Elder problem using an analytical solution

for the uncoupled Elder problem. In this case, it becomes

a diffusion problem, and fluid velocity is zero within

the aquifer.

Meca et al. [5] obtained numerical solutions for both

the Elder problem and the Henry problem using the

network simulation method. They used a maximum of

1,800 rectangular volume elements for a half-domain

model. Their results show a central upwelling flow in

fine grids (at least 4,400 bilinear finite elements that

correspond to 4,359 nodes), and a central downwelling flow in

coarse grids.

An improved solution scheme is due to Li et al. [6],

who calculated numerical solutions for both problems

using a meshless form of the generalized finite difference

method. For the Henry problem, they considered three

versions: the original problem the Pinder version, and

the modified version, which differ in the values of the

coefficients. In their implementation, 3, 317 nodes in

the domain and 16 support nodes (nodes in the star)

were used.

In the software [11], an analysis of two versions of the

Henry problem was made for the original version and the

modified version using CTRAN/W. The latter is a finite element

software product for modeling solute and gas transfer in porous

media. The principal objective of their work is to demonstrate

the reliability of GeoStudio for modeling density-dependent

transport problems.

Fahs et al. [7] implemented the Fourier-Galerkin

method (FG) and obtained a new semi-analytical

solution for the Henry problem with velocity-dependent

dispersion. The integral for the velocity-dependent

dispersion term is evaluated numerically using an

adaptive scheme.

Having in consideration the results obtained by Li

et al., in this paper we propose to solve Elder and Henry

problems using a simple version of the Generalized Finite

Differences Method (GFDM), which uses a node selection

based on a regular grid. The advantages of the finite

difference method, which is thoroughly discussed, for instance,

in [12, 13], are extended by the GFDM, which has been

demonstrated to be robust for solving systems of partial

differential equations. The generalization consists of a space

discretization in which the nodes can be selected from a

structured grid or an unstructured one, as well as from clouds

of points.

GFDM has been widely applied for solving a collection of

problems. Among several research works, we can mention the

following: Cortés-Medina et al. [14] used GFDM for solving

the Poisson equation over general and very irregular two-

dimensional regions. Benito et al. [15] implemented GFDMwith

explicit methods for solving parabolic and hyperbolic equations,

using irregular grids of points, this shows that GFDM can also

be applied as a meshless method. Domínguez-Mota et al. [16]

solved the unsteady heat equation by implementing GFDM and

Crank-Nicolson scheme. Prieto et al. [17] obtained a solution for

the advection-diffusion equation using GFDM and an explicit

method. Chávez-Negrete et al. [18] solved the Richards equation

on non-rectangular structured grids using a GFDM scheme and

an adaptive step size Crank-Nicolson method. Rao et al. [19]

and Rao [20] presented upwind meshless versions of the GFDM

method for transport phenomena, and Rao [21] defined control

node domains for flow problems. Li et al. [22] used GFDM

combined with Newton-Raphson for solving the steady-state

double-diffusive natural convection problem.

As mentioned before, in the following sections we

address the numerical solution of the Elder problem and

the Henry problem through a version of the Generalized

Finite Differences Method (GFDM), which uses a node

selection based on a regular grid. This paper is organized

as follows: the governing equations of the problem

are presented in Section 2. The fundamentals of the

generalized finite difference method are shown in Section

3. Sections 4 and 5 discuss the numerical results and the

conclusions, respectively.

2. Governing equations

The problems mentioned above, due to Henry and

Elder, provide benchmark scenarios for studying density-

driven groundwater flows. These problems differ from

each other in the mechanism of salt transport. In the

Henry problem, the principal concentration transport

is due to fluid flow, whilst in the Elder problem, the

primary transport mechanism is in consequence of the

fluid density gradient.

2.1. Henry problem

The computational domain of the Henry problem arises

from considering a rectangular vertical cross-section that

belongs to an aquifer initially filled with fresh water which is in

touch with seawater, as shown in Figure 1.

Governing equations for the Henry problem are derived

from Darcy’s law, mass conservation and salt transport
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FIGURE 2

(A) Henry problem boundary conditions. (B) Elder problem boundary conditions.

equations, and the Boussinesq approximation:

∂29

∂x2
+

∂29

∂y2
=

1

a

∂C

∂x
(1)

∂2C

∂x2
+

∂2C

∂y2
−

1

b

(

∂9

∂y

∂C

∂x
−

∂9

∂x

∂C

∂y

)

=
∂C

∂t
(2)

where C(x, y, t) is the salt concentration and 9(x, y, t) is

the stream function, a is the discharge parameter, b is the

inverse of the seepage Peclet number, x and y are the spatial

coordinates, and t is time. All these variables and parameters

are dimensionless. Further details on the derivation of these

equations can be found in [23]. Since the aquifer is initially

filled with fresh water, the initial conditions for stream function

and concentration are 9(x, y, 0) = 0 and C(x, y, 0) = 0. Top

and bottom boundaries are impermeable. A constant inflow is

imposed along the left boundary. The right-side boundary is

assumed to be in contact with seawater, so the concentration is

imposed to be C(x, y, t) = 1 along this boundary. A diagram

showing the domain and boundary conditions for this problem

can be seen in Figure 2A.

2.2. Elder problem

The computational domain of the Elder problem is also

a rectangular vertical cross-section that is filled with a

homogeneous isotropic porous medium. Saltwater source is put

along the middle of the top boundary. The bottom boundary

is set at zero concentration. Governing equations for the Elder

problem in dimensionless form can be expressed as in [5]:

∂29

∂x2
+

∂29

∂y2
= Ra

∂C

∂x
(3)

∂2C

∂x2
+

∂2C

∂y2
−

(

∂9

∂y

∂C

∂x
−

∂9

∂x

∂C

∂y

)

=
∂C

∂t
(4)

where Ra is the Rayleigh number which is a dimensionless

parameter. Initial conditions are the same as in Henry problem,

namely 9(x, y, 0) = 0 and C(x, y, 0) = 0. Boundary conditions

for the stream function are zero on the four sides, which

represents the fact that the velocity of the flow is zero along

the boundary, and for that reason, there is no inflow on the

boundaries. Further information for all boundary conditions is

shown in the diagram in Figure 2B.

3. Proposed generalized finite
di�erence scheme

The basic idea of the proposed generalized finite difference

scheme, arises from considering the general second-order linear

operator

Lu = λuxx + µuxy + νuyy + κux + ρuy + σu

where λ, µ, ν, κ , ρ, and σ are given functions of the spatial

coordinates.

For an arbitrary star or distribution of nodes, for example,

the one shown in Figure 3, the operator value at a central node

p0 = (x0, y0) could be approximated by using values of u at some

neighbor nodes pi = (xi, yi), i = 1, 2, . . . , q.

A finite-difference scheme applied in p0, can be seen as a

linear combination

L0u = Ŵ0u(p0)+ Ŵ1u(p1)+ · · · + Ŵqu(pq) =

q
∑

i=0

Ŵiu(pi),

where Ŵ0, Ŵ1, . . . , Ŵq are appropriate weights.

According to [12, 13], in order for a finite difference scheme,

L0, to be consistent with the linear operator L, it is required that

the local truncation error τ satisfy

τ = [Lu]p0 − [L0u]p0 → 0 (5)
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FIGURE 3

Arbitrary distribution of nodes.

as p1, p2, . . . , pq → p0.

Expanding the consistency condition in the Taylor series,

[Lu]p0 − [L0u]p0

=

(

σ (p0)−

q
∑

i=0

Ŵi

)

u(p0)+

(

κ(p0)−

q
∑

i=1

Ŵi1xi

)

ux(p0)

+

(

ρ(p0)−

q
∑

i=1

Ŵi1yi

)

uy(p0)+

(

λ(p0)−

q
∑

i=1

Ŵi(1xi)
2

2

)

uxx(p0)

+

(

µ(p0)−

q
∑

i=1

Ŵi1xi1yi

)

uxy(p0)+

(

ν(p0)−

q
∑

i=1

Ŵi(1yi)
2

2

)

uyy(p0)+O
(

max{1xi,1yi}
)3

where 1xi = xi − x0 and 1yi = yi − y0.

To accomplish (5), each of the terms in brackets must vanish

simultaneously; this is

λ(p0)−

q
∑

i=1

Ŵi(1xi)
2

2
= 0,

µ(p0)−

q
∑

i=1

Ŵi1xi1yi = 0,

ν(p0)−

q
∑

i=1

Ŵi(1yi)
2

2
= 0,

κ(p0)−

q
∑

i=1

Ŵi1xi = 0,

ρ(p0)−

q
∑

i=1

Ŵi1yi = 0,

σ (p0)−

q
∑

i=0

Ŵi = 0.

This will define the linear system
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(6)

In order to solve this linear system, it is possible to separate

the first equation of the system (6)

q
∑

i=0

Ŵi − σ (p0) = 0 (7)

and then, the problem defined by
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, (8)

can be solved using the reduced Cholesky factorization of the

normal equation for the full row rank matrixM, as in [24],

MTMŴ = MTβ ,

where

M =















1x1 ... 1xq

1y1 ... 1yq

(1x1)
2 ... (1xq)
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1x11y1 ... 1xq1yq
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.

.
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κ(p0)

ρ(p0)

2λ(p0)

µ(p0)

2ν(p0)















,

which defines the solution of an unweighted least-squares

problem. The remaining value Ŵ0 is then obtained from

(7). Now, the obtained set of values Ŵ defines the proposed

generalized finite differences scheme.

Thus, the scheme defined by Equation (8) can be used

to approximate the standard differential operators at p0. For

instance, the approximation to the Laplacian operator is

obtained by setting λ = ν = 1 and µ = κ = ρ = 0, while

the approximation to the partial derivatives concerning x and y

follows from κ = 1 and ρ = 1 (setting all the other coefficients

equal to zero), respectively.

4. Numerical results

In this section, we show the numerical results obtained

for the two benchmark problems. The numerical procedure

comprises four steps

1. The node clouds were generated by taking the nodes from

an initial nonuniform rectangular grid, which was used as

a background geometric reference to define the stars. An

essential detail is the generation of the initial non-rectangular

grids. Bearing in mind the grid refinement process for the

Motz problem as discussed in [25], since the graph of the

solution C(x) is monotonic in several specific zones along the
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FIGURE 4

Clouds of nodes for the Henry problem, using di�erent number of total nodes. (A) N = 21× 11 = 231, (B) N = 41× 21 = 861, (C)

N = 81× 41 = 3,321, and (D) N = 101× 51 = 5,151.

FIGURE 5

(A) Support nodes in the star at an inner node. (B) Support nodes in the star at a Neumann boundary node.

x-axis, we propose a mapping ξ 7→ x = ξα such that the

expression

∂C

∂ξ
=

∂C

∂x

∂x

∂ξ
(9)

is almost constant. In this paper, the α = 1.5 was considered.

This is the key to defining non-symmetric stars, which is a

useful resource for the treatment of convective terms.

An example of the clouds obtained for theHenry problem

is observed in Figure 4, which shows a cloud with N = 41 ×

21 = 861 nodes.

2. To define the scheme and weights to apply the GFDM in the

test problems, we considered specific simple stars which were

generated from the clouds according to the following rule: at

every inner grid node, two extra neighbors along a diagonal

of the initial background grid were added to define a six-node

star (q = 6; see an example on Figure 5A).

The numerical treatment at the Neumann

boundary condition

∂u

∂n
(p0) = lx

∂u

∂x
+ ly

∂u

∂y
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where n = (lx, ly) is the outer normal vector at p0, and is

approximated using the scheme of Equation 8) with λ = µ =

ρ = 0 and ν = lx, κ = ly using a star defined by six points:

a ghost point pg , the node p0, and the five neighbors of the

latter defined by the cells of the background grid for which p0

was a corner (see Figure 5B), which yields the Equation (10)

lx
∂u

∂x
+ ly

∂u

∂y
≈ Ŵ̂gu(pg)+

5
∑

l=0

Ŵ̂lu(pl), (10)

or, in other words,

u(pg) =
1

Ŵ̂g

∂u

∂n
(p0)−

5
∑

l=0

Ŵ̂l

Ŵ̂g
u(pl). (11)

For convenience, the ghost point pg is calculated in such a

way that p0 is the midpoint of pg and pc, the latter being

the neighbor in the negative direction of the outer normal

vector −n. The value of u(pg) given by the Equation (11) is

substituted in the approximation to the governing equation

at the boundary point p0 using the same seven points pg , p0,

and the five neighbors of the latter, which eliminates the value

of u(pg).

3. To produce the spatial discretization of the governing

Equations (1) and (2), at every inner grid node the

discretization given by Equation (8) was used with q = 6.

The resulting governing equation after spatial discretization

can be written in the form

FIGURE 6

Streamlines distribution at di�erent time for the original Henry problem. (A) t = 0.02, (B) t = 0.05, (C) t = 0.10, (D) t = 0.15, (E) steady-state

t = 0.21 (a = 0.2637, b = 0.1, N = 81× 41 = 3,321).
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FIGURE 7

Concentration lines distribution at di�erent time for the original Henry problem. (A) t = 0.02, (B) t = 0.05, (C) t = 0.10, (D) t = 0.15, (E)

steady-state t = 0.21 (a = 0.2637, b = 0.1, N = 81× 41 = 3,321).

FIGURE 8

(A) Henry problem steady-state velocity vector field with normalized arrows (a = 0.2637, b = 0.1, N = 81× 41 = 3,321). (B) Pinder version

steady-state velocity vector field with normalized arrows (a = 0.2637, b = 0.035, N = 81× 41 = 3,321).
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D29 −
1

a
DxC = 0 (12)

D2C −
1

b
((Dy9). ∗ (DxC)− (Dx9). ∗ (DyC)) =

∂C

∂t
(13)

whereD2 is a discrete Laplacianmatrix,Dx is a differentiation

matrix in the x direction, Dy is a differentiation matrix in

the y direction. 9 and C are column vectors of N rows

that represent the unknown values of the stream function

and the concentration at the cloud nodes. The product “.∗”

denotes element-wise multiplication. It must be noted that

the differentiation matrices are very sparse because of the low

number of star nodes.

FIGURE 9

Steady-state streamlines distribution (Left) and steady-state concentration distribution (Right), for the Henry problem (a = 0.2637, b = 0.035)

using di�erent number of total nodes. (A,B) N = 21× 11 = 231, (C,D) N = 41× 21 = 861, (E,F) N = 81× 41 = 3,321, (G,H) N = 101× 51 = 5,151.
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Defining the vector U as

U =

[

9

C

]

and defining the matrix A and vector G as

A =

(

D2 − 1
aDC

0 D2

)

,

FIGURE 10

Steady-state streamline distributions (Left) and steady-state concentration distributions (Right), for Pinder version of Henry problem (a = 0.2637,

b = 0.035) using di�erent number of total nodes. (A,B) N = 21× 11 = 231, (C,D) N = 41× 21 = 861, (E,F) N = 81× 41 = 3,321, (G,H)

N = 101× 51 = 5,151.
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G(U) =

[

0

− 1
b
((Dy9). ∗ (DxC)− (Dx9). ∗ (DyC))

]

then Equations (12) and (13) can be written in the form

dU

dt
= AU + G(U) (14)

where AU is the linear part of the problem, and G(U) is the

non-linear part of the problem.

1. Finally, once the semi-discretized system (14) has been

defined, for the time integration, a Runge-Kutta formula of

the [26] family was used. The initial time step value was

set to 1t = 0.01. At the nth step, the method attempts

to calculate the next function value using the initial time

step value. It calculates two approximations: one fourth-order

and one fifth-order Runge-Kutta approximations. If the two

approximations are sufficiently close, it accepts the fourth-

order approximation and increases the step size slightly for

the next step. If the two approximations disagree, It decreases

1t and tries again. At each step, it computes five values of the

right-hand side of Equation (14) and combines them in two

ways: one fourth-order and one fifth-order.

The results are compared against those obtained by other

numerical methods and to those obtained using a semi-

analytical solution.

4.1. Henry problem

Computational domain and boundary conditions for this

problem can be observed in Figures 1, 2A, respectively.

According to previous authors [5, 6, 10], there exist three

versions of this problem. The first one is the original Henry

problem, for which the constants are a = 0.2637 and b =

0.1. The second one is the Pinder version, where constant b is

set as b = 0.035. And the third one is the modified Henry

problem, where the constants have the values a = 0.1315 and

b = 0.2. In this analysis, we examine the three versions of the

Henry problem.

4.1.1. Original Henry problem (a = 0.2637,
b = 0.1)

The first example is the original Henry saltwater intrusion

problem (a = 0.2637, b = 0.1). Results for this problem (using

different specific times) are shown in Figures 6, 7. Figure 6 shows

the streamlines and Figure 7 displays concentration lines for

different time values. Initially, the aquifer is filled with fresh

water. The movement of the salt intrusion front in time can be

observed in Figures 7A–E. The steady-state velocity vector field

for this problem is plotted in Figure 8A. It is easy to see that

a flow from left to right is due to the aquifer freshwater flow.

There is an inflow on the right bottom domain caused by the

saltwater intrusion from the sea. This produces a circulation

FIGURE 11

(A) Isochlor C = 0.5 for the Pinder version of Henry problem (a = 0.2637, b = 0.035), using di�erent number of total nodes, N = 41× 21 = 861,

N = 81× 41 = 3,321, and N = 101× 51 = 5,151. (B) Isochlor C = 0.5 for the modified Henry problem (a = 0.1315, b = 0.2), using di�erent time

increments, 1t = 0.1, 1t = 0.01, 1t = 0.001.
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that returns to the sea in the right top domain zone. For the

concentration, it is apparent that there is a salt concentration

moving into the domain because initially the aquifer is filled with

fresh water. The steady-state results compare well with other

solutions obtained with other methods, such as the network

simulation method [5] and a different GFDM scheme [6]. To

prove consistency in ourmethod, a comparative plot was created

using different number of total nodes (N = 21 × 11 = 231,

N = 41 × 21 = 861, N = 81 × 41 = 3,321, and N =

101 × 51 = 5,151). Streamlines distribution and concentration

distribution are observed in Figure 9, for different numbers of

FIGURE 12

Modified Henry problem (a = 0.1315, b = 0.2). (A) Steady-state

streamlines distribution. (B) Concentration distribution. (C)

Velocity vector field.

total nodes. In Figures 9B,D, corresponding to N = 231 and

N = 861, respectively, it can be noticed that for the upper-

right zone of the domain the concentration distribution presents

difficulties. On the other hand (Figures 9F,H), corresponding

to N = 231 and N = 861, respectively, show that when

increasing the number of nodesN the concentration distribution

becomes smoother at the conflicting upper-right zone of

the domain.

4.1.2. Pinder version of Henry problem
(a = 0.2637, b = 0.035)

By comparison of the solutions obtained using a different

number of total nodes, the consistency of the proposed scheme

was validated. Now we use the same methodology to solve the

Pinder version of Henry problem (a = 0.2637, b = 0.035),

and test again consistency comparing solutions for this problem

using different number of total nodes (N = 21 × 11 =

231, N = 41 × 21 = 861, N = 81 × 41 = 3, 321,

and N = 101 × 51 = 5,151). Figure 10 presents steady-

state streamlines and concentration for a different number of

TABLE 1 Toe position for the isochlor C = 0.5, using di�erent number

of nodes.

Number of

nodes

Original

Henry

problem

(a = 0.2637,

b = 0.1)

Pinder version

(a = 0.2637,

b = 0.035)

Modified

Henry

problem

(a = 0.1315,

b = 0.2)

231 1.5329 1.4771 1.3223

861 1.4233 1.2854 1.2000

3,321 1.3635 1.1837 1.1360

5,151 1.3510 1.1620 1.1230

TABLE 2 Comparison of xToe position for the isochlor C = 0.5.

Original Pinder Modified

1.089 [1] 1.220 [2] 1.074 [27]

1.371 [23] 1.245 [3] 1.078 [10]

1.393 [10] 1.154 [23] 1.074 [10]

1.373 [5] 1.158 [5] 1.059 [5]

1.380 [6] 1.173 [6] 1.056 [6]

1.3510 Present

study (5,151 nodes)

1.1620 Present

study (5,151 nodes)

1.1230 Present

study (5,151 nodes)

Present study and other results.
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total nodes. From Figures 9B,D, which correspond to steady-

state solutions for the original Henry problem using a number

of total nodes equal to 231 and 861, respectively, it can be

observed that in the top right domain zone these solutions are

different from those achieved using 3,321 and 5,151 number of

total nodes (Figures 9F,H, respectively), but for the most part

of the domain, these solutions can still be valid. An analogous

argument can be made for describing (Figures 10B,D), which

are steady-state solutions for the Pinder version of the Henry

problem using 231 and 861 total nodes, respectively. As before,

these solutions can still be valid for most parts of the domain.

Figure 11A presents isochlor C = 0.5 for different number of

total nodes (N = 21 × 11 = 231, N = 41 × 21 = 861,

N = 81 × 41 = 3,321, and N = 101 × 51 = 5,151).

It shows that solutions stably converge when the number of

nodes increases.

Solutions obtained with 3,321 and 5,151 total nodes are

like those obtained using other methods [5, 6]. Velocity vector

field flow for the Pinder version is plotted in Figure 8B.

Comparing steady-state concentration of the Pinder version

and the original Henry problem, Figures 9H, 10H, respectively,

it can be observed that the saltwater intrusion for the

Pinder version is notably stronger than in the original

Henry problem.

4.1.3. Modified Henry problem (a = 0.1315,
b = 0.2)

For this problem steady-state streamlines distribution,

concentration distribution, and velocity vector field are shown

in Figure 12. Saltwater flux intrusion in the right bottom

domain zone has increased, being the greatest of the three

examples discussed.

In this example, we tested the method’s stability by

comparing solutions obtained using different time step sizes.

Figure 11B shows isochlor C = 0.5 profiles of steady-state

solutions with different time increments (1t = 0.1, 1t = 0.01,

and 1t = 0.001). The profiles are almost identical, proving the

stability of the method.

Table 1 presents the xToe position of isochlor C = 0.5 using

a different number of total nodes. The differences induced by

parameters a and b in the different examples presented can

be noticed, as well as the consistency of the method. Results

in the presents study are comparable to the ones obtained

using other methodologies [1–3, 5, 6, 10, 23, 27]; the results

are compared in Table 2, which is updated from the table

in [6]. However, some differences may be appreciated, which

are caused by the selection of the support nodes for the

approximation. In this paper, we chose six of the canonical

support nodes (q = 6) shown in Figure 5A, and the regularity

FIGURE 13

Clouds of nodes for the Elder problem, using di�erent number of total nodes. (A) N = 41× 11 = 451, (B) N = 61× 27 = 1,647, (C)

N = 101× 45 = 4,545, and (D) N = 121× 56 = 6, 776.
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FIGURE 14

Steady-state solution to the Elder problem. (A) Streamlines

distribution, (B) concentration distribution, (C) velocity vector

field.

of the mesh makes the support nodes selection an automatic

process. Thus, the problem is sparser and in consequence,

the computational cost of the implementation is reduced.

The stability, consistency, and simplicity of the method are

validated by results obtained for the three versions of the

Henry problem.

4.2. Elder problem

The second benchmark problem for groundwater flows is

the Elder problem, which we analyze in this section. Parameters

for this problem are Rayleigh number Ra = 400, a number of

total nodes N = 121 × 56 = 6,776, time step 1t = 0.001,

and a number of support nodes (nodes in the star) q = 6 as

in the previous section; in Figure 13 an example of the clouds

used for the Elder problem can be observed. In this case figure

shows a cloud of N = 41 × 11 = 451 nodes. Discretization for

the spatial part of the Elder problem is very similar to that for

the Henry problem of the preceding section, and the numerical

treatment is the same. We can write discretized governing

equations as

D29 − RaDxC = 0 (15)

D2C − ((Dy9). ∗ (DxC)− (Dx9). ∗ (DyC)) =
∂C

∂t
. (16)

where D2 is a discrete Laplacian matrix, Dx is a differentiation

matrix in the x direction, Dy is a differentiation matrix in

the y direction. 9 and C are column vectors of N rows that

represent the unknown values of the stream function and the

concentration at the cloud nodes. The product “.∗” denotes

element-wise multiplication. As before it must be noted that

the differentiation matrices are very sparse because of the low

number of star nodes.

Defining the solution vector U, the matrix A, and the vector

G as follows

U =

[

9

C

]

, A =

(

D2 −RaDx

0 D2

)

,

G(U) =

[

0

−((Dy9). ∗ (DxC)− (Dx9). ∗ (DyC))

]

then the Equations (15) and (16) can be written again in the form

dU

dt
= AU + G(U) (17)

where, before, AU is the linear part of the problem, and G(U) is

the non-linear part of the problem.

Boundary conditions are shown in Figure 2B and it can

be observed that boundary conditions are symmetric to

a vertical axis in x = 2. Because of symmetry, we show

solutions only for the left half of the domain, from x = 0 to

x = 2. We can observe steady-state streamlines distributions,

concentration, and velocity vector field in Figure 14. From

velocity (Figure 14C) three principal flow streams can be

observed, although the salt concentration moves downwards

(Figure 14B). This solution agrees with those obtained

by [5, 6].

Figures 15, 16 show streamlines and concentration

distributions for different time values (t = 0.005, t = 0.01,

t = 0.02, t = 0.075, t = 0.1), and steady-state time

t = 1.239 (see [6]). In order to prove consistency of

the scheme proposed, results obtained for concentration

at time t = 0.05, using different number of total nodes

(N = 41 × 11 = 451, N = 61 × 27 = 1,647,
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FIGURE 15

Streamlines distribution for di�erent times. (A) t = 0.005, (B) t = 0.01, (C) t = 0.02, (D) t = 0.075, (E) t = 0.1, and (F) steady-state time t = 1.239.

N = 101 × 45 = 4,545, N = 121 × 56 = 6,776) are

shown in Figure 17 in which isochlors C = 0.2 and C = 0.6 are

plotted for comparison.

5. Conclusions

In this paper, we presented a scheme of the generalized finite

differences method (GFDM), which was useful for obtaining

solutions for the Henry problem and the Elder problem,

two benchmark problems concerning groundwater flows. We

used both problems to test our version of the method’s

precision and stability by considering numerical experiments

with three versions of the Henry problem: the original version,

the Pinder version, and the modified version. To validate

the proposed scheme, we tested with different numbers of

total nodes N, and different time increments 1t. The main

differences between our scheme and the proposed, among

other authors, by [6, 28] are: First, We use only q = 6

support nodes while they made different tests using 12, 16, and

20 support nodes. In several papers, the number of support

nodes is set to 27 for 2D problems. The use of a shorter

number of support nodes as proposed in this paper makes

the differentiation matrices to be sparser, although it must be

acknowledged that problems with strong boundary layers or

high gradient zones might require a larger number of support

nodes in the stars. For instance, in [19], an effective star

node selection for problems with strong convective terms is
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FIGURE 16

Concentration distribution for di�erent times. (A) t = 0.005, (B) t = 0.01, (C) t = 0.02, (D) t = 0.075, (E) t = 0.1, and (F) steady-state time t = 1.239.

presented. In the end, the number of support nodes is problem

dependent and requires further investigation. Second, because

we generated the star nodes from initially structured clouds,

the selection of support nodes is automatic and very simple,

while in the aforementioned papers an additional algorithm

for the selection of the support nodes had to be implemented.

Certainly, very elaborated algorithms were discussed in them,

but some problems like those presented here can be treated

with very simple selection rules, although it is important to

emphasize that, as mentioned in the preceding paragraph,

other problems can require a stricter algorithm to define the

stars. Third, and the final feature, in the proposed scheme,

no weight function is required in the proposed GFDM. This

is also a relevant difference concerning other variants of the

method since, in consequence, the scheme is simpler, and the

corresponding least square problem defined by Equation (8)

is unweighted.

Thus, as the main conclusion, it is possible to assure that the

proposed version of the GFDM is a useful numerical technique

to solve the Elder problem and the Henry problem. It has the

simplicity of the classical formulation of finite differences, but

in addition, as has been discussed in other papers, it has the

advantage that it can be applied even in non-structured clouds

(see, for instance, [18, 29]), again, without requiring neither a

weighting function nor a large number of support nodes as in

some versions of the method.

In the end, the results of the numerical tests show that the

GFDM is an interesting alternative numerical method to solve

the Elder problem and the Henry problem. Bearing in mind the

results of this paper and those of the references, this suggests
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FIGURE 17

Isochlor C = 0.2 and C = 0.6 for di�erent number of total nodes. (A) N = 41× 11 = 451, (B) N = 61× 27 = 1,647, (C) N = 101× 45 = 4,545, and

(D) N = 121× 56 = 6,776.

that the GFDM is also an option for solving a wider range of

differential equations.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding author/s.

Author contributions

All authors listed have made a substantial, direct,

and intellectual contribution to the work and approved it

for publication.

Funding

Universidad Michoacana de San Nicolás de Hidalgo

provides funds for open access publication fees, the

International Centre for Numerical Methods in Engineering

provides technical and academical support.

Acknowledgments

The authors wish to thank AULACIMNE-Morelia and CIC-

UMSNH for the support for this research. The authors would

also like to thank the reviewers for their valuable feedback and

suggestions to improve the present work.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Frontiers in AppliedMathematics and Statistics 17 frontiersin.org

https://doi.org/10.3389/fams.2022.976958
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Román-Gutiérrez et al. 10.3389/fams.2022.976958

References

1. Henry HR. Effects of dispersion on salt encroachment in coastal aquifers. In:
Cooper Jr HH, Kohout FA, Henry HR, Glover RE, editors. Seawater in Coastal
Aquifers. Washington, DC: US Geological Survey Water Supply Paper (1964). p.
70–80.

2. Pinder GF, Cooper HH Jr. A numerical technique for calculating the
transient position of the saltwater front. Water Resour Res. (1970) 6:875–82.
doi: 10.1029/WR006i003p00875

3. Segol G, Pinder GF, Gray WG. A Galerkin-finite element technique for
calculating the transient position of the saltwater front. Water Resour Res. (1975)
11:343–7. doi: 10.1029/WR011i002p00343

4. Simpson M, Clement T. Theoretical analysis of the worthiness of Henry and
Elder problems as benchmarks of density-dependent groundwater flow models.
Adv Water Resour. (2003) 26:17–31. doi: 10.1016/S0309-1708(02)00085-4

5. Meca AS, Alhama F, Fernández CG. An efficient model for solving density
driven groundwater flow problems based on the network simulation method. J
Hydrol. (2007) 339:39–53. doi: 10.1016/j.jhydrol.2007.03.003

6. Li PW, Fan CM, Chen CY, Ku CY. Generalized finite difference method for
numerical solutions of density-driven groundwater flows. Comput Model Eng Sci.
(2014) 101:319–50. doi: 10.3970/cmes.2014.101.319

7. Fahs M, Ataie-Ashtiani B, Younes A, Simmons CT, Ackerer P. The Henry
problem: New semianalytical solution for velocity-dependent dispersion. Water
Resour Res. (2016) 52:7382–407. doi: 10.1002/2016WR019288

8. Elder J. Transient convection in a porous medium. J Fluid Mech. (1967)
27:609–23. doi: 10.1017/S0022112067000576

9. Zidane A, Younes A, Huggenberger P, Zechner E. The Henry semianalytical
solution for saltwater intrusion with reduced dispersion.Water Resour Res. (2012)
48:1–10. doi: 10.1029/2011WR011157

10. SimpsonMJ, Clement TP. Improving the worthiness of the Henry problem as
a benchmark for density-dependent groundwater flow models. Water Resour Res.
(2004) 40:1–11. doi: 10.1029/2003WR002199

11. Henry Saltwater Intrusion Problem (2015). Available online at: http://
downloads.geo-slope.com/geostudioresources/7/examples/Henry%20Density
%20Dependent.pdf

12. Strikwerda JC. Finite Difference Schemes and Partial Differential Equations.
Philadelphia, PA: SIAM (2004). doi: 10.1137/1.9780898717938

13. Thomas JW. Numerical Partial Differential Equations: Finite Difference
Methods. Vol. 22. New York, NY: Springer Science & Business Media (2013).

14. Cortés-Medina A, Chávez-González A, Tinoco-Ruiz J. A direct finite-
difference scheme for solving PDEs over general two-dimensional regions. Appl
Numer Math. (2002) 40:219–33. doi: 10.1016/S0168-9274(01)00076-9

15. Benito J, Urena F, Gavete L. Solving parabolic and hyperbolic equations by
the generalized finite difference method. J Comput Appl Math. (2007) 209:208–33.
doi: 10.1016/j.cam.2006.10.090

16. Domínguez-Mota FJ, Armenta SM, Tinoco-Guerrero G, Tinoco-
Ruiz JG. Finite difference schemes satisfying an optimality condition
for the unsteady heat equation. Math Comput Simul. (2014) 106:76–83.
doi: 10.1016/j.matcom.2014.02.007

17. Prieto FU, Mu noz JJB, Corvinos LG. Application of the generalized finite
difference method to solve the advection-diffusion equation. J Comput Appl Math.
(2011) 235:1849–55. doi: 10.1016/j.cam.2010.05.026

18. Chávez-Negrete C, Domínguez-Mota F, Santana-Quinteros D. Numerical
solution of Richards’ equation of water flow by generalized finite differences.
Comput Geotechn. (2018) 101:168–75. doi: 10.1016/j.compgeo.2018.05.003

19. Rao X, Liu Y, Zhao H. An upwind generalized finite difference method for
meshless solution of two-phase porous flow equations. Eng Anal Bound Elements.
(2022) 137:105–18. doi: 10.1016/j.enganabound.2022.01.013

20. Rao X. An upwind generalized finite difference method (GFDM)
for meshless analysis of heat and mass transfer in porous media.
arXiv[Preprint].arXiv:211211005. (2021). doi: 10.48550/arXiv.2112.11005

21. Rao X. A novel meshless method based on the virtual construction of
node control domains for porous flow problems. arXiv[Preprint].arXiv:220605531.
(2022). doi: 10.48550/arXiv.2206.05531

22. Li PW, Chen W, Fu ZJ, Fan CM. Generalized finite difference method for
solving the double-diffusive natural convection in fluid-saturated porous media.
Eng Anal Bound Elem. (2018) 95:175–86. doi: 10.1016/j.enganabound.2018.06.014

23. Gotovac H, Andricevic R, Gotovac B, Kozulic V, Vranjes M. An improved
collocation method for solving the Henry problem. J Contam Hydrol. (2003)
64:129–49. doi: 10.1016/S0169-7722(02)00055-4

24. Tinoco-Guerrero G, Domínguez-Mota FJ, Tinoco-Ruiz JG. A study
of the stability for a generalized finite-difference scheme applied to the
advection-diffusion equation. Math Comput Simul. (2020) 176:301–11.
doi: 10.1016/j.matcom.2020.01.020

25. Chávez C, Mota FJD, Lucas-Martinez S, Tinoco-Ruiz JG, Quinteros DS.
Generalized finite difference solution for the Motz Problem. Rev Int Métodos
Numér Para Cálculo Dise Ingen. (2021) 37:1–7. doi: 10.23967/j.rimni.2021.01.004

26. Dormand JR, Prince PJ. A family of embedded Runge-Kutta formulae. J
Comput Appl Math. (1980) 6:19–26. doi: 10.1016/0771-050X(80)90013-3

27. Langevin C, GuoW. Improvements to SEAWAT, a variable-density modeling
code [abs.]. Eos Trans. (1999) 80:621–627.

28. Benito J, Urena F, Gavete L. Influence of several factors in the
generalized finite difference method. Appl Math Model. (2001) 25:1039–53.
doi: 10.1016/S0307-904X(01)00029-4

29. Chávez-Negrete C, Santana-Quinteros D, Domínguez-Mota F.
A solution of Richards’ equation by generalized finite differences for
stationary flow in a dam. Mathematics. (2021) 9:1604. doi: 10.3390/math91
41604

Frontiers in AppliedMathematics and Statistics 18 frontiersin.org

https://doi.org/10.3389/fams.2022.976958
https://doi.org/10.1029/WR006i003p00875
https://doi.org/10.1029/WR011i002p00343
https://doi.org/10.1016/S0309-1708(02)00085-4
https://doi.org/10.1016/j.jhydrol.2007.03.003
https://doi.org/10.3970/cmes.2014.101.319
https://doi.org/10.1002/2016WR019288
https://doi.org/10.1017/S0022112067000576
https://doi.org/10.1029/2011WR011157
https://doi.org/10.1029/2003WR002199
http://downloads.geo-slope.com/geostudioresources/7/examples/Henry%20Density%20Dependent.pdf
http://downloads.geo-slope.com/geostudioresources/7/examples/Henry%20Density%20Dependent.pdf
http://downloads.geo-slope.com/geostudioresources/7/examples/Henry%20Density%20Dependent.pdf
https://doi.org/10.1137/1.9780898717938
https://doi.org/10.1016/S0168-9274(01)00076-9
https://doi.org/10.1016/j.cam.2006.10.090
https://doi.org/10.1016/j.matcom.2014.02.007
https://doi.org/10.1016/j.cam.2010.05.026
https://doi.org/10.1016/j.compgeo.2018.05.003
https://doi.org/10.1016/j.enganabound.2022.01.013
https://doi.org/10.48550/arXiv.2112.11005
https://doi.org/10.48550/arXiv.2206.05531
https://doi.org/10.1016/j.enganabound.2018.06.014
https://doi.org/10.1016/S0169-7722(02)00055-4
https://doi.org/10.1016/j.matcom.2020.01.020
https://doi.org/10.23967/j.rimni.2021.01.004
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1016/S0307-904X(01)00029-4
https://doi.org/10.3390/math9141604
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	Numerical solution of density-driven groundwater flows using a generalized finite difference method defined by an unweighted least-squares problem
	1. Introduction
	2. Governing equations
	2.1. Henry problem
	2.2. Elder problem

	3. Proposed generalized finite difference scheme
	4. Numerical results
	4.1. Henry problem
	4.1.1. Original Henry problem (a=0.2637, b=0.1)
	4.1.2. Pinder version of Henry problem (a=0.2637, b=0.035)
	4.1.3. Modified Henry problem (a=0.1315, b=0.2)

	4.2. Elder problem

	5. Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


