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It is crucial to take into account the dynamics of the species while investigating

how a species may survive in an environment. A species can be classified

as either semelparous or iteroparous depending on how it reproduces.

In this article, we present a model, which consists of two semelparous

species by considering two age classes. We specifically discuss the e�ects of

density-dependent in the interaction between the two semelparaous species

and examine the equilibria of the system in the absence and presence of

harvesting in the system. Then, the local stability of the equilibria is also

investigated. A modified Leslie matrix population model with the addition

of density-dependent in the equation is used. The model is analyzed in the

presence and absence of competition between these species. We assume that

density-dependent only occurred in the first age class of both species and

that harvesting only occurred in the second age class of both species. Then,

we assume that competition only occurs in the first age class in both species

in the form of interspecific and intraspecific competition. This assumption is

intended to simplify the complexity of the problem in the model. Our results

show that there are three equilibria in the model without competition and

four equilibria in the model with the competition. Hence, the presence of

competition has influenced the number of equilibria. We also investigate the

relation between the stability of the equilibria with the net reproduction rate of

the system. Furthermore, we found the condition for the local stability of the

co-existence equilibrium point, which is related to the degree of interspecific

and intraspecific competition. This theory may be applied to investigate the

dynamics of natural resources, whether in the absence of human exploitation

and in the presence of various strategies in managing the exploitation of the

resources, such as in fisheries industries.

KEYWORDS

Leslie matrix, semelparous reproduction strategy, population growth model, age

structured matrix, co-existence equilibrium, ecological modeling, harvesting,

multispecies

1. Introduction

An ecosystem can be occupied by many species, which can be categorized either

as semelparous species or iteroparous species. Semelparous species are species that

reproduce only once in their life cycle. Some examples of semelparous species include

cicada [1, 2], beetles [1], and salmon [3, 4]. On the other hand, iteroparous species are
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those that reproduce more than once during their life cycle.

Examples of iteroparous species are easier to find than

semelparous, including cows, cats, and many more. These

species interact, such that the growth of one species is influenced

by the growth of the other species. This is due to some

limitations in ecosystems, like limited resources and bounded

areas of the location. Because of this limitation, the environment

may not meet the whole needs of the existing species. The

population growth of the species is likely to be affected by

their population. Similarly, species harvesting by humans for

food may affects the growth of the species.

The dynamics of a population are very important to be

studied with the aim of knowing the condition of the population

in the future. This is because the growth of a population can

lead to the increase, decrease, stability, or extinction of the

population. There are several approaches used to describe the

dynamics of the growth of a population in one species or

multispecies in an ecosystem. One approach among several

approaches is to model the growth of one species or multispecies

based on population structure. Growth based on population

structure focuses on dividing the overall population into smaller

population structures. The population structure can be in the

form of, among others, age class, stage of development, and

population size.

Population structure allows us to study population growth

more comprehensively, which cannot be described by other

approaches. One example of a population based on a structure

is a population based on age class. Population based on age

class assumes that each age class has different characteristics

including birth and survival rate. A population model based

on the structure can be either continuous or discrete time. In

recent years, the Leslie matrix model has been widely used as

a discrete model of the population growth of a species based

on age class. This model was introduced by Leslie [5]. The

Leslie matrix model in the linear case form assumes that there

are differences in birth rates and survival rates for each age

class in population growth. The Leslie matrix model is linear

when viewed from its growth graph. This model produces a

growth graph that continues to rise, falls continuously, or is

constant. Currently, the Leslie model has been widely developed

on nonlinear models. The nonlinear Leslie matrix model is

more realistic in representing real cases than the linear Leslie

matrix model.

The development of the Leslie matrix model is not only

limited to its linear and nonlinear forms, but it considers many

aspects of the population. For example, the Leslie matrix model

initially focused on single species cases, and furthermore, this

model has also been developed for multispecies. Some of these

studies observed growth models of species whose growth was

influenced by density-dependence. Pennycuick et al. [6] focused

on simulating the Leslie matrix model on single species and

multispecies interactions. Travis et al. [7] conducted a study on

Leslie’s matrix model for two competing species and simulated

the semelparous species. Kon [8] investigated two interacting

semelparous species where one species has two age classes, and

the other species have one age class. Kon [9] conducted a study

on the Leslie matrix model of two semelparous species that have

a predator-prey relationship and observed the coprime effect of

the number of age classes of the two species. The number of age

classes of two species is said to be mutually coprime if the two

numbers (the number of classes of two species) have the greatest

common factor equal to one. Then, Kon [10] examined the

Leslie multispecies semelparous matrix model with an arbitrary

number of species and an arbitrary number of interacting age

classes. In addition, there are also several multispecies studies

using othermethods, both continuous time [11, 12], and discrete

time [13].

Research on multispecies cases is very important because

it is more realistic in describing real cases. However, the

multispecies model is more complex than the single species

model. This study invests in studying and modeling the

population growth of multispecies. Our research focuses on

the problem of multispecies population growth, which is

influenced by dependence on population density and the effect

of harvesting. Of course, this model can be used for both

harvested and unharvested species, because if it is not harvested,

the harvesting factor is zero. In addition, there are studies on

the growth of single species that are affected by harvesting using

the Leslie matrix model by Wikan [14]. Then, there is a study

on harvesting cases with a different approach by Cooke et al.

[15], Getz and Haight [16], Ganguli et al. [17], and Pratama

et al. [18] as well as in the multispecies case of Hannesson et al.

[19]. Other studies beside the effect of harvesting on the growth

of the population, there are also some other studies related to

obtaining the maximum sustainable yield, such as Supriatna and

Possingham [20], Supriatna [21], Husniah and Supriatna [22],

Supriatna and Husniah [23], Supriatna et al. [24], and Husniah

et al. [25].

This study is limited to modeling two semelparous species

with each species having two age classes. The model used in

this paper is the Leslie matrix model for multispecies. In the

model, it is assumed that there is a density-dependent influence

on the growth of the species which only occurs in the first

age class of the two species. In addition, growth for each

species is also affected by harvesting which only occurs in the

second age class. The model is analyzed under two headings,

namely the multispecies model with no effect of interactions

and the multispecies model with effect of interactions in

the form of interspecific competition (competition between

different species) and intraspecific competition (competition

between the same species). Competition only occurs in the

first age class in both species which is a response due to

density-dependence.

This paper is presented as follows. Section 2 discusses

the Leslie multispecies matrix model without interactions,

determines the equilibrium point, and analyzes the stability
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of each equilibrium point. Section 3 discusses the Leslie

multispecies matrix model with interactions in the form

of interspecific competition and intraspecific competition,

determines the equilibrium point of the model, and analyzes

the stability of each equilibrium. Section 4 reports on the

performance of the simulation, and Section 5 gives the

concluding remarks.

2. Leslie matrix model of two
semelparous species with
density-dependent growth and
harvesting without competition

This paper constructs and studies the growth dynamics of

two semelparous species with each species having two age classes

using the Leslie matrix for multispecies. The model with the

number of two age classes can be applied to species that have

a lifespan of 2 weeks, 2 months, 2 years, and two age stages can

be children and adults, and so on. The model in this section is

modified and constructed from the Travis et al. [7] and Wikan

[14] models based on the assumptions and simplifications in

this paper.

It is assumed that density-dependence only occurs in the

first age class in each species. Then, harvesting only occurred in

the second age class for both species. Both density-dependent

and harvesting affect the population size of the second age class

at time t + 1. In this case, the density-dependent factor uses

the classical Beverton-Holt function whose effect is shown in

Figure 1. The Beverton-Holt function is also used in research

using the Leslie matrix by Wikan [14], but in this study,

there is a simplification of the Beverton-Holt function. This

model is given by the system of Equations (1) and is called

Model A.

FIGURE 1

Density-dependent Beverton-Holt function.

x1(t + 1) = fx2x2(t),

x2(t + 1) =
sx1 (1− hx2 )

1+ x1(t)+ y1(t)
x1(t), (1)

y1(t + 1) = fy2y2(t),

y2(t + 1) =
sy1 (1− hy2 )

1+ x1(t)+ y1(t)
y1(t),

where xi(t) and yi(t) represent the population densities of

semelparous species x and y from the i-th age class (i = 1, 2)

at time t, respectively. In this case fx2 , fy2 > 0 represent the

birth rate of species x and y in the second age class, respectively.

Meanwhile, 0 < sx1 , sy1 ≤ 1 each represents the survival

rate of the first age to the second age class of species x and

y. Finally, 0 < hx2 , hy2 ≤ 1 are the harvesting rate in the

second age class of species x and y, respectively. Based on the

assumption, the density-dependent effect inModel A is modeled

as 1
1+x1(t)+y1(t)

where z in Figure 1 is x1(t)+ y1(t). This is based

on the assumption that density-dependence only occurs in the

first age class in each species.

The equilibrium point of model A can be done by making

the left-hand side of model A dependent on time t so that the

equilibria are given by the following system of equations:

x1(t) = fx2x2(t),

x2(t) =
sx1 (1− hx2 )

1+ x1(t)+ y1(t)
x1(t), (2)

y1(t) = fy2y2(t),

y2(t) =
sy1 (1− hy2 )

1+ x1(t)+ y1(t)
y1(t).

The system has the following equilibria:

i. The extinction equilibrium point

E0 =











x1

x2

y1

y2











=











0

0

0

0











,

implies, the extinction of both species.

ii. The extinction of the second species (species y)

equilibrium point

Ex =











x1

x2

y1

y2











=













(−fx2 sx1 (hx2 − 1)− 1)

−
(fx2 sx1 (hx2−1)+1)

fx2
0

0













=













Rx − 1

−
(−Rx+1)

fx2
0

0













,

with Rx = fx2 sx1 (1 − hx2 ), where Rx represents the

expected number of offspring per individual per lifetime

when density-dependent effects are neglected on harvest-

influenced growth of species x. Therefore, Ex exists

if Rx > 1.
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iii. The extinction of the first species (species x)

equilibrium point

Ey =











x1

x2

y1

y2











=













0

0

(−fy2 sy1 (hy2 − 1)− 1)

−
(fy2 sy1 (hy2−1)+1)

fy2













=













0

0

Ry − 1

−
(−Ry+1)

fy2













,

where Ry = fy2 sy1 (1 − hy2 ). Ry represents the

expected number of offspring per individual per lifetime

when density-dependent effects are neglected on harvest-

influenced growth of species y. Therefore, Ey exists

if Ry > 1.

Based on the calculations, it is not interesting that the point

of equilibrium at which both populations exist is not found in

this model. Therefore, this model will be developed in Section 3

by adding interaction factors between species.

The following steps analyze the local stability of Model A.

An equilibrium point is said to be asymptotically locally stable

if the spectral radius of the Jacobian matrix at that equilibrium

point is less than one. This criterion is difficult to apply to this

model, so in this study, we use the M-Matrix method as done by

Travis et al. [7]. The steps taken in the study of Travis et al. [7]

to determine local stability asymptotically using the M-Matrix

theory, include

i. Determining the Jacobian matrix from the equilibrium

point. Suppose J(E) is an n × n matrix with E being the

equilibrium point.

ii. Transformimg the J(E) matrix into a G = In − SJ(E)S−1

matrix with In identity matrix of size n×nwith S details can

be seen in Travis et al. [7].

iii. Furthermore, the G matrix has a spectral radius of less than

one if G is a M-matrix. A matrix is said to be M-Matrix

if gij ≤ 0 for i 6= j and if matrix G satisfies one of the

five conditions, one of the conditions are that the principal

minor of matrix G is positive [see for other conditions in

Travis et al. [7]].

The locally stable asymptotic of each equilibrium point of

Model A is presented in Theorem 1 below.

Theorem 1. For systems of Model A:

i. The equilibrium point E0 is locally stable asymptotically if

Rx < 1 and Ry < 1.

ii. The equilibrium point Ex is locally stable asymptotically if

Ry < Rx and Rx > 1.

iii. The equilibrium point Ey is locally stable asymptotically if

Rx < Ry and Ry > 1.

Proof. The local stability of each equilibrium point can be

determined by linearizing the Model A. The Jacobian matrix of

Model A becomes

J([x1, x2, y1, y2]) =











0 fx2 0 0

Ax(1+ y1) 0 −Axx1 0

0 0 0 fy2
−Ayy1 0 Ay(1+ x1) 0











, (3)

where

Ax =
sx1 (1− hx2 )

(1+ x1 + y1)2
,

Ay =
sy1 (1− hy2 )

(1+ x1 + y1)2
.

The next step is to substitute each equilibrium point into

(3).

i. The Jacobian matrix for the equilibrium point E0 is obtained

as follows.

J(E0) =











0 fx2 0 0

sx1 (1− hx2 ) 0 0 0

0 0 0 fy2
0 0 sy1 (1− hy2 ) 0











.

Based on the method used by Travis et al. [7], the

Jacobian matrix J(E0) will be transformed into a G

matrix where G = I4 − SJ(E0)S
−1. Because the value of

J(E0)13, J(E0)14, J(E0)23, J(E0)24, J(E0)31, J(E0)32, J(E0)33,

J(E0)34 ≤ 0 so that the chosen matrix S, i.e.,

S =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











.

Therefore,

G = I4 − SJ(E0)S
−1

=











1 −fx2 0 0

−sx1 (1− hx2 ) 1 0 0

0 0 1 −fy2
0 0 −sy1 (1− hy2 ) 1











.

Based on the defined parameters, the value of gij ≤ 0 for

i 6= j is fulfilled, where gij represents the elements of the

G matrix in the i-th row of the j-th column so that G is

called theM-matrix. Furthermore, the equilibrium point E0

is locally stable asymptotically if all the minor principals of

G are positive. Based on the calculation results obtained

|g11| = 1 > 0,
∣

∣

∣

∣

∣

g11 g12

g21 g22

∣

∣

∣

∣

∣

= 1+ fx2 sx1 (hx2 − 1)

= 1− Rx > 0 H⇒ Rx < 1,
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∣

∣

∣

∣

∣

∣

∣

g11 g12 g13

g21 g22 g23

g31 g32 g33

∣

∣

∣

∣

∣

∣

∣

= 1+ fx2 sx1 (hx2 − 1)

= 1− Rx > 0 H⇒ Rx < 1,
∣

∣

∣G
∣

∣

∣
= (1+ fx2 sx1 (hx2 − 1))(1+ fy2 sy1 (hy2

− 1)) = (1− Rx)(1− Ry) > 0,

H⇒ Rx < 1 and Ry < 1.

So, all the minor principals of G will be positive if Rx < 1

and Ry < 1. Therefore, the equilibrium point E0 is locally

stable asymptotically if Rx < 1 and Ry < 1.

ii. The Jacobian matrix for the equilibrium point Ex, i.e.,

J(Ex) =













0 fx2 0 0
sx1 (1−hx2 )

R2x
0 −

sx1 (1−hx2 )(Rx−1)

R2x
0

0 0 0 fy2

0 0 −
sy1 (hy2−1)

Rx
0













.

Next, the Jacobian matrix J(Ex) is transformed into

a matrix G = I4 − SJ(Ex)S
−1. Because Rx > 1 and

J(Ex)13, J(Ex)14, J(Ex)23, J(Ex)24, J(Ex)31, J(Ex)32, J(Ex)33,

and J(Ex)34 ≤ 0 then,

S =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











.

Furthermore,

G =













1 −fx2 0 0
−sx1 (1−hx2 )

R2x
1

−sx1 (1−hx2 )(Rx−1)

R2x
0

0 0 1 −fy2

0 0
−sy1 (1−hy2 )

Rx
1













.

Because Rx > 1 and the parameters are already defined,

gij ≤ 0 is fulfilled for i 6= j. The next step is to show that

the principal minor of G is positive.

Based on the calculation results obtained

|g11| = 1 > 0,
∣

∣

∣

∣

∣

g11 g12

g21 g22

∣

∣

∣

∣

∣

=
1+ fx2 sx1 (hx2 − 1)

fx2 sx1 (hx2 − 1)

= −
1− Rx

Rx
> 0 H⇒ Rx > 1,

∣

∣

∣

∣

∣

∣

∣

g11 g12 g13

g21 g22 g23

g31 g32 g33

∣

∣

∣

∣

∣

∣

∣

=
1+ fx2 sx1 (hx2 − 1)

fx2 sx1 (hx2 − 1)

= −
1− Rx

Rx
> 0 H⇒ Rx > 1,

∣

∣

∣G
∣

∣

∣
=

(Ry − Rx)(1− Rx)

R2x
> 0

H⇒ Rx > 1 and Ry < Rx.

So, all minor principals of G will be positive if Rx > 1 and

Ry < Rx. Therefore, the equilibrium point Ex is locally stable

asymptotically if Rx > 1 and Ry < Rx.

iii. The Jacobian matrix for the equilibrium point Ey is

J(Ey) =















0 fx2 0 0
sx1 (1−hx2 )

Ry
0 0 0

0 0 0 fy2
−sy1 (1−hy2 )(Ry−1)

R2y
0 −

sy1 (hy2−1)
Ry

0















.

Next, the Jacobian matrix J(Ey) is transformed into

a matrix G = I4 − SJ(Ey)S
−1. Because Ry > 1 and

J(Ey)13, J(Ey)14, J(Ey)23, J(Ey)24, J(Ey)31, J(Ey)32, J(Ey)33,

J(Ey)34 ≤ 0 then,

S =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











.

Furthermore,

G =















1 −fx2 0 0
−sx1 (1−hx2 )

Ry
1 0 0

0 0 1 −fy2
−sy1 (1−hy2 )(Ry−1)

R2y
0

−sy1 (1−hy2 )

R2y
1















.

Because Ry > 1 and the parameters are already defined,

gij ≤ 0 is fulfilled for i 6= j. The next step is to show that

the principal minor ofG is positive. Based on the calculation

results obtained

|g11| = 1 > 0,
∣

∣

∣

∣

∣

g11 g12

g21 g22

∣

∣

∣

∣

∣

=
−Rx + Ry

Ry
> 0 =

−Rx

Ry
+ 1 > 0

H⇒
Rx

Ry
< 1 H⇒ Rx < Ry,

∣

∣

∣

∣

∣

∣

∣

g11 g12 g13

g21 g22 g23

g31 g32 g33

∣

∣

∣

∣

∣

∣

∣

=
−Rx + Ry

Ry
> 0 =

−Rx

Ry
+ 1 > 0

H⇒
Rx

Ry
< 1 H⇒ Rx < Ry,

∣

∣

∣G
∣

∣

∣
= −

(Ry − Rx)(1− Ry)

R2y
> 0

H⇒ Ry > 1 and Rx < Ry.

So, all minor principals of G will be positive if Ry > 1

and Rx < Ry. Therefore, the equilibrium point Ey is locally

stable asymptotically if Ry > 1 and Rx < Ry. This proof

is complete.�
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3. Leslie matrix model of two
semelparous species with
density-dependent growth and
harvesting together with
competition e�ect

Based on the previous model, there is no equilibrium point

where the two species exist. In fact, in an ecosystem, it is expected

that both species can survive. In this section, the previous

model is improved upon. An assumption is added to the model

that there are both intraspecific and interspecific competitions

that occur only in the first age class as a density-dependent

response. To simplify the problem, it is assumed that the level of

competition between the first age class in species x and species

y has the same value, i.e., a > 0. Then, the level of competition

between the first age class in species y against species x and vice

versa has the same value, i.e., b > 0. This problem is modeled in

Equation (4) below and we call it Model B.

x1(t + 1) = fx2x2(t),

x2(t + 1) =
sx1 (1− hx2 )

1+ ax1(t)+ by1(t)
x1(t), (4)

y1(t + 1) = fy2y2(t),

y2(t + 1) =
sy1 (1− hy2 )

1+ bx1(t)+ ay1(t)
y1(t).

Model B is an observed model from the model developed

by Travis et al. [7] where in this model there is no effect of

harvesting. Then, the model from Travis et al. [7] was modified

and constructed based on the assumptions and simplifications in

this research.

The equilibrium point of Model B can be determined by

making the left-hand side of Model B dependent on the t-th

time. The equilibrium solution of Model B is expressed in the

following system of equations:

x1(t) = fx2x2(t),

x2(t) =
sx1 (1− hx2 )

1+ ax1(t)+ by1(t)
x1(t), (5)

y1(t) = fy2y2(t),

y2(t) =
sy1 (1− hy2 )

1+ bx1(t)+ ay1(t)
y1(t).

By solving the Equation (5), we arrived at the following

results:

i. The extinction equilibrium point is given as

E0 =











x1

x2

y1

y2











=











0

0

0

0











.

ii. The equilibrium point with species x exists is given as

Ex =











x1

x2

y1

y2











=











−
−Rx+1

a

−
−Rx+1
afx2
0

0











,

where Rx = fx2 sx1 (1 − hx2 ). Therefore, Ex exists only if

Rx > 1.

iii. The equilibrium point with species y exists is given as

Ey =











x1

x2

y1

y2











=













0

0

−
−Ry+1

a

−
−Ry+1

afy2













,

where Ry = fy2 sy1 (1− hy2 ). Hence, Ey exists only if Ry > 1.

iv. The equilibrium point with both species exist given as

Exy =











x1

x2

y1

y2











=



















−
(a(−Rx+1)−b(−Ry+1))

(a2−b2)

−
(a(−Rx+1)−b(−Ry+1))

(a2−b2)fx2

−
(a(−Ry+1)−b(−Rx+1))

(a2−b2)

−
(a(−Ry+1)−b(−Rx+1))

(a2−b2)fy2



















.

There are two cases where the elements in Exy are

positive, namely

Case 1 : (a2− b2) > 0, a(−Rx+ 1)− b(−Ry+ 1) < 0, and

a(−Ry + 1)− b(−Rx + 1) < 0.

Case 2 : (a2− b2) < 0, a(−Rx+ 1)− b(−Ry+ 1) > 0, and

a(−Ry + 1)− b(−Rx + 1) > 0.

Next, an asymptotically local stability analysis in Model A is

performed. The steps taken to check the local stability in Model

B are the same as in Model B. However, in Model B there are

four equilibrium points that must be analyzed while in Model A

there are only three equilibrium points due to the absence of a

co-existence equilibrium point. The locally stable asymptotic for

each equilibrium point of the model in Model B is presented in

Theorem 2 below.

Theorem 2. For systems of Model B:

i. If Rx < 1 and Ry < 1, then the equilibrium point E0 is locally

stable asymptotically.

ii. If Rx > 1 and a(1 − Ry) > b(1 − Rx), then the equilibrium

point Ex is locally stable asymptotically.

iii. If Ry > 1 and a(1 − Rx) > b(1 − Ry), then the equilibrium

point Ey is locally stable asymptotically.

iv. If (a2 − b2) > 0, a(1 − Rx) < b(1 − Ry), and a(1 −

Ry) < b(1 − Rx), then the equilibrium point Exy is locally

stable asymptotically.
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Proof: The Jacobian matrix of Model B is

J([x1, x2, y1, y2]) =











0 fx2 0 0

Ax(1+ by1) 0 −Axbx1 0

0 0 0 fy2
−Ayby1 0 Ay(1+ bx1) 0











, (6)

where

Ax =
sx1 (1− hx2

(ax1 + by1 + 1)2
,

Ay =
sy1 (1− hy2

(ax1 + by1 + 1)2
.

The next step is to substitute each equilibrium point into the

Jacobian matrix in Equation (6).

i. The Jacobian matrix for the equilibrium point E0, i.e.,

J(E0) =











0 fx2 0 0

sx1 (1− hx2 ) 0 0 0

0 0 0 fy2
0 0 sy1 (1− hy2 ) 0











.

The same thing was done in determining the

locally stable asymptotically of the Model A. First,

the Jacobian matrix J(E0) is transformed into the

matrix G = I4 − SJ(E0)S
−1. Because the value of

J(E0)13, J(E0)14, J(E0)23, J(E0)24, J(E0)31, J(E0)32, J(E0)33,

J(E0)34 ≤ 0 so that the chosen matrix S, i.e.,

S =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











.

Furthermore,

G =











1 −fx2 0 0

−sx1 (1− hx2 ) 1 0 0

0 0 1 −fy2
0 0 −sy1 (1− hy2 ) 1











.

and gij ≤ 0 for i 6= j. The next step is to show that the

principal minor of G is positive. Based on the calculation

results obtained

|g11| = 1 > 0,
∣

∣

∣

∣

∣

g11 g12

g21 g22

∣

∣

∣

∣

∣

= 1− Rx > 0 H⇒ Rx < 1,

∣

∣

∣

∣

∣

∣

∣

g11 g12 g13

g21 g22 g23

g31 g32 g33

∣

∣

∣

∣

∣

∣

∣

= 1− Rx > 0 H⇒ Rx < 1,

∣

∣

∣G
∣

∣

∣
= (1− Rx)(1− Ry) > 0

H⇒ Rx < 1 and Ry < 1.

So, all minor principals of G will be positive if Ry < 1 and

Rx < 1. Therefore, the equilibrium point E0 is locally stable

asymptotically if Rx < 1 and Ry < 1.

ii. The Jacobian matrix for the equilibrium point Ex, i.e.,

J(Ex) =















0 fx2 0 0
sx1 (1−hx2 )

R2x
0 −

bsx1 (1−hx2 )(Rx−1)

aR2x
0

0 0 0 fy2

0 0 −
asy1 (hy2−1)

(Rx−1)b+a
0















.

Next, the matrix J(Ex) is transformed into a matrix

G = I4 − SJ(Ex)S
−1. Since Rx > 1, and the value of

J(Ex)13, J(Ex)14, J(Ex)23, J(Ex)24, J(Ex)31, J(Ex)32, J(Ex)33,

J(Ex)34 ≤ 0 so that the chosen matrix S, i.e.,

S =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











.

Furthermore,

G =















1 −fx2 0 0

−
sx1 (1−hx2 )

R2x
1 −

bsx1 (1−hx2 )(Rx−1)

aR2x
0

0 0 1 −fy2

0 0 −
asy1 (1−hy2 )

(Rx−1)b+a
1















.

and gij ≤ 0 for i 6= j. The next step is to show that the

principal minor of G is positive. Based on the calculation

results obtained

|g11| = 1 > 0,
∣

∣

∣

∣

∣

g11 g12

g21 g22

∣

∣

∣

∣

∣

=
Rx − 1

Rx
> 0 H⇒ Rx > 1,

∣

∣

∣

∣

∣

∣

∣

g11 g12 g13

g21 g22 g23

g31 g32 g33

∣

∣

∣

∣

∣

∣

∣

=
Rx − 1

Rx
> 0 H⇒ Rx > 1,

∣

∣

∣G
∣

∣

∣
=

(Rx − 1)(a(1− Ry)− b(1− Rx))

Rx(a− b(1− Rx))
.

For |G|, Rx−1 > 0 and (a−b(1−Rx)) > 0 because Rx > 1.

Therefore, for |G| > 0, it must be (a(1−Ry)−b(1−Rx)) > 0

so that a(1 − Ry) > b(1 − Rx). Therefore, the equilibrium

point Ex is locally stable asymptotically if Rx > 1 and

a(1− Ry) > b(1− Rx).

iii. The Jacobian matrix for the equilibrium point Ey, i.e.,

J(Ey) =















0 fx2 0 0
asx1 (1−hx2 )

(Ry−1)b+a
0 0 0

0 0 0 fy2

−
bsy1 (1−hy2 )(Ry−1)

aR2y
0 −

sy1 (hy2−1)

(R2y
0















.
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Next, the matrix J(Ex) is transformed into a matrix

G = I4 − SJ(Ey)S
−1. Since Ry > 1, the value of

J(Ey)13, J(Ey)14, J(Ey)23, J(Ey)24, J(Ey)31, J(Ey)32, J(Ey)33,

and J(Ey)34 ≤ 0 so that the chosen matrix S, i.e.,

S =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











.

Furthermore,

G =















1 −fx2 0 0

−
asx1 (1−hx2 )

(Ry−1)b+a
1 0 0

0 0 1 −fy2

−
bsy1 (1−hy2 )(Ry−1)

aR2y
0 −

sy1 (1−hy2 )

(R2y
1















.

and gij ≤ 0 for i 6= j. The next step is to show that the

principal minor of G is positive. Based on the calculation

results obtained

|g11| = 1 > 0,
∣

∣

∣

∣

∣

g11 g12

g21 g22

∣

∣

∣

∣

∣

=
(a(1− Rx)− b(1− Ry))

a− b(1− Ry)
,

∣

∣

∣

∣

∣

∣

∣

g11 g12 g13

g21 g22 g23

g31 g32 g33

∣

∣

∣

∣

∣

∣

∣

=
(a(1− Rx)− b(1− Ry))

a− b(1− Ry)
,

∣

∣

∣G
∣

∣

∣
= −

(1− Ry)(a(1− Rx)− b(1− Ry))

Ry(a− b(1− Ry))
.

Since Ry > 1, consequently, (1 − Ry) < 0 and (a −

b(1 − Ry)) > 0. Therefore, for all minor principals to

be positive, it must be (a(1 − Rx) − b(1 − Ry)) > 0

so that a(1 − Rx) > b(1 − Ry). Thus, the equilibrium

point Ey is locally stable asymptotically if Ry > 1

and a(1− Rx) > b(1− Ry).

FIGURE 2

Population growth of each age class from case (i) Model A.
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iv. The Jacobian matrix for the equilibrium point Exy, i.e.,

J(Exy) =











0 fx2 0 0

A1 0 A2 0

0 0 0 fy2
B1 0 B2 0











,

where

A1 =
b2Rx + a(−a+ (1− Ry)b)

−Rxfx2 (a
2 − b2)

,

A2 =
b(a(1− Rx)− b(1− Ry))

Rxfx2 (a
2 − b2)

,

B1 =
b(a(1− Ry)− b(1− Rx))

Ryfy2 (a
2 − b2)

,

B2 =
b2Ry + a(−a+ (1− Rx)b)

−Ryfy2 (a
2 − b2)

.

Next, the matrix J(Exy) is transformed into a matrix

G = I4−SJ(Exy)S
−1. Because between a(1−Rx)−b(1−Ry)

and a(1 − Ry) − b(1 − Rx) to a2 − b2 have different signs

which is a condition where the equilibrium point Exy exists.

As a result, A2 and B2 are negative. Therefore, the value

of J(Exy)13, J(Exy)14, J(Exy)23, J(Exy)24, J(Exy)31, J(Exy)32,

J(Exy)33, and J(Exy)34 ≤ 0 so that the chosen matrix S, i.e.,

S =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











.

Furthermore,

G =











1 −fx2 0 0

A1 1 A2 0

0 0 1 −fy2
B1 0 B2 1











.

In addition, gij ≤ 0 for i 6= j. The next step is to show that

the principal minor ofG is positive. Based on the calculation

FIGURE 3

Population growth of each age class from case (ii) Model A.
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results obtained

|g11| = 1 > 0,
∣

∣

∣

∣

∣

g11 g12

g21 g22

∣

∣

∣

∣

∣

= −
a(a(1− Rx)− b(1− Ry))

Rx(a2 − b2)
,

∣

∣

∣

∣

∣

∣

∣

g11 g12 g13

g21 g22 g23

g31 g32 g33

∣

∣

∣

∣

∣

∣

∣

= −
a(a(1− Rx)− b(1− Ry))

Rx(a2 − b2)
,

∣

∣

∣G
∣

∣

∣
=

(a(1− Ry)− b(1− Rx))(a(1− Rx)

−b(1− Ry))

RxRy(a2 − b2)
.

The results above show that only |g11| is positive, so there

are three minor principals that must be determined to be

positive. The three minor principals will be positive if (a2 −

b2) > 0, a(−Rx + 1) − b(−Ry + 1) < 0, and a(−Ry +

1) − b(−Rx + 1) < 0. Thus, the equilibrium point Exy is

locally stable asymptotically if a(a2−b2) > 0, a(−Rx+ 1)−

b(−Ry + 1) < 0, and a(−Ry + 1) − b(−Rx + 1) < 0. The

proof is complete.�

4. Numerical simulations

In the previous sections, analytical analyses of the existence

and locally stable asymptotically of each equilibrium point have

been carried out in Models A and B. This section presents

some numerical simulation results with the aim of providing

numerical proof of Theorems 1 and 2 of this study. The graphical

results of the numerical proof are presented in Figures 2–8. In

this study, the specific species in question is not determined. For

this reason, some of the parameter values used in the numerical

simulation are hypothetical parameters. In this case, simulations

are performed on both models and each model will be divided

into several cases based on the stability conditions of each

equilibrium point.

In the numerical simulation of Model A, the simulation is

divided into three cases. It is assumed for all the cases that the

FIGURE 4

Population growth of each age class from case (iii) Model A.
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FIGURE 5

Population growth of each age class from case (i) Model B.

parameter values are sx1 = 0.3 and sy1 = 0.3. Both of these

parameters were obtained in the research of Travis et al. [7]. The

other parameters for each case in the numerical simulation of

Model A 275 is presented as follows:

(i) fx2 = 6, fy2 = 4, hx2 = 1/2, and hy2 = 1/4 so that

Rx = 0.89 and Ry = 0.89.

(ii) fx2 = 20, 000, fy2 = 500, hx2 = 0.001, and hy2 = 1/4 so

that Rx = 5, 994 and Ry = 22.5.

(iii) fx2 = 500, fy2 = 20, 000, hx2 = 0.001, and hy2 = 1/4 so

that Rx = 149.85 and Ry = 4500.

The parameter value for the birth rate of 20,000 follows the

value of the birth rate parameter in the study of Travis et al. [7].

All parameter values are measured per unit of time and the total

population is calculated per individual.

The results of simulation on Model A for cases (i)-(iii) are

presented in Figures 2–4. Figure 2 shows the case (i), in which

Rx < 1 and Ry < 1, resulting in the stability of the system

toward the equilibrium point E0. Figure 3 shows case (ii), in

which Rx > 1 and Rx > Ry, resulting in the stability of the

system toward the equilibrium point Ex = [5993, 0.3, 0, 0]T ,

i.e., species x exists. Figure 4 shows case (iii), in which Ry > 1

and Ry > Rx, resulting in the stability of the system toward the

equilibrium point Ey = [0, 0, 4499, 0.22]T i.e., species y exists.

In the numerical simulation of Model B, the simulation is

divided into four cases. It is assumed that the survival rate of

Model B is the same as the survival rate of Model A. It is also

assumed that the level of intraspecific competition is a = 0.05

and the level of interspecific competition is b = 0.01. The values

of a and b indicate that a2 − b2 > 0. This choice was made

to minimize the simulations carried out. Then, we assume the

value of the parameters hx2 = 1/2 and hy2 = 1/4 for all cases

of Model B. The other parameters for each case in the numerical

simulation of Model B are presented as follows:
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FIGURE 6

Population growth of each age class from case (ii) Model B.

(i) fx2 = 6 and fy2 = 4 so that Rx = 0.89 and Ry = 0.89.

(ii) fx2 = 20,000 and fy2 = 500 so that Rx = 3,000 and

Ry = 112.5.

(iii) fx2 = 500 and fy2 = 20,000 so that Rx = 75

and Ry = 4,500.

(iv) fx2 = 20,000 and fy2 = 10,000 so that Rx = 3,000 and Ry =

2,250.

The results of the numerical simulation on Model B are

shown in Figures 5–8. Figure 5 shows case (i), in which Rx < 1

and Ry < 1, resulting in the stability of the system toward

the equilibrium point E0. Figure 6 shows the case (ii), in which

Rx > 1 and a(1 − Ry) > b(1 − Rx), resulting in the stability of

the system toward the equilibrium point Ex = [59980, 3, 0, 0]T

where species x exists. Figure 7 shows case (iii), in which Ry > 1

and a(1 − Rx) > b(1 − Ry), resulting in the stability of the

system toward the equilibrium point Ey = [0, 0, 89980, 4.495]T .

Figure 8 shows case (iv), in which a > b, a(1 − Rx) <

b(1 − Ry), and a(1 − Ry) < b(1 − Rx), resulting in the

stability of the system toward the equilibrium point Exy =

[53108.33, 2.65, 34358.33, 3.43]T .

5. Discussion

The research presented in this paper is an extension of

the model carried out by Pennycuick et al. [6], Travis et al.

[7], and Kon [8–10]. In these studies, the effect of harvesting

on species growth which is influenced by density-dependence

and competition has not been studied. These influences on the

growth of species can occur in an ecosystem as in the case

study on fish conducted by Travis et al. [7] in his research. This

extended model can also be applied to the species growth model

without the effect of harvesting with the value of the harvesting

level equal to zero.

In this paper, we find several results in the comparison of

the models we developed, namely Model A and Model B. In

Model A, there is no co-existence equilibrium point between the

two semelparous species in the same ecosystem, but this point

has only been found in Model B. It can be concluded that the

competition affects the existence of a co-existence equilibrium

point in the density-dependent growth of the two species. In

addition, the local stability in Model A and Model B is also
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FIGURE 7

Population growth of each age class from case (iii) Model B.

explored. The asymptotically local stability of Model A depends

on the condition of the inherent net reproduction number of

species x (Rx) and the inherent net reproduction number of

species y (Ry). Then, the asymptotically local stability of Model

B depends on the values of Rx, Ry, the level of intraspecific

competition (a), and the level of interspecific competition (b).

6. Conclusion

In this paper, population growth models of two semelparous

species have been studied where growth is influenced by density-

dependent and harvesting. The models are analyzed with no

competition as in Model A and with competition as in Model B.

Based on the results, the factors that influence both the existence

of the equilibrium point and its locally stable asymptotically are

the values of a, b,Rx (net reproductive value of species x with

harvesting effect), and Ry (net reproductive value of species y

with harvesting effect). Overall, both the equilibrium points and

their local stability are determined by the parameters Rx and

Ry, which implies that harvesting is very influential. Besides,

in Model A, there is no equilibrium point where both species

exist. Therefore, Model A was developed into Model B and it

turned out that adding the factors of intraspecific competition

(a) and interspecific competition (b) affect the equilibrium point

where the two species require that a 6= b. Then, the values

of parameters a and b also play a role in determining the

local stability conditions from the equilibrium point where both

species exist. Observations on multispecies growth are closer

to the real problem than single species growth. However, the

multispecies growth model is difficult to work with. Hence,

there is a simplification of the particular model currently being

investigated. This study still focuses on the simple problem of the

growth of two semelparous species that are affected by density-

dependent, competition, and harvesting. Future work that can

be developed from this research include research on the number

of any age class, the number of any species, global stability

problems, bifurcation problems, and many more.
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FIGURE 8

Population growth of each age class from case (iv) Model B.
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