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In this article, we transform the (1 + 1)-dimensional non-linear dispersive

modified Benjamin-Bona-Mahony (DMBBM) equation and the (2 + 1)-

dimensional cubic Klein Gordon (cKG) equation, which are the non-linear

partial di�erential equations, into the non-linear ordinary di�erential equations

by using the traveling wave transformation and solve these solutions with

the simple equation method (SEM) with the Bernoulli equation. Two classes

of exact explicit solutions-hyperbolic and trigonometric solutions of the

associated NLEEs are characterized with some free parameters; we obtain the

kink waves and periodic waves.
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dispersive modified Benjamin-Bona-Mahony equation, cubic Klein Gordon equation

Introduction

Immediately, nonlinear evolution equations (NLEEs), i.e., partial differential

equations with time derivatives and fractional differential equations (FDEs), have

become a useful tool for describing the natural phenomena of science and engineering,

such as optical fiber communications, atmospheric pollutant dispersion, solid state

physics, signal processing, mechanical engineering, electric control theory, relativity,

chemical reactions, etc. Exact solutions or numerical solutions have always played

and still play an important role in properly understanding the qualitative features of

many phenomena and processes in various fields of natural science. Various effective

and powerful methods have been established to handle the NLEEs, such as the

modified simple equation method [1, 2], the Jacobi elliptic function method [3], the

(G
′
/G)-expansion method [4], the homotopy perturbation method [5], the variational

iteration method [6], the Exp-function method [7, 8], the tanh function method

[9], the F-expansion method [10], the Laplace-optimized decomposition method [11],

the reproducing kernel algorithm [12–14] etc. The investigation of wave solutions

of NLEEs plays a significant role in the study of nonlinear physical phenomena.

The well-known wave solutions that are utilized to describe the exact solutions of

NLEEs are lump solutions, lump-multi-kink solutions, and traveling wave solutions.

Lump solutions and lump-multi-kink solutions to the (3 + 1) dimensional generalized
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Boiti–Leon–Manna–Pempinelli equation are studied in 2022

[15]. Lump-soliton solutions to the KPI equation are shown in

2021 [16]. Traveling wave solutions for the (2 + 1)-dimensional

cubic nonlinear Klein–Gordon (cKG) equation and the (2 +
1)-dimensional nonlinear Zakharov–Kuznetsov modified equal

width (ZK-MEW) equation were being investigated in 2019

[17]. Additionally, the (1+ 1)-dimensional nonlinear dispersive

modified Benjamin-Bona Mahony (DMBBM) equation and the

(2 + 1)-dimensional cubic Klein Gordon (cKG) equation are

non-linear partial differential equations that play a significant

role in various scientific and engineering fields. The DMBBM

equation was first derived to describe an approximation for

surface-long waves in non-linear dispersive media. It can also

characterize the hydromagnetic waves in cold plasma, acoustic

waves in inharmonic crystals, and acoustic gravity. The DMBBM

was studied in 2010 using the extended (G
′
/G)-expansion

method [18], and, in 2014, using the modified simple equation

method [19]. The Klein-Gordon equation has been used to

model a wide range of nonlinear phenomena, including the

propagation of discrepancies in crystals and elementary particle

behavior. This equation was studied in 2011 [20] using the

extended (G
′
/G)-expansion method, in 2013 [21] using the

modified simple equation method, and in 2019 [17] using the

Riccati Bernoulli sub ODE method.

The simple equation method (SEM) was presented by

Nikolai Kudryashov [22]. This method was created by two

important ideas. One of them is to use the general solutions

of the simplest non-linear differential equations. Another idea

is to take into consideration all possible singularities in the

equation studied. The simple equation method was used to

investigate exact solutions of various equations, such as the

Sharma Tasso Olver equation and the Burgers Huxley equation

in 2008 [22], the Kodomtsev Petviashvili equation, the (2 +
1) dimensional breaking soliton equation, and the modified

generalized Vakhnenko equation in 2016 [23] and the fourth-

order non-linear AKNS water equation in 2021 [24].

In this article, we use the traveling wave to transform the

DMBBM equation and the cKG equation into the nonlinear

ordinary differential equations. Then, using the simple equation

method with the Bernoulli equation, we obtain the precise

solution of these equations in terms of the exponential functions,

and the physical wave solution is created in the form of

kink waves and periodic waves. Moreover, we compare these

results presented with other results in order to show that the

simple equation method with the Bernoulli equation is more

convenient and easier to understand.

Algorithm of simple equation
method

In this section, we present a direct method, namely, the

simple equation method, for finding the traveling wave solution

to nonlinear equations. Suppose that the nonlinear partial

equation, in two independent variablesx and t, is given by:

P (u, ut , ux, utt , uxx, uxt , ...) = 0, (1)

where u(x, t) is an unknown function, P is a polynomial of u(x, t)

and its partial derivatives in which the highest-order derivatives

and non–linear terms are involved. The main steps of the SE

method [19] are as follows:

Step 1: Wave transformation

Combining the independent variables x and t into one

variable ξ = x− ωt, we suppose that

u(x, t) = u(ξ ), ξ = x− ωt, (2)

where ω is the speed of a traveling wave. The traveling wave

transformation Equation (2) permits us to convert Equation (1)

into an ordinary differential equation (ODE) for u = u(ξ ):

Q(u, u′, u′′, ...) = 0, (3)

where Q is a polynomial of u(ξ ) and its derivatives in which the

prime indicates the derivative with respect to ξ .

Step 2: Solution assumption

Assume that the formal solution of Equation (3) is of

the form:

u(ξ ) =
n
∑

i=0

aiF
i(ξ ), (4)

where ai(i = 0, 1, 2, ..., n) are constants that will be determined

later and F(ξ ) are the functions that satisfy the simple equations

(ordinary differential equations). The simple equation has two

characteristics. First of all, it lacks the order of Equation (2);

secondly, we are aware of the general solution to the simple

equation. In this article, we shall use the Bernoulli and Riccati

equations, which are well-known nonlinear ordinary differential

equations, and their solutions can be described by simple

functions. Regarding the Bernoulli equation,

F′(ξ ) = cF(ξ )+ dF2(ξ ). (5)
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Step 3: Finding the integer n

The positive integer n that occurs in Equation (4) can be

estimated by taking into account the homogeneous balance

between the highest-order derivative and the non-linear terms

appearing in Equation (3).

Step 4: Solution attainment

We get the general solutions of the simple Equation (5)

as follows:

Case I: if c > 0 and d < 0, we have

F(ξ ) =
cec(ξ+ξ0)

1− dec(ξ+ξ0)
, (6)

where ξ0 is a constant of the integration.

Case II: if c < 0 and d > 0, we have

F(ξ ) = −
cec(ξ+ξ0)

1+ dec(ξ+ξ0)
, (7)

where ξ0 is a constant of the integration.

Application

In this section, we apply the proposed simple equation

method to construct the traveling wave solution to solve the (1+
1)-dimensional non-linear dispersive modified Benjamin-Bona-

Mahony (DMBBM) and the (2 + 1)-dimensional cubic Klein

Gordon equation.

Solution of the (1 + 1)-dimensional
non-linear dispersive modified
Benjamin-Bona- Mahony

The DMBBM equation is

ut + ux − αu2ux + uxxx = 0, (8)

where α is a non-zero positive constant. Using the traveling wave

variable ξ = x− ωt is transformed (8) into the following ODE:

(1− ω)u′ − αu2u′ + u′′′ = 0. (9)

According to the balancing procedure that will be described, the

balancing number n is a positive integer, which can be defined

by balancing the highest-order derivative terms with the highest

power non-linear terms in Equation (9), i.e., n + 3 = 3n + 1,

thus n = 1. We have the solution of Equation (9) as follows:

u(ξ ) =
1
∑

i=0

aiF
i(ξ ) = a0 + a1F, (10)

where F satisfies Equation (5); consequently, u′, u′′′ and u2 can

be expressed as follows:

u′′ = a1c
2F + 3a1cdF

2 + 2a1d
2F3,

u′′′ = a1c
3F + 7a1c

2dF2 + 12a1cd
2F3 + 6a1d

3F4,

u2 = a20 + 2a0a1F + a21F
2. (11)

Substituting Equations (10) and (11) into Equation (9) then

equating the coefficient of Fi to zero, where i ≥ 0, yields

(1− ω)a1c− αa20a1c+ a1c
3 = 0,

(1− ω)a1d − αa20a1d − 2αa0a
2
1c+ 7a1c

2d = 0,

−2αa0a
2
1d − αa31c+ 12a1cd

2 = 0,

−αa31d + 6a1d
3 = 0. (12)

Solving this system of algebraic equations, we obtain

a0 =
3c

√
6α

, a1 = d

√

6

α
and ω = 1−

c2

2
. (13)

or

a0 = −
3c

√
6α

, a1 = −d

√

6

α
and ω = 1−

c2

2
. (14)

Substituting Equations (13) and (14) into (10) yields the

following two exact solutions. Then, we use the general solutions

of Bernoulli equations (6) and (7). We get four exact solution (8)

from the exponential term. Next, we set the constants c and d to

obtain the exact solutions in hyperbolic form as follows:

Case I: if c = 1 and d = −1, we have

u1(x, t) = −
1

2

√

6

α
tanh

(

x− t
2 + k

2

)

,

u2(x, t) =
1

2

√

6

α
tanh

(

x− t
2 + k

2

)

. (15)

Case II: if c = −1 and d = 1, we have

u3(x, t) =
1

2

√

6

α
tanh

(

−x+ t
2 + k

2

)

,

u4(x, t) = −
1

2

√

6

α
tanh

(

−x+ t
2 + k

2

)

, (16)

where k is arbitrary constants, it might yieldmany new andmore

general exact solutions to the non-linear DMBBM equation.
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Solution of the (2 + 1)-dimensional cubic
Klein Gordon (cKG) equation

The (2 + 1)-dimensional cubic Klein Gordon (cKG)

equation is

vxx + vyy − vtt + αv+ βv3 = 0, (17)

where α and β are non-zero positive constants. Using the

traveling wave variable ξ = x + y − ωt is transformed (17) into

the following ODE:

(2− ω2)v′′ + αv+ βv3 = 0. (18)

According to the balancing procedure that will be described, the

balancing number n is a positive integer, which can be defined by

balancing the highest-order derivative terms v′′ with the highest

power non-linear terms v3 in Equation (18), i.e., n + 2 = 3n;

thus, n = 1. We have the solution of Equation (18) as follows:

v(ξ ) =
1
∑

i=0

aiF
i(ξ ) = a0 + a1F, (19)

where F satisfies Equation (5); consequently, and v3 can be

expressed as follows:

v′′(ξ ) = a1c
2F + 3a1cdF

2 + 2a1d
2F3,

v3(ξ ) = a0
3 + 3a0

2a1F + 3a0a1
2F2 + a1

3F3. (20)

Substituting Equations (19) and (20) into Equation (18) and then

equating the coefficient of Fi to zero, here i ≥ 0, yields

αa0 + βa0
3 = 0,

−(ω2 − 2)a1c
2 + αa1 + 3βa0

2a1 = 0,

−3(ω2 − 2)a1cd + 3βa0a1
2 = 0,

−2(ω2 − 2)a1d
2 + βa1

3 = 0.

(21)

Solving this system of algebraic equations, we obtain

a0 = i

√

α

β
, a1 = d

√

2(ω2 − 2)

β
and ω2 − 2 = −

2α

c2
(22)

or

a0 = −i

√

α

β
, a1 = −d

√

2(ω2 − 2)

β
and ω2 − 2

= −
2α

c2
. (23)

Substituting Equations (22) and (23) into (19) yields

the following two exact solutions. Then, we use the

general solutions of Bernoulli equations (6) and (7). We

get four exact solutions of (17) from the exponential

term. Next, we set the constants c and d to obtain the

exact solutions in hyperbolic and trigonometric form

as follows:

Case I: if d = −1 and c > 0, we have

v1(x, y, t) = i
√

α
β
tanh

(
√

−2α
ω2−2

(x+y−ωt+k)

2

)

,

v2(x, y, t) = −i
√

α
β
tanh

(
√

−2α
ω2−2

(x+y−ωt+k)

2

)

,

(24)

where c =
√

−2α
ω2−2

and k is arbitrary constants.

Case II: if and c < 0, we have

v3(x, y, t) =
√

α
β
tan

(
√

2α
ω2−2

(x+y−ωt+k)

2

)

,

v4(x, y, t) = −
√

α
β
tan

(
√

2α
ω2−2

(x+y−ωt+k)

2

)

,

(25)

where c = −
√

−2α
ω2−2

and k is arbitrary constants. It might yield

many new and more general exact solutions to the non-linear

cKG equation.

Graphical representation of some
obtained solutions

In this section, we discuss the physical

explanations and graphical representations of

the solutions of the DMBBM equation and the

cKG equation.

Graphical representation of the solution
of the DMBBM equation

Upon utilizing the SE method, we achieve the traveling wave

solutions of the DMBBM equation from Equations (15) and (16)

when wave speed ω = 1 − c2

2 . The solution u1(x, t) represents

by a singular kink-type wave for the parameter α = 6, k = 2

in the interval −10 ≤ x, t ≤ 10 and is shown in Figure 1

The kink wave rises or descends from one asymptotic state to

another. The kink solution approaches a constant at infinity.
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FIGURE 1

The kink wave solution of u1(x, t) in 3D and contour.

FIGURE 2

The kink wave solution of u2(x, t) in 3D and contour.

FIGURE 3

The kink wave solution of u3(x, t) in 3D and contour.

The solutions u2(x, t), u3(x, t) and u4(x, t) are analogous to

the figures of solution u1(x, t) and are presented in Figures 2–

4, respectively.

Graphical representation of the cKG
equation

In this subsection, we represent the shape of the solutions of

the cKG equation in the form of Equations (24) and (25). The

solution v1(x, t) is formed by a singular kink-type wave when

the wave speed ω = 2 and the parametersβ = 1, k = 2and

α = −1 in the interval −10 ≤ x, t ≤ 10 and is demonstrated

in Figure 5. This wave rises from one state to another state when

t decreases. The solution v2(x, t) also represents the same shape

with v1(x, t), but this wave raises from one state to another state

when increased and is shown in Figure 6.

The solutions v3(x, t) and v4(x, t) are a formed periodic

traveling wave for the values β = 1, k = 2 and α = 1in

the interval −10 ≤ x, t ≤ 10 and is presented in Figures 7, 8,
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FIGURE 4

The kink wave solution of u4(x, t) in 3D and contour.

FIGURE 5

The kink wave solution of v1(x, t) in 3D and contour.

FIGURE 6

The kink wave solution of v2(x, t) in 3D and contour.

respectively. A periodic traveling wave is a periodic function that

moves with constant speed. Consequently, it is a special type

of spatiotemporal oscillation that is a periodic function of both

space and time.

Comparisons

In this section, we compare our solutions with some well-

known methods.

Comparisons of the solution of the
DMBBM equation

In 2014, Khan et al. [19] investigated the exact solutions of

the DMBBM equation by using the MSE method, and they got

u1,2(x, t) = ±
√

3(1− ω)

α
tanh

(

√

1− ω

2
(x− ωt)

)
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FIGURE 7

The periodic wave solution of in 3D and contour.

FIGURE 8

The periodic wave solution of in 3D and contour.

and

u5,6(x, t) = ±
√

3(ω − 1)

α
tan

(

√

ω − 1

2
(x− ωt)

)

,

where c1 = −2c2(1 − ω) are similar with our solutions, that is,

c1 = −1 and c2 = 1, then u1,2(x, t) is identical with u1(x, t) and

u2(x, t) where k = 0 and u5,6(x, t) are equal with u3(x, t) and

u4(x, t) where k = 0.

Comparisons of the solution of the cKG
equation

In 2019, Abdelrahman et al. [17] use the Riccati-Bernoulli

sub-ODE method to investigate the exact solutions of the

cKG equation.

u1,2(x, t) = ±
√

α

β
tan

(√

α

2(λ2 − 2)
(x+ y− λt + µ)

)

,

where α
2(λ2−2)

> 0 is an identical with our solutions v3(x, t)

and v4(x, t).

u5,6(x, t) = ±
√

−
α

β
tanh

(√

−
α

2(λ2 − 2)
(x+ y− λt + µ)

)

,

where α
2(λ2−2)

< 0 is an equal with our solutions v1(x, t)

and v2(x, t).

The comparison of our exact solutions by using the SE

method presented that the method is more convenient and the

solutions have an easier format.

Conclusions

The simple equation method presented in this article has

been successfully implemented to find the wave solutions

for the DMBBM equation and the cKG equation. The

method offers solutions with free parameters in the form of

exponential, hyperbolic, and trigonometric functions that might

be important to explain some intricate physical phenomena.

Some special solutions, including the known traveling wave

solution, are originated by setting appropriate values for the

parameters. The wave effects of this equation were kink waves

as shown in Figures 1–6 and periodic waves as displayed in
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Figures 7, 8. Compared to the currently proposed method with

other methods, such as the MSE method and the Riccati-

Bernoulli sub-ODE method, we assert that the SE method

is a potent mathematical methodology, very simple, and has

easy computations.
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