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Population movements are necessary to survive the individuals in many cases

and depend on available resources, good habitat, global warming, climate

change, supporting the environment, and many other issues. This study

explores the spatiotemporal e�ect on the dynamics of the reaction-di�usion

model for two interacting populations in a heterogeneous habitat. Both species

are assumed to compete for di�erent fundamental resources, and the di�usion

strategies of both organisms follow the resource-based di�usion toward a

positive distribution function for a large variety of growth functions. Depending

on the values of spatially distributed interspecific competition coe�cients, the

study is conducted for two cases: weak competition and strong competition,

which do not perform earlier in the existing literature. The stability of global

attractors is studied for di�erent conditions of resource function and carrying

capacity. We investigated that in the case of weak competition, coexistence

is attainable, while strong competition leads to competitive exclusion. This is

an emphasis on how resource-based di�usion in the niche impacts selection.

When natural resources are in sharing, either competition or predator-prey

interaction leads to competitive exclusion or coexistence of competing

species. However, we concentrate on the situation in which the ideal free pair

is achieved without imposing any other additional conditions on the model’s

parameters. The e�ectiveness of the model is accomplished by numerical

computation for both one and two space dimension cases, which is very

important for biological consideration.

KEYWORDS

dispersal dynamics, competition, spatial functions, directed distribution,

global stability

1. Introduction

The life history of most organisms depends on their dispersal strategy and resource

distribution, which is the most important and obvious feature of ecology. Most of

the time, their ecological impact and progression remain inadequately understood.

The question that attracts most researchers is how individual organisms choose their
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habitat in the ecological niche. At this point, reaction-diffusion

models can be used for interacting biological species in an

isolated confined habitat that is highly adapted for capturing

species’ bio-geographic properties. Numerous new theoretical

research in the field of mathematical ecology have been

conducted on the reaction-diffusion problem (refer to, e.g.,

[1–6] and references therein) that suggest in many cases the

uniform and non-uniform ideal free distribution. The key

idea of ideal free distribution is that the individual has an

extensive understanding of the environment. They can freely

diffuse where they evaluate them-self in order to optimize

their fitness, without any cost. The concept of ideal free

distribution was laid out in Cantrell et al. [5], which signifies any

movement from this dispersed system will diminish the fitness

of the moving organism. Spatially heterogeneous, but temporary

constant ideal free distribution is estimated as the solution of

the model. In this context, for model dispersal, there were

various promising approaches (refer to, e.g., [4–6]) that provide

the ideal free distribution as the equilibrium solution of the

dynamical model.

However, the most crucial problem in heterogeneous

environments is that the strategy of diffusion, which is adopted

from any physical system, presumes enormous migration of

organisms to the areas of poor available resources [3, 7]. The

migration transport is considered proportional to the gradient

of population density itself. In this situation, species can be

preordained to extinction. As in classical diffusion, species

are uniformly distributed over the space with the increase

of the diffusion coefficient. However, ideal free distribution

corresponds to the equal distribution of available resources

at each spatial location. Classical diffusion cannot correspond

to the ideal free dispersal in a spatially non-homogeneous

environment. As a remedy to this, in our study, we have

considered an alternative take out type of diffusion strategy,

named resource-based diffusion [8, 9] along with a positive

and smooth distribution function, which is individual for each

population. In this migration pattern, the diffusive transport

is considered proportional to the gradient of population

density per unit resource instead of the carrying capacity

studied in Braverman and Braverman [4] and Korobenko and

Braverman [10].

The evolutionary advantage of various diffusion tactics

on the outcome of competition coefficients on the model

parameters was studied in Kamrujjaman [11]. The major

outcome of this study was that the mutual coexistence of species

and destruction of one by others, as well as considering the

case for which both species are managed confirms the ideal

free pair. The case of weak competition for two competing

species was studied in Kamrujjaman [12] where the diffusion

strategy of two competing species is considered different, the

first species following the resource-base diffusion, whereas

others disperse randomly. The study concluded that the

resource-based diffusion strategy has an evolutionary advantage

compared to regular diffusion. Also, it was found that when two

strategies, adopted by the competing species, were combined,

both species were able to coexist and an ideal free pair

was attained.

Moreover, competition between organisms is usually

depicted by the predator-prey and Lotka system. The Lotka-

Volterra system with random diffusion has been discussed

in the literature [7, 13, 14] throughout the last two decades.

Partial resource sharing described by a Lotka system with

competition parameters between zero and one was studied

in Braverman and Kamrujjaman [15]. They investigated

how the diffusion coefficients, as well as the competition

coefficients, can affect whether a possible interaction is a

coexistence or competitive exclusion. Furthermore, two species

striving for the same resource are unable to coexist. Spatial

heterogeneity, which is defined by the environment’s resource

capacity, intrinsic growth rate, inter-specific competition

coefficient, and spatially distributed diffusion strategies, can alter

the scenario.

Inspired by the overhead discussion, in this study, we have

studied a two species compete model, where the main aim

behind it is based on different imposed diffusion strategies

and the tensity of competition coefficient on their growth

function. We will study the existence of global stability both

for competitive exclusion and coexistence of the model, without

imposing additional conditions on the model parameter in

which ideal free pair exists in competition.

2. Mathematical model

Let us now define the well known growth functions that we

want to define in our generalized reaction-diffusion system:

Gilpin-Ayala growth [16] : F(x, u,K(x)) = r(x)

(

1−

(

u(t, x)

K(x)

)θ
)

,

0 < θ ≤ 1; (2.1)

For θ = 1, the logistic growth is a particular case;

Gompertz growth [17] : F(x, u,K(x)) = r(x) ln

(

K(x)

u(t, x)

)

; (2.2)

Food-limited growth [18] : F(x, u,K(x)) = r(x)
1− u(t, x)/K(x)

1+ βu(t, x)/K(x)
,

β > 0. (2.3)

In this study, we contemplate a couple of species competition

models in mathematical ecology. Both species compete for the

same basic resources at time t and location x, and early define the

notation,3 = �× (0,∞) and ∂3 = ∂�× (0,∞). Both species

are competing for the available natural resources in an isolated

domain � and their diffusion strategies are similar according

to two spatially distribution functions. This corresponds to the
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following non-linear system of equations with zero Neumann

boundary conditions:































ut = d11
(

u(t, x)
M(x)

)

+ r1(x)u(t, x)f (x, u, v,M,N,K), in3,

vt = d21
(

v(t, x)
N(x)

)

+ r2(x)v(t, x)f (x, v, u,N,M,K), in3,

∇(u/M) · n = ∇(v/N) · n = 0, on ∂3,

u(0, x) = u0(x), v(0, x) = v0(x), in�.

(2.4)

For spatially distributed positive functions M(x), N(x), and

K(x), we assume that M(x) < K(x) and N(x) < K(x) for

any x in a non-empty open domain. However, K(x) is the

ultimate population density which is well known as the natural

carrying capacity. The habitat � is defined as a bounded region

in R
n, where n = 1, 2, or 3 with ∂� ∈ C2+β , β > 0.

The population densities of the two competing species are

represented, respectively by the functions u(t, x) and v(t, x),

where their migration rates are d1 > 0 and d2 > 0, respectively.

The intrinsic growth rate of species is represented by the

function ri(x), (i = 1, 2), and it is bounded. We suppose that all

functions belong to the class of C1+β (�), β > 0 for any x ∈ �.

As well as, throughout this study, we will assume thatM(x) and

N(x) satisfy

• distribution functions M(x) > 0 and N(x) > 0 are

non-constant and Hölder continuous in�.

In the case of logistic growth, the system (2.4) can be presented

in the following pattern























































ut = d11
(

u(t, x)
M(x)

)

+ r1(x)u(t, x)

(1−
u(t, x)+ µ(x)v(t, x)

K(x)
), in3,

vt = d21
(

v(t, x)
N(x)

)

+ r2(x)v(t, x)

(1− ν(x)u(t, x)+ v(t, x)
K(x)

), in3,

∇(u/M) · n = ∇(v/N) · n = 0, on ∂3,

u(0, x) = u0(x), v(0, x) = v0(x), in�.

(2.5)

where

µ(x) =
K(x)−M(x)

N(x)
, ν(x) =

K(x)− N(x)

M(x)
. (2.6)

In the past periods, most of the study of the competition model

has been accomplished by considering constant competition

coefficients [12, 15, 19] which belong to either 0 and 1 or greater

than 1. In our study, we have designed our model by considering

non-constant space dependent competition coefficient µ(x)

and ν(x), which makes this study extremely novel and to

the best of the authors’ knowledge, until now no literature is

available considering this type of space dependent competition

coefficients. However, considering resource-based diffusion as

a strategy for both competing species for generalized growth

function is not investigated earlier in the literature.

Let us consider the growth functions as, g1(x, u, v) =

r1uf (x, u, v,M,N,K) and g2(x, u, v) = r2vf (x, v, u,N,M,K). We

next list the following assumptions on g1 and g2 which will be

used throughout the article:

h1 g = (g1, g2) is quasimonotone nonincreasing in l1 × l2;

h2 gi(·, u, v) is Hölder continuous in� and fi(x, ·, ·) ∈ C2(l1×l2),

i = 1, 2;

h3 f (x, u, v,M,N,K) = F(x, u + K−M
N v,K), and

f (x, v, u,N,M,K) = F(x, v+ K−N
M u,K);

h4 f (x,M,N,M,N,K) = f (x,N,M,N,M,K) = F(x,K,K) = 0;

h5 F(x, u,M,N,K) is decreasing in u in a strictly monotonic

manner;

h6 F(x, u,M,N,K) is increasing in K precisely in a strictly

monotonic manner;

The most common instances of F(x, u,K) that satisfy the

following properties are defined in (2.1)-(2.3). The property h5

of growth for the model’s population densities does not satisfy

for growth laws with the Allee effect [20].

Let us now introduce two new variables m(t, x) =
u(t, x)
M(x)

and w(t, x) =
v(t, x)
N(x)

, and we get the above equivalent system

of (2.4)















































M(x)mt = d11m(t, x)+ r1(x)M(x)m(t, x)h(x,m,w,M,N,K),

in3,

N(x)wt = d21w(t, x)+ r2(x)N(x)w(t, x)h(x,w,m,N,M,K),

in3,

∇m · n = ∇w · n = 0, on ∂3,

m(0, x) = u0(x)/M(x), w(0, x) = v0(x)/N(x), in�.

(2.7)

where h is a new function instead of f for new substitutions. For

further analysis, we can consider either the problem (2.4) or (2.7)

since both systems are equivalent.

In the present study, the main findings are as follows:

1. We demonstrate the global existence and uniqueness of the

solution of the initial value system under some assumptions

on the model parameters.

2. We investigate the global existence of the competition model

in which the first species’ resource function is proportional

to its carrying capacity and the other is following a resource-

based diffusion strategy by considering two main cases

of competition coefficient: weak competition and strong

competition.

3. We will find when M(x) + N(x) > K(x) i.e., µ(x), ν(x) < 1

(weak competition) then both species should survive in the

competition and as t → ∞ the solution move toward (M,N)

and form an ideal free pair.

4. Also, when M(x) + N(x) < K(x) i.e., µ(x), ν(x) > 1

(strong competition) no coexistence solution is possible and
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depending on the values of proportionally constant one of the

species will survive in the battle.

5. In the case when both species follow the resource-based

diffusion strategy, along with their positive distribution

function and M(x) + N(x) ≥ K(x), they will attain an ideal

free pair and both species should coexist.

6. We also present some numerical results both in one- and

two-dimensional cases. In addition, we present the case of

time periodic state with the same time period numerically

to compare the time periodic cases which may occur for

seasonal variation with the steady state case.

The manuscript is arranged as follows: the existence of the

solution of the competition model for generalized growth

functions is provided in Section 3. Section 4, reveals the existence

of global and local stability under some conditions on the

resource functions. Here, we have considered two cases: weak

competition and strong competition, based on the values of

space dependent competition coefficients. The main result of

this study is also presented in this section. To see the efficacy

of the model, the numerical computation both for the case of

one dimension and two dimensions are presented in Section 5

in terms of a line graph, surface plots, trajectory plots, contour

plots, and heat maps. Some numerical results for the time

periodic state are also presented since it is very important for

ecological consideration. Section 6, provides the concluding

remarks of the study.

3. Existence and distinctiveness

To delineate the existence and uniqueness of u = u(t, x)

with zero Neumann boundary conditions consider the following

boundary value problem for the first equation of (2.4)















ut = d11
(

u(t, x)
M(x)

)

+ r1(x)u(t, x)f (x, u, v,M,N,K), in3,

∇(u/M) · n = 0, on ∂3,

u(0, x) = u0(x), in�.

(3.1)

The following results are also discussed in Cantrell and Cosner

[7] and Korobenko and Braverman [21]. It is to be mentioned

that the proof of Lemma 1 and Lemma 2 are analogous to

the proofs of Korobenko and Braverman [21], Theorem 1 and

Theorem 2, where the authors considered two competing species

competing for similar basic resources in the heterogeneous

habitat with different diffusion strategies. The study was as

follows: one species followed the carrying capacity-driven

diffusion while others dispersed by the random movement for

generalized symmetric growth function with µ(x) = ν(x) = 1.

Lemma 1. Korobenko and Braverman [21] Let g1(x, u, v) =

r1uf (x, u, v,M,N,K) satisfy the property h2, h4, h5 and the initial

condition of 3.1 be u0(x) ∈ C(�), u0(x) ≥ 0 in� and u0(x) > 0

in some open, bounded, and non-empty domain �s ⊂ �. Also

let, all the the parameters are positive on �. Then there exists

a unique positive solution u∗(x) of the system 3.1. Furthermore,

if M(x)
K(x)

≡ Constant, then the only solution of problem 3.1 is

u∗(x) = K(x), and as t → ∞ the solution converges to K(x),

otherwise u∗(x) is different from K(x).

Similarly, we can also establish the existence and unique

results for the second equation of (2.4) for v = v(t, x) with

homogeneous Neumann boundary conditions as















vt = d21
(

u(t, x)
N(x)

)

+ r2(x)v(t, x)f (x, v, u,N,M,K), in3,

∇(v/N) · n = 0, on ∂3,

v(0, x) = v0(x), in�.

(3.2)

Lemma 2. Korobenko and Braverman [21] Let g2(x, u, v) =

r2vf (x, v, u,N,M,K) satisfy the property h2, h4, h5 and the initial

condition of 3.1 be u0(x) ∈ C(�), v0(x) ≥ 0 in � and

v0(x) > 0 in some open, bounded, and non-empty domain

�s ⊂ �. Also let, all the parameters are positive on �. Then

there exists a unique positive solution v∗(x) of the problem (3.2).

Furthermore, if N(x)
K(x)

≡ Constant, then lim
t→∞

v(t, x) = K(x)

otherwise lim
t→∞

v(t, x) = v∗(x) evenly in x ∈ �.

The following Theorem 1 establishes the existence and

uniqueness of (2.4) for coupled systems of equations. Model

(2.4) is a paragon that follows the monotone dynamical system

[7, 22, 23]. Once substituting, m = u/M, and w = v/N

it reduces into a system of regular diffusion. Where d1/M

and d2/N represent space dependent positive smooth diffusion

coefficients. Note that the following proof for (2.4) is analogous

with Korobenko and Braverman [21] in Theorem 10, for µ =

ν = 1.

Theorem 1. Let K(x),M(x),N(x) > 0 where M(x),N(x) <

K(x) for any x in a non-empty open domain so that µ(x), ν(x) >

0 and g1(x, u, v) = r1uf (x, u, v,M,N,K) and g2(x, u, v) =

r2vf (x, v, u,N,M,K) satisfy the property h1, h2, and h5 on x ∈ �.

Then for any u0(x), v0(x) ∈ C(�) the problem (2.4) has a

unique solution (u, v). Furthermore, if both initial functions are

non-negative and non-trivial, then u(t, x) > 0 and v(t, x) > 0 for

any t > 0.

Proof: To prove this, we enacted ([22], Theorem 8.7.2) to the

problem (2.7) , which is obtained after substitution m =
u(t,x)
M(x)

,

and w =
v(t,x)
N(x)

, respectively.

To show the existence of non-trivial solutions, let us choose

the following constants ρm and ρw such that

ρm ≥ sup
(t,x)∈A1

u0(t, x)/M(x), and ρw ≥ sup
x∈ω

v0(t, x)/N(x).
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Then it is simple to check that the subsequent conditions of the

theorem are satisfied.

g1(t, x, ρm, 0,M,N,K) ≤ 0 ≤ g1(t, x, 0, ρw,M,N,K). (3.3)

g2(t, x, 0, ρw,N,M,K) ≤ 0 ≤ g2(t, x, ρm, 0,N,M,K). (3.4)

So that f (t, x, ρm, 0,M,N,K) < 0 and f (t, x, 0, ρw,N,M,K) <

0, since f (x,Mm,Nw,M,N,K) and f (x,Nw,Mm,N,M,K) are

monotonically nonincreasing in R
+. However, u(0, x) and

v(0, x) are bounded in �, and M(x) and N(x) are bounded

from below, so we have sup
x∈�

u(0,x)
M(t,x)

< ∞, and sup
x∈�

v(0,x)
N(x)

<

∞, respectively.

The conditions (3.3) and (3.4) satisfy the conditions (refer

to, [22], Theorem 8.7.2, Equation 8.7.4) for the functions g1 and

g2 defined above. Therefore, we arrive at the conclusion of the

theorem that for any non-trivial and non-negative (u0(x), v0(x))

such that ρm and ρw specified above satisfy

(

u0(x)

M(x)
,
v0(x)

N(x)

)

∈ Sρ : = {(m,w) ∈ C
(

[0,∞)×�
)

×C
(

[0,∞)×�
)

:(0, 0)

≤ (m,w) ≤ (ρm, ρw)}.

WhereC
(

[0,∞)×�
)

denotes the class of continuous functions

on [0,∞)×�. Accordingly, from (refer to, [22], Theorem 8.7.2)

all of the requirements have been met, so the unique solution

(m,w) of (2.7) has existed and it is positive. Apparently, the

unique positive solution of (2.4) is (u, v) = (Mm,Nw). Thus,

the solution (u, v) is positive and unique.

As a system (2.4) as well as (2.7) is a sample of the monotone

dynamical system [7, 22, 23]. For further analysis of the model’s

equilibrium solutions, we will apply the following theorem of the

monotone dynamical system that is provided in Korobenko and

Braverman [21], Theorem 16.

Lemma 3. If the trivial equilibrium of (2.4) is not stable as well as

the repeller, then certainly one of the subsequent three situations

are stand from a specified set:

(i) a positive and stable coexistence of (2.4) will sustain,

(ii) all positive and stable solution either converges to (u∗, 0) as

t → ∞,

(iii) all positive and stable solution either converges to (0, v∗)

as t → ∞.

4. Analysis of steady states

In this part of the study, we will explore the stability of

the following equilibrium states of the system (2.4): (u∗(x), 0),

(0, v∗(x)) named semi-trivial equilibria, which corresponds to

a situation where only one species survives in the competition

and the other species dies out. The trivial equilibrium (0, 0),

when both species leave the area and the coexistence equilibria

(ue(x), ve(x)) while both semi-trivial, as well as the trivial

solution, are unstable. As we know, u(t, x) and v(t, x) are the

solutions of (2.4) for all t > 0. Also, we describe ourmain results.

Lemma 4. The (0, 0) equilibrium of the system (2.4) is unstable

and repelling.

Proof: Let us consider the system (2.7) around the origin and the

associated eigenvalue problem of the corresponding problem is



























d11φ(x)+ r1φ(x)M(x)h(x, 0, 0,M,N,K) = σφ(x),

in�, ∇φ · n = 0, on ∂�,

d21ψ(x)+ r2ψ(x)N(x)h(x, 0, 0,N,M,K) = σψ(x),

in�, ∇ψ · n = 0, on ∂�.

(4.1)

The principal eigenvalue of the first equation of (4.1) is expressed

by following the variational characterization of the eigenvalues

([7], Theorem 2.1) as

σ1 = sup
φ 6=0,φ∈W1,2

−
∫

�

d1|∇φ(x)|
2 dx+

∫

�

r1M(x)φ2(x)h(x, 0, 0,M,N,K) dx

∫

�

φ2(x)dx
.

For non-trivial positive constant function φ(x), we get

σ1 ≥
1

|�|

∫

�

r1M(x)h(x, 0, 0,M,N,K)dx > 0,

since h(x, 0, 0,M,N,K) > 0.

and the zero equilibrium (0, 0) of (2.4) is not stable.

To prove that (0, 0) of (2.4) is a repeller, i.e., assuming u0, v0

being the neighborhood of the equilibrium point (0, 0), then all

solutions move away from (0, 0) as t approaches infinity.

Let δ = min

{

inf
x∈�

K
4 , infx∈�

KN
4(K−M)

, inf
x∈�

MK
4(K−N)

}

> 0,

u0(x) ≥ 0 and v0(x) ≥ 0 be such that u0(x) < δ, v0(x) < δ for

(u0(x), v0(x)) 6= (0, 0). Adding the foremost equations of the

system (2.4) and integrate over � and applying homogeneous

Neumann boundary conditions, we get

d

dt

∫

�

(u(t, x)+ v(t, x))dx =

∫

�

[r1(x)uf (x, u, v,M,N,K)

+ r2(x)vf (x, v, u,N,M,K)]dx.

(4.2)
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Note that, γ = min

{

inf
x∈�

r1(x), inf
x∈�

r2(x)

}

> 0 and on

condition, u ≤ δ and v ≤ δ there holds

d

dt

∫

�

(u(t, x)+ v(t, x))dx ≥
γ

2

∫

�

(u(t, x)+ v(t, x))dx.

Now applying Gronwall’s lemma we have

∫

�

(u(t, x)+ v(t, x))dx ≥ eγ t/2
∫

�

(u0(x)+ v0(x))dx.

As
∫

�

(u0(x) + v0(x))dx > 0, then
∫

�

(u(t, x) + v(t, x))dx expands

exponentially with time goes as far as u ≤ δ and v ≤ δ. Hence

there exists t0 > 0 so that u(t0, x) > δ and v(t0, x) > δ for some

x ∈ � and the equilibrium point (0, 0) is a repeller.

The functions u∗ and v∗ are the solutions to the preceding

elliptic boundary value problems, which are straightforward to

understand:

d11

(

u∗(x)

M(x)

)

+ r1(x)u
∗(x)f (x, u∗, 0,M,N,K) = 0,

in�,
∂(u∗/M)

∂n
= 0, on ∂�, (4.3)

d21

(

v∗(x)

N(x)

)

+ r2(x)v
∗(x)f (x, v∗, 0,N,M,K) = 0,

in�,
∂(v∗/N)

∂n
= 0, on ∂�, (4.4)

respectively.

Lemma 5. Let f satisfy h1-h6, r1(x) ≡ r1, r2(x) ≡ r2 are

constant and K(x) 6≡ constant. Then a unique positive solution

v∗(x) of (4.4) will exist, so that

r2

∫

�

f (x, v∗, 0,N,M,K)K(x) dx ≡

r2

∫

�

F(x, v∗(x),K(x))K(x) dx > 0. (4.5)

Proof: Integrating (4.4) over the domain � and applying

the corresponding boundary conditions which implies

d2
∫

�

1v∗(x)dx = 0 and we obtain using h3 for g

∫

�

r2v
∗(x)F(x, v∗,K) dx = 0. (4.6)

Integrating the equality and using theMean Value Theoremwith

property h4

r2v
∗(x)F(x, v∗,K) = r2(v

∗ − K)(F(x, v∗,K)− F(x,K,K))

+ r2K(x)F(x, v
∗,K)

= r2(v
∗ − K)2Fv(x, ξ ,K)

+ r2K(x)F(x, v
∗,K)

we have

r2

∫

�

K(x)F(x, v∗(x),K(x)) dx =

−

∫

�

Fv(x, ξ ,K(x))(v
∗(x)− K(x))2 dx > 0. (4.7)

where ξ (x) lies in between v∗(x) and K(x). Here the right-hand

side is positive unless v∗(x) ≡ K(x) ≡ constant, since Fv < 0

due to h5, which completes the proof.

Remark 1. Note that for any v ≤ K the properties h4 and h5

result in f (x, v, 0,N,M,K) ≥ 0. As a result, in an integral sense

the inequality (4.5) can be regarded as the condition v∗ < K(x).

Lemma 6. Let f satisfies h1-h6 and r1(x) ≡ r1, r2(x) ≡ r2

are constant and K(x)
M(x)

≡ β > 0. Then the semi-trivial

equilibrium (0, v∗(x)) of (2.4) is unstable if there exists non-

constant M(x), N(x), and K(x) such that (M(x)+ N(x)) ≥ K(x)

i.e., µ(x) ≤ 1 in a non-empty open domain�s ⊆ �.

Proof: First taking the linearization of (2.4) over (0, v∗(x)).































































∂u
∂t

= d11
(

u(t, x)
M(x)

)

+ r1u(t, x)f (x, 0, v
∗,M,N,K),

(t, x) ∈ 3,
∂(u/M)
∂n

= 0, x ∈ ∂�,

∂v
∂t

= d21
(

v(t, x)
N(x)

)

+r2v(t, x)f (x, v
∗, 0,N,M,K)

+r2v
∗fu(x, v

∗, 0,N,M,K)u(t, x)

+r2v
∗fv(x, v

∗, 0,M,N,K)v(t, x), (t, x) ∈ 3,

∂(v/N)
∂n

= 0, x ∈ ∂�.

and study the corresponding eigenvalue problem for u







d11
(

φ(x)
M(x)

)

+ r1φ(x)f (x, 0, v
∗,M,N,K) = σφ(x), x ∈ �,

∂(φ/M)
∂n

= 0, x ∈ ∂�.

(4.8)

If the principal eigenvalue is positive then (0, v∗) is unstable.

Consider (4.8) and according to Cantrell and Cosner [7],

Theorem 2.1, its principal eigenvalue is presented as

σ1 = sup
φ 6=0,φ∈W1,2

−
∫

�

d1|∇(φ/M)|2dx+
∫

�

r1
Mφ

2(x)f (x, 0, v∗,M,N,K)dx

∫

�

(

φ2

M

)

dx
.

Letting φ(x) = K(x) and using the property h3
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σ1 ≥

∫

�

r1K(x)F(x,
K−M
N v∗,K)dx

∫

�

K(x)dx
(4.9)

≥

r1
∫

�

K(x)F(x, v∗,K) dx

∫

�

K(x) dx
, since µ(x) ≡

K(x)−M(x)

N(x)

≤ 1 for any x ∈ �s ⊆ �.

Thus, σ1 > 0 using (4.5) in Lemma 5, which completes

the proof.

Lemma 7. Let f satisfies h1-h6 and r1(x) ≡ r1, r2(x) ≡ r2 are

constant and K(x)
M(x)

≡ β > 0. Then the semi-trivial equilibrium

(K, 0) of (2.4) is unstable if there exists non-constant M(x), N(x),

and K(x) such that (M(x) + N(x)) ≥ K(x) i.e., ν(x) ≤ 1 in a

non-empty open domain�s ⊆ �.

Proof: Analogous to Lemma 6, examine the associated

eigenvalue problem of the linearized second equations of (2.4)

around (K, 0) and we obtain

d21

(

ψ(x)

N(x)

)

+ r2ψ(x)f (x, 0,K,N,M,K) = σψ(x), x ∈ �,

∂(ψ/N)

∂n
= 0, x ∈ ∂�. (4.10)

Consider the Equation (4.10) and according to Cantrell and

Cosner [7], the corresponding principal eigenvalue is stated as

σ1 = sup
ψ 6=0,ψ∈W1,2

d2

−
∫

�

|∇ψ(x)/N|2dx+
∫

�

r2
ψ2

N f (x, 0,K,N,M,K)dx

∫

�

(

ψ2

N

)

dx
.

On substituting ψ(x) = N(x) and using h3, the principal

eigenvalue is

σ1 ≥

r2
∫

�

NF(x, K−N
M K,K) dx

∫

�

K2(x)dx
.

Since, F(x, K−N
M K,K) =

M(x)−K(x)+N(x)
M(x)

> 0 for M(x) +

N(x) > K(x), also N(x) > 0. Therefore, σ1 > 0 and (K, 0) of

(2.4) is unstable.

Since (0, v∗(x)) and (K(x), 0) are not stable as far as (M(x)+

N(x)) > K(x) (refer to, Lemma 6 and Lemma 7), they are

not asymptotically stable. Also from Lemma 4, (0, 0) or trivial

equilibrium is unstable and repeller. Therefore, according to

strong monotone dynamical system [7, 22, 23] the coexistence

equilibrium (ue(x), ve(x)) is globally asymptotically stable so

as to (M(x) + N(x)) ≥ K(x) for all x. Since system (2.4) is

an example of a strongly monotone dynamical system, which

represents the following Theorem 2.

Theorem 2. Let the functions g1(x, u, v) = r1uf (x, u, v,M,N,K)

and g2(x, u, v) = r2vf (x, v, u,N,M,K) satisfy h1-h6. Also, let

r1(x) ≡ r1, r2(x) ≡ r2 are constant and
K(x)
M(x)

≡ β > 0. Then the

coexistence equilibrium (ue(x), ve(x)) of the system of Equations

(2.4) is globally asymptotically stable if (M(x)+N(x)) > K(x) for

any x in a non-empty open domain. Also if K ≡ constant then the

equilibrium (ue(x), ve(x)) is globally asymptotically stable when

M(x) + N(x) ≡ K. That is, for any u0, v0 ∈ C(�) which is

non-negative and non-trivial, the solution (u, v) of (2.4) satisfies

(u, v) → (ue(x), ve(x)), as t → ∞.

Corollary 1. Let the functions g1(x, u, v) =

r1uf (x, u, v,M,N,K) and g2(x, u, v) = r2vf (x, v, u,M,N,K)

satisfy h1-h6. Also if M,N,K all are constants and (M + N) > K

then the coexistence equilibrium (M,N) of the system of

equations (2.4) is globally asymptotically stable. That is, for any

u0, v0 ∈ C(�) which is non-negative and non-trivial, the solution

(u, v) of (2.4) satisfies

(u, v) → (M,N), as t → ∞

uniformly in x ∈ �.

Next, in the following result, it is shown that there is no

coexistence for strong competition, depending on the relations

between M(x), N(x), and K(x). In this case, competitive

exclusion is expected.

Lemma 8. Let f satisfies h1-h6 and M(x), N(x), K(x) are non-

constant. If (M(x) + N(x)) ≤ K(x) for any x ∈ �, i.e.,

µ(x), ν(x) ≥ 1 in a non-empty open domain �s ⊆ � with

r1(x) ≡ r1, r2(x) ≡ r2 are constant,
K(x)
M(x)

≡ β > 0, then there is

no coexistence steady state (ue, ve) of the system (2.4).

Proof: Suppose to the contrary, let us assume there exists a

strictly positive equilibrium solution (ue(x), ve(x)) of (2.4) and

we will present that the assumption provides a conflict. So, the

solution (ue(x), ve(x)) satisfies the governing equations































d11
(

ue(x)
M(x)

)

+ r1ue(x)f (x, ue, ve,M,N,K) = 0, in�,

∂(ue/M)
∂n

, on ∂�,

d21
(

ve(x)
N(x)

)

+ r2ve(x)f (x, ve, ue,N,M,K) = 0, in�,

∂(ve/N)
∂n

= 0, on ∂�.

(4.11)

After dividing by r1r2 in each of the first two equations in (4.11)

and adding them as well as imposing h3 for f , we get

d1

r1
1

(

ue(x)

M(x)

)

+
d2

r2
1

(

ve(x)

N(x)

)

+ ue(x)F
(

x, ue + µ(x)ve,K
)

+ ve(x)F(x, ve + ν(x)ue,K) = 0.
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Integrating over � and applying Numann boundary conditions
in (4.11), we have

0 =

∫

�

[

ueF
(

x, ue + µ(x)ve,K
)

+ veF
(

x, ve + ν(x)ue,K
)]

dx

<

∫

�

[

ueF
(

x, ue + µ(x)ve,K
)

+ µ(x)veF
(

x, ue + µ(x)ve,K
)]

dx

=

∫

�

(ue + µ(x)ve)F
(

x, ue + µ(x)ve,K
)

dx.

since µ(x)F(x, ue + µ(x)ve,K) > F(x, ve + ν(x)ue,K), for

ν(x) > µ(x). Thus

∫

�

(ue + µ(x)ve)F
(

x, ue + µ(x)ve,K
)

dx > 0. (4.12)

Integrating the equality

(ue + µ(x)ve)F
(

x, ue + µ(x)ve,K
)

= F
(

x, ue + µ(x)ve,K
)

(ue + µ(x)ve − K)

+ K(x)F
(

x, ue + µ(x)ve,K
)

over� using (4.12) we get,

0 <

∫

�

F
(

x, ue + µ(x)ve,K
)

(ue + µ(x)ve − K) dx

+

∫

�

K(x)F
(

x, ue + µ(x)ve,K
)

dx. (4.13)

The Mean Value Theorem and F(x,K,K) = 0 by h4 imply

F
(

x, ue + µ(x)ve,K
)

= F
(

x, ue + µ(x)ve,K
)

− F(x,K,K)

= Fv(x, ξ ,K)(ue + µ(x)ve − K) (4.14)

where ξ is between ue +µ(x)ve and K for each (t, x) ∈ 3. Using

(4.14), inequality (4.15) can be rewritten as

∫

�

K(x)F
(

x, ue + µ(x)ve,K
)

dx >

−

∫

�

Fv(x, ξ ,K)(ue + µ(x)ve − K)2 dx. (4.15)

and the last inequality is strictly positive and excludes the

possibility of ue + µ(x)ve ≡ K where Fv < 0 due to h5. Thus,

we have to consider the following case.

Let ue+µ(x)ve 6≡ K in some nonempty open domain, where

µ(x), ν(x) ≥ 1. Consider the eigenvalue problem

d11

(

φ(x)

M(x)

)

+ r1φ(x)F
(

x, ue + µ(x)ve,K
)

= σφ(x), x ∈ �,

∂(φ/M)

∂n
= 0, x ∈ ∂�. (4.16)

According to Cantrell and Cosner [7], Theorem 2.1, the

corresponding principal eigenvalue is presented as

σ1 = sup
φ 6=0,φ∈W1,2

−
∫

�

d1|∇(φ/M)|2dx+ r1
∫

�

φ2

M F
(

x, ue + µ(x)ve,K
)

dx

∫

�

(φ2/M)dx

Letting φ(x) = K(x) and applying (4.15), we obtain

σ1 ≥

r1
∫

�

K(x)F
(

x, ue + µ(x)ve,K
)

dx

∫

�

K(x)dx
> 0,

since K/M ≡ constant. (4.17)

Since 0 is always a principal eigenvalue of (4.16) along with a

positive principal eigenfunction, which contradicts the positivity

of σ1 > 0.

Remark 2. The Lemma 8 is also valid for proportional growth

rates
r1(x)
r2(x)

= α > 0, since r2(x) can be involved as a part of

function F.

Remark 3. If all the functions M, N, and K are constants then

always there exists a coexistence solution (M,N) of the system

(2.4) and the solution is globally stable.

Lemma 9. Let f satisfy h1-h6 and M(x),N(x), K(x) are non-

constant. If (M(x)+N(x)) ≤ K(x) for any x ∈ �, i.e.,µ(x) ≥ 1 in

a non-empty open domain �s ⊆ � with r1(x) ≡ r1, r2(x) ≡ r2

are constant, K(x)
M(x)

≡ β > 0, then the semi-trivial steady state

(K, 0) of the system (2.4) is locally asymptotically stable.

Proof: Similar to the proof of Lemma 7, let us study

the associated eigenvalue problem of the linearized second

equations of (2.4) around (K, 0), then according to Cantrell and

Cosner [7], Theorem 2.1 the principal eigenvalue is given by

σ1 = sup
ψ 6=0,ψ∈W1,2

d2

−
∫

�

|∇ψ(x)/N|2dx+
∫

�

r2
ψ2

N f (x, 0,K,N,M,K)dx

∫

�

(

ψ2

N

)

dx
.

Upon putting ψ(x) = N(x) and using h3, the principal

eigenvalue is

σ1 ≥

r2
∫

�

NF(x, K−N
M K,K) dx

∫

�

N(x) dx
.

Since, F(x, K−N
M K,K) = 1 −

( K−N
M )K
K =

M(x)−K(x)+N(x)
M(x)

< 0

forM(x) + N(x) < K(x), also N(x) > 0. Therefore, σ1 < 0 and

semi-trivial equilibrium (K, 0) of (2.4) is locally stable.
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In a similar way, we can prove (0, v∗) is locally stable if (M(x)+

N(x)) ≤ K(x) for any x ∈ �, i.e., ν(x) ≥ 1 in a non-empty

open domain �s ⊆ � with r1(x) ≡ r1, r2(x) ≡ r2 are constant,
K(x)
M(x)

≡ β > 0.

As Lemma 4 is still valid. From Lemma 8 and Lemma 9,

we can state the consequent Theorem 3, represents the local

existence of one semi-trivial steady state controlling the initial

conditions.

Theorem 3. Let the functions g1(x, u, v) = r1uf (x, u, v,M,N,K)

and g2(x, v, u) = r2vf (x, v, u,N,M,K) satisfy h1-h6 and K(x) 6≡

constant. Also, let r1(x) ≡ r1, r2(x) ≡ r2 are constant and
K(x)
M(x)

≡ β > 0. Then either the equilibrium (K(x), 0) or the

equilibrium (0, v∗(x)) of the system of equations (2.4) is locally

asymptotically stable if (M(x) + N(x)) ≤ K(x) for any x ∈ �.

That is, depending on u0, v0 ∈ C(�), the solution (u, v) of (2.4)

satisfies

either (u, v) → (K, 0), or (u, v) → (0, v∗), as t → ∞

uniformly in x ∈ �.

Corollary 2. Let the functions g1(x, u, v) =

r1uf (x, u, v,M,N,K) and g2(x, v, u) = r2vf (x, v, u,N,M,K)

satisfy h1-h6 and K(x) ≡ constant. Then either the equilibrium

(K(x), 0) or the equilibrium (0, v∗(x)) of the system of equations

(2.4) is locally asymptotically stable if M(x) + N(x) < K for any

x ∈ �. That is, depending on u0, v0 ∈ C(�), the solution (u, v) of

(2.4) satisfies

either (u, v) → (K, 0), or (u, v) → (0, v∗), as t → ∞

uniformly in x ∈ �.

Lemma 10. Let the growth function f satisfy h1-h6, r1(x) ≡

r2(x) ≡ r are constant and K(x) 6≡ constant. If (u∗, 0) and (0, v∗)

are the semi-trivial solution of (4.3) and (4.4), respectively and

µ, ν ∈ (0, 1) then

r

∫

�

f (x, 0, v∗, 0,M,N,K)M(x) dx ≡

r

∫

�

F(x, v∗(x),M,N,K)M(x) dx > 0, (4.18)

and

r

∫

�

f (x, 0, u∗,N,M,K)N(x) dx ≡

r

∫

�

F(x, v∗(x),N,M,K)N(x) dx > 0. (4.19)

Proof: Let us assume, N1 =
∫

�

M(x) dx and N2 =
∫

�

N(x) dx

where r1(x) ≡ r2(x) ≡ r.

Denote,

a∗ = min















N1
∫

�

(M(x)v∗(x)
K(x)

) dx
, 1















∈ (0, 1)

If µ ∈ (0, a∗) then,

∫

�

M(x)v∗(x)µ(x)

K(x)
dx < N1

⇒

∫

�

r
M(x)v∗(x)µ(x)

K(x)
dx < r

∫

�

M(x) dx,

where µ(x) ∈ (0, 1) and r is constant

⇒ r

∫

�

(

1−
µv∗

K

)

Mdx > 0

⇒ r

∫

�

g(x, v∗, 0,M,N,K)Mdx > 0.

Applying property h3 for f , we get, r
∫

�

F(x, v∗,M,N,K)Mdx >

0.

Now if (u∗, 0) is a semi-trivial equilibrium of (4.3) and a∗∗ =

min







N2
∫

�

(

N(x)v∗(x)
K(x)

)

dx
, 1







∈ (0, 1) than for ν ∈ (0, a∗∗) ∈ (0, 1),

applying the same procedure as before we can find,

r

∫

�

F(x, u∗,N,M,K)N dx > 0.

Now we will analyze the case of the ideal free pair when

M(x),N(x), andK(x) are space dependent and non-proportional

to each other. By direct substitution of µ(x) =
K(x)−M(x)

N(x)
and

ν(x) = K(x)−N(x)
M(x)

it is easy to check that (M,N) is the solution

of the system (2.4). Now we will establish this coexistence steady

state via the instability of both (u∗, 0) and (0, v∗).

Lemma 11. Let f satisfies h1-h6 and M(x),N(x), and K(x) are

non-constant and linearly independent. If r1(x) ≡ r2(x) ≡ r are

constant and (M(x) + N(x)) ≥ K(x) for any x ∈ �, then the

semi-trivial steady state (0, v∗) of the system (2.4) is unstable.

Proof: Assume the linearized equations of the problem (2.4) for

the first equation around (0, v∗), then the associated eigenvalue

problem for u is,

d11

(

φ(x)

M(x)

)

+ r1φ(x)f (x, 0, v
∗,M,N,K) = σφ(x),

∈ �,
∂(φ/M)

∂n
= 0, x ∈ ∂�. (4.20)
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According to Cantrell and Cosner [7], Theorem 2.1, the

principal eigenvalue of (4.20) is represented as

σ1 = sup
φ 6=0,φ∈W1,2

−
∫

�

d1|∇(φ/M)|2dx+
∫

�

r1
Mφ

2(x)f (x, 0, v∗,M,N,K)dx

∫

�

(

φ2

M

)

dx
.

Selecting φ(x) = M(x) and using the property h3

σ1 ≥

∫

�

r1M(x)F(x, K−M
N v∗,K)dx

∫

�

M(x) dx
(4.21)

=
r

N1

∫

�

M(x)F(x, v∗,M,N,K)dx > 0,

where N1 =

∫

�

M(x)dx > 0 for any x ∈ �. (4.22)

Thus, σ1 > 0 using (4.18) in Lemma 10 for µ ∈ (0, 1), which

concludes the proof.

Lemma 12. Let f satisfies h1-h6 and M(x),N(x), K(x) are non-

constant and linearly independent. If r1(x) ≡ r2(x) ≡ r are

constant and (M(x) + N(x)) ≥ K(x) for any x ∈ �, then the

semi-trivial steady state (u∗, 0) of the system (2.4) is unstable.

Proof: Analogous to Lemma 11 assumes the linearization of

the second equation of the problem (2.4) around (u∗, 0) and

examine the related eigenvalue problem for v,

d21

(

ψ(x)

N(x)

)

+ r2ψ(x)f (x, u
∗,N,M,K) = σψ(x), x ∈ �,

∂(ψ/N)

∂n
= 0, x ∈ ∂�. (4.23)

and its principal eigenvalues according to Cantrell and Cosner

[7], Theorem 2.1 is given by

σ1 = sup
ψ 6=0,φ∈W1,2

d2

−
∫

�

|∇(ψ/N)|2dx+
∫

�

r2
N φ

2(x)f (x, u∗, 0,N,M,K) dx

∫

�

(

ψ2

N

)

dx
.

Choosing φ(x) = N(x) and imposing the property h3

σ1 ≥

∫

�

r2N(x)F(x, K−N
M u∗,K) dx

∫

�

N(x)dx
(4.24)

=
r

N2

∫

�

N(x)F(x, u∗,N,M,K)dx > 0,

where N2 =

∫

�

N(x)dx > 0 for any x ∈ �. (4.25)

Thus, σ1 > 0, using (4.19) from Lemma 10 for ν ∈ (0, 1), which

concludes the proof.

Right now, we are prepared to give a conclusion about the

existence of stable coexistence steady state (M,N) of (2.4) with

the help of Lemma 11 and Lemma 12. It is noted that Lemma 4

is still true for the system (2.4).

Theorem 4. Let the functions g1(x, u, v) = r1uf (x, u, v,M,N,K)

and g2(x, v, u) = r2vf (x, v, u,N,M,K) satisfy h1-h6 and

M(x),N(x),K(x) are non-constant and linearly independent. If

(M(x) + N(x)) ≥ K(x) for any x ∈ �, and r1(x) ≡ r2(x) ≡ r

are constant, then for any non-negative and non-trivial u0, v0 ∈

C(�) the coexistence of steady state (M,N) of the system of

equations (2.4) is globally asymptotically stable.

The uniqueness of the coexistence solution (ue, ve) =

(M,N) can be proved similarly according to Braverman and

Kamrujjaman [9, 15], where they consider carrying capacity

as equal to the linear combination of the corresponding

resource functions.

5. Numerical methods and
applications

Consider the system of (2.5) for numerical simulations with the

generalized logistic growth laws. To implement the numerical

test, we consider the domain� = [0, 1] for one space dimension

and� = [0, 1]×[0, 1] for two space dimensions, throughout the

paper. In this study, for simplicity taking a uniform rectangular

grid of spacing 1x × 1y ≡ hx × hy on � with hx = (xf −

x0)/Nx and hy = (yf − y0)/Ny, where Nx and Ny are the

number of grid points along x and y directions, respectively.

Also, partition the time T by a distance 1t ≡ ht = T/Nt .

To discretize the system of partial differential equations into

a continuous space and temporal domain we have imposed

the Crank-Nicolson method for the case of 1-D whereas the

ADI method has been applied for the case of 2D. Thus, we

can write as uni = u(ihx, nht), v
n
i = v(ihx, nht) for 1-D and

uni,j = u(ihx, jhy, nht), v
n
i,j = v(ihx, ihy, nht) for 2D, respectively.

Also, for the discretized equation the result was considered to

have converged when successive iterations are within 10−7 of

each other.

5.1. When K, M, N, µ, and ν are time
independent

5.1.1. Case of one- space dimension

In this segment of the numerical computation, we will

discuss the model (2.5) when K,M, and N are merely functions

of one space dimension.
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FIGURE 1

The solutions and space average density of (2.5) when M + N > K where d1 = d2 = 1.0, r1 = r2 = 1.0 for (A,C) K = 2.0+ cos(πx),

M = 0.6K = 1.2+ 0.6 cos(πx), N = 1.0+ 0.4 cos(πx), µ(x) = 0.8+0.4 cos(πx)
1.5+0.6 cos(πx)

∈ [0.66, 0.85], ν(x) = 1.0+0.4 cos(πx)
0.8+0.4 cos(πx)

∈ [0.66, 0.88], (u0 , v0) = (0.5, 1.2), and (B,D)

K = 3.0, M = 0.6K = 1.8, N = 1.5, µ(x) = 0.85, ν(x) = 0.89, (u0 , v0) = (1.7, 0.7) on � = (0, 1).

Example 1. Consider the case of (2.5) when M + N > K on

� = (0, 1) ⊂ R, where u is diffusing according to their carrying

capacity and v is followed by the resource-based diffusion strategy.

Here, in Figures 1, 2A,C consider K(x) = 2.0+ cos(πx), M(x) =

0.6K, where N(x) = 1.0+ 0.4 cos(πx), µ(x) = 0.8+0.4 cos(πx)
1.5+0.6 cos(πx)

∈

[0.66, 0.85], ν(x) =
1.0+0.4 cos(πx)
0.8+0.4 cos(πx)

∈ [0.66, 0.88] and in

Figures 1, 2B,D K = 3.0, M = 0.6K, and N = 1.5 with µ(x) =

0.85, ν(x) = 0.89. Additionally, let, r1 = r2 = 1.0, (u0, v0) =

(0.5, 1.2), and d1 = d2 = 1.0. Figures 1A,B characterizes

the population density profiles of u and v over domain x and

Figures 1C,D represents the space average density profiles of u and

v against time for different values of competition coefficients (µ(x),

ν(x)). We perceive from Figures 1A,C that when K, M, and N

are space dependent then there exists a non-trivial coexistence

solution that converges to M and N with time grows which is

expected as in Theorem 2 and Corollary 1. Here, it is mentioned

that the values of (u, v) coincide with (M,N), respectively which

provide the existence of ideal free pair while M is proportional to

K and N/K are non-constant.

Since µ(x) ∈ [0.66, 0.85] and ν(x) ∈ [0.66, 0.88] in

Figures 1A,C, due to the nearly higher impact of ν(x) on

v the density of u is found higher than v. Which is also

found analogous in Figures 1B,D where K is constant and

µ(x) = 0.85, ν(x) = 0.89. It is likewise noted that when

K, M, and N are space dependent spatial functions then space

average density converges faster to the steady state compared

to letting constant values of K, M, and N. It is also observed

that density profiles correlate with their corresponding resource
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FIGURE 2

The population density of u and v for (2.5) when M + N > K with d1 = d2 = 1.0, r1 = r2 = 1.0 for (A,C) K = 2.0+ cos(πx),

M = 0.6K = 1.2+ 0.6 cos(πx), N = 1.0+ 0.4 cos(πx), µ(x) = 0.8+0.4 cos(πx)
1.5+0.6 cos(πx)

∈ [0.66, 0.85], ν(x) = 1.0+0.4 cos(πx)
0.8+0.4 cos(πx)

∈ [0.66, 0.88], (u0 , v0) = (0.5, 1.2), and (B,D)

K = 3.0, M = 0.6K = 1.8, N = 1.5, µ(x) = 0.85, ν(x) = 0.89, (u0 , v0) = (1.7, 0.7) on � = (0, 1).

FIGURE 3

Solution trajectories of space average density of u and v for di�erent initial values (u0 , v0) on � = (0, 1) when M + N > K where d1 = d2 = 1.0,

r1 = r2 = 1.0 for (A) K = 2.0+ cos(πx), M = 0.6K = 1.2+ 0.6 cos(πx), N = 1.0+ 0.4 cos(πx), µ(x) = 0.8+0.4 cos(πx)
1.5+0.6 cos(πx)

∈ [0.85, 0.66],

ν(x) = 1.0+0.4 cos(πx)
0.8+0.4 cos(πx)

∈ [0.66, 0.88], and (B) K = 3.0, M = 0.6K = 1.8, N = 1.5, µ(x) = 0.85, ν(x) = 0.89 of (2.5) at t = T = 100.

functions in all cases, independent of non-negative, non-trivial

initial values.

Figure 2 reveals the solution of (2.5) for u and v when t =

2, 000. Similar to Figure 1 an attractive coexistence equilibrium

solution is noticed for different values of µ and ν.

However, Figure 3 illustrates the solution trajectories for space

average density of u vs. v for different initial values (u0, v0) when

M + N > K, wherein (a) K(x) = 2.0 + cos(πx), M(x) = 0.6K,

N(x) = 1.0+ 0.4 cos(πx), µ(x) = 0.8+0.4 cos(πx)
1.5+0.6 cos(πx)

∈ [0.66, 0.85],

ν(x) =
1.0+0.4 cos(πx)
0.8+0.4 cos(πx)

∈ [0.66, 0.88] and in (b) K = 3.0,

M = 0.6K, and N = 1.5, µ(x) = 0.85, ν(x) = 0.89, for

allowing others parameters are fixed. We found that for different

constant and non-constant values of competition coefficients both

species survive in the competition which is independent of initial

values (u0, v0).

Example 2. Consider (2.5) when M + N < K for the functions

K(x) = 2.0 + cos(πx), where d1 = d2 = 1.0, r1 = r2 = 1.0,

(u0, v0) = (0.7, 0.7). Here, setting in Figure 4A M = 0.3K,

where N = 1.0 + 0.7 cos(πx), µ(x) =
1.4+0.7 cos(πx)
1.0+0.7 cos(πx)

∈

[1.23, 2.33], ν(x) =
1.0+0.3 cos(πx)
0.6+0.3 cos(πx)

∈ [1.44, 2.33], and in

Figure 4B M = 0.6K, and N = 0.6+ 0.4 cos(πx), where µ(x) =
0.8+0.4 cos(πx)
0.6+0.4 cos(πx)

∈ [1.2, 2], ν(x) =
1.4+0.6 cos(πx)
1.2+0.6 cos(πx)

∈ [1.11, 1.33]

on � = (0, 1). According to Theorem 3, all the solutions

either converge to the equilibrium (K(x), 0) or to the equilibrium

(0, v∗(x)) which is locally asymptotically stable. Figures 4A,B

represents the population density profiles of u and v vs. x for

different values of competition coefficients (µ(x), ν(x)) at t = T =

2, 000 where the solution is sufficiently large to reach the steady

state. Here in all cases, we discover the existence of a competitive

exclusion solution. However, in Figure 4A, we observe for small
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FIGURE 4

The solutions of (2.5) when M + N < K where K = 2.0+ cos(πx), d1 = d2 = 1.0, r1 = r2 = 1.0, (u0 , v0) = (0.7, 0.7) for (A) M = 0.3K = 0.6+ 0.3 cos(πx),

N = 1.0+ 0.7 cos(πx), µ(x) = 1.4+0.7 cos(πx)
1.0+0.7 cos(πx)

∈ [1.23, 2.33], ν(x) = 1.0+0.3 cos(πx)
0.6+0.3 cos(πx)

∈ [1.44, 2.33], and (B) M = 0.6K = 1.2+ 0.6 cos(πx), N = 0.6+ 0.4 cos(πx),

µ(x) = 0.8+0.4 cos(πx)
0.6+0.4 cos(πx)

∈ [1.2, 2], ν(x) = 1.4+0.6 cos(πx)
1.2+0.6 cos(πx)

∈ [1.11, 1.33] on � = (0, 1).

FIGURE 5

Solution trajectories of space average density of u and v for di�erent initial values (u0 , v0) on � = (0, 1) when M + N < K where K = 2.0+ cos(πx),

d1 = d2 = 1.0, r1 = r2 = 1.0 for (A) M = 0.3K = 0.6+ 0.3 cos(πx), N = 1.0+ 0.7 cos(πx), µ(x) = 1.4+0.7 cos(πx)
1.0+0.7 cos(πx)

∈ [1.23, 2.33], ν(x) = 1.0+0.3 cos(πx)
0.6+0.3 cos(πx)

∈ [1.44, 2.33],

and (B) M = 0.6K = 1.2+ 0.6 cos(πx), N = 0.6+ 0.4 cos(πx), µ(x) = 0.8+0.4 cos(πx)
0.6+0.4 cos(πx)

∈ [1.2, 2], ν(x) = 1.4+0.6 cos(πx)
1.2+0.6 cos(πx)

∈ [1.11, 1.33] of (2.5) at t = T = 100.

values of proportionality constant (β = 0.3) the species u is

endure while v goes to extinction as time raises and the solution of

u converges to K with the increase of time. An opposite observation

is noticed in Figure 4B where β = 0.6 and the non-trivial solution

is found for v, and u turns to elimination for different values of

competition coefficients.

Furthermore, Figure 5 shows the solution trajectories for space

average density of u vs. v for different initial values when M +

N < K and µ(x), ν(x) > 1. Also let, M = 0.3K, where

N = 1.0 + 0.7 cos(πx) in Figure 5A, and M = 0.6K where N =

0.6+0.4 cos(πx) in Figure 5B. If M is proportional to K, N/K are

non-constant, and M + N < K then by Theorem 3, both semi-

trivial equilibrium solutions are locally asymptotically stable.

We find that for different non-constant values of competition

coefficients one of the species survives in competition, and the

solution trajectory moves either toward u or to v depending on

the different values of initial values (u0, v0).

Example 3. Consider (2.5) where M + N > K and both

species disperse according to their resource function M = 1.2 +

0.5 cos(πx) and N = 1.3 + 0.5 cos(πx), respectively which are

not proportional to K = 2.0+cos(πx) in Figures 6, 7, respectively.
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FIGURE 6

(A) The solutions, and (B) space average density of (2.5) when M + N > K where K = 2.0+ cos(πx), M = 1.2+ 0.5 cos(πx), N = 1.3+ 0.5 cos(πx),

µ(x) = 0.8+0.5 cos(πx)
1.3+0.5 cos(πx)

∈ [0.37, 0.72], ν(x) = 0.7+0.5 cos(πx)
1.2+0.5 cos(πx)

∈ [0.29, 0.70], d1 = d2 = 1.0, r1 = r2 = 1.0, (u0 , v0) = (0.5, 1.2) on � = (0, 1) at t = T = 50.

FIGURE 7

The population density of (A) u, and (B) v for (2.5) when M + N > K where K = 2.0+ cos(πx), M = 1.2+ 0.5 cos(πx), N = 1.3+ 0.5 cos(πx),

µ(x) = 0.8+0.5 cos(πx)
1.3+0.5 cos(πx)

∈ (0.37, 0.72), ν(x) = 0.7+0.5 cos(πx)
1.2+0.5 cos(πx)

∈ (0.29, 0.70), d1 = d2 = 1.0, r1 = r2 = 1.0, (u0 , v0) = (0.5, 1.2) on � = (0, 1).

Also let, d1 = d2 = 1.0, r1 = r2 = 1.0, (u0, v0) = (0.5, 1.2) on

� = (0, 1) where µ(x) = 0.8+0.5 cos(πx)
1.3+0.5 cos(πx)

∈ [0.37, 0.72], ν(x) =

0.7+0.5 cos(πx)
1.2+0.5 cos(πx)

∈ [0.29, 0.70]. In Figure 6, it is observed that the

solution approaches the ideal pair (M,N) which is regardless of

(u0, v0), which is an affirmation of Theorem 4.

Also, Figure 7 illustrates the coexistence of both species is

globally asymptotically stable and (u, v) → (M,N) with t → ∞.

5.1.2. Case of two- space dimensions

This section aims to simulate the model (2.5) when K,M,

and N are functions of both x and y.

Example 4. Consider the spatial functions for model (2.5) when

M + N > K wherein Figures 8A,C K = 2.0 + cos(πx) cos(πy),

M = 0.6K = 1.2 + 0.6 cos(πx) cos(πy), N = 1.0 +

0.4 cos(πx) cos(πy), and µ(x) =
0.8+0.4 cos(πx) cos(πy)
1.0+0.4 cos(πx) cos(πy)

∈

[0.67, 0.86], ν(x) =
1.0+0.6 cos(πx) cos(πy)
1.2+0.6 cos(πx) cos(πy)

∈ [0.67, 0.89], and in

Figures 8B,D K = 3.0, M = 0.6K = 1.8, N = 1.5, µ(x) = 0.8,

ν(x) = 0.83. Also let, d1 = d2 = 1.0, r1 = r2 = 1.0,

(u0, v0) = (0.7, 0.7) on � = (0, 1) × (0, 1) for different values

of competition coefficients. Figure 8 signifies the contour profiles

of u and v while M is proportional to K and N/K are non-

constant. We have computed the solution at t = T = 400

for which it is adequate to get a steady state. We see that for
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FIGURE 8

Contour plots of u and v of (2.5) at t = T = 400 when M + N > K where d1 = d2 = 1.0, r1 = r2 = 1.0, (u0 , v0) = (0.7, 0.7) for (A,C)

K = 2.0+ cos(πx) cos(πy), M = 0.6K = 1.2+ 0.6 cos(πx) cos(πy), N = 1.0+ 0.4 cos(πx) cos(πy), µ(x) =
0.8+0.4 cos(πx) cos(πy)
1.0+0.4 cos(πx) cos(πy)

∈ [0.67, 0.86],

ν(x) =
1.0+0.6 cos(πx) cos(πy)
1.2+0.6 cos(πx) cos(πy)

∈ [0.67, 0.89], and (B,D) K = 3.0, M = 0.6K = 1.8, N = 1.5, µ(x) = 0.8, ν(x) = 0.83 on � = (0, 1)× (0, 1).

µ(x), ν(x) ∈ (0, 1), both species sustain in the competition, and the

contour pattern followed shows a correlation withM and N rather

than K. The contour profiles in Figures 8A,C represent the saddle

shape wheremaximum population density is located at the left and

right bottom and top corners of the domain whereas minimum

population density is found right and left bottom and top corner

of the contour profile, respectively. Additionally, also Figures 8B,D

shows the coexistence with a very small change in contour profiles.

As we know, for two interacting species the outcome is either

competitive exclusion or coexistence of two species. Here, we

observed that for different constant and space dependent values

of µ and ν both species sustain (refer to, Figures 8A–D), which

justified Theorem 2 and Corollary 1 while coexistence is feasible.

From an ecological perspective, when the competition coefficients

are less than 1 then the interspecific competition has less effect than

intraspecific competition. The opposite scenario occurs when both

competition coefficients are greater than 1. Due to partial resource

sharing of both interacting species, competition coefficients (µ, ν)

between 0 and 1 stimulate cohabitation in the battle. It is also

worth noting that v has a slightly greater population density

than u, indicating that species which consume lower per capita

accessible resources can have a slightly higher elevated population

density. On the other hand, when niche differentiation occurs,

most species do not utilize all of the resources available to them.

The fish population is one of the most common instances of river

organisms. Since one species forages mostly in shallow water and

the other in deep water, they can coexist while sharing shared

resources. Another example of resource sharing by grazers like

zebra and wildebeest which are grazing on plants and eating

typical African savanna grass (Panicum maximum) over time.

The growing season of this grass begins later in the peak rain and

lasts for 6 months. Among the two grazers, zebra eat the tallest
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FIGURE 9

Average scaled density of (2.5) as a function of competition coe�cients µ ∈ [0.65, 0.9] and ν ∈ [0.65, 0.9] on � ∈ (0, 1)× (0, 1) when M + N > K

where d1 = d2 = 1.0, r1 = r2 = 1.0, (u0 , v0) = (0.7, 0.7) with K = 2.0+ cos(πx) cos(πy), M = 0.6K = 1.2+ 0.6 cos(πx) cos(πy), N = 1.0+ 0.4 cos(πx) cos(πy)

on � = (0, 1)× (0, 1) for (A) u, (B) v, and (C) u+ v at t = T = 1, 000.

grass, which is abundant but less nutritious since zebra teeth allow

them to consume the taller grass. Zebras’ digestive systems are

also more effective than that of a ruminant grazer. However, by

eating the tops of the grass, zebra make it simpler for wildebeests

to access the more nutrient-dense areas of the grass close to the

ground. Despite not being able to digest food as quickly as zebras,

wildebeests can gain more energy since the lower portion of the

grass is more nutrient-rich and soft. Thus, even though the other

animals cannot obtain enough energy from it, they can survive on

the shortest grass. In this way, two or more populations can sustain

mutually by resource sharing.

Moreover, average scaled density of u, v and u+ v of (2.5) are

presented in Figure 9 as a function of competition coefficients for

M + N > K, where µ ∈ [0.69, 0.9] and ν ∈ [0.65, 0.9] on � ∈

(0, 1) × (0, 1) that represents the dependency of the space average

population density for µ and ν. Here, we have considered, K =

2.0 + cos(πx) cos(πy), M = 0.6K = 1.2 + 0.6 cos(πx) cos(πy),

N = 1.0 + 0.4 cos(πx) cos(πy) while others parameters are

fixed as before. We have computed the values of µ(x) and ν(x)

at each point in the domain for the range µ ∈ [0.69, 0.9] and

ν ∈ [0.65, 0.9] which we have computed from equation (2.6) by

the relation of K,M,N, µ, and ν at t = T = 1, 000. Figure 9

demonstrates the coexistence of both species for the limited range

of µ and ν. At this point, it is mentioned that with the increase of

ν, the average density of u rise, whereas it starts to reduce with the

increase ofµ values. The opposite scenario is noticed for the scaled

average population density of v.

Example 5. Consider the case of (2.5) at t = T = 400 when

M + N < K where K = 2.0 + cos(πx) cos(πy), d1 = d2 = 1.0,

r1 = r2 = 1.0, (u0, v0) = (0.7, 0.7) on � = (0, 1) × (0, 1). Here

Figures 10A,C characterizes the contour profiles of u and v where

we assume M = 0.3K = 0.6 + 0.3 cos(πx) cos(πy), N = 1.0 +

0.7 cos(πx) cos(πy) so that µ(x, y) =
1.4+0.7 cos(πx) cos(πy)
1.0+0.7 cos(πx) cos(πy)

∈

[1.24, 2.33], ν(x, y) =
1.0+0.3 cos(πx) cos(πy)
0.6+0.3 cos(πx) cos(πy)

∈ [1.45, 2.33] and in

Figures 10B,DM = 0.6K = 1.2+0.6 cos(πx) cos(πy), N = 0.6+

0.4 cos(πx) cos(πy) for which µ(x, y) =
0.8+0.4 cos(πx) cos(πy)
0.6+0.4 cos(πx) cos(πy)

∈

[1.2, 2.0], ν(x, y) =
1.4+0.6 cos(πx) cos(πy)
1.2+0.6 cos(πx) cos(πy)

∈ [1.11, 1.33]. Here

in both cases, competitive exclusion is observed to happen.

Depending on the values of proportionally constant β either

(u∗, 0) or (0, v∗) that ensure to is attained, which ensures the

existence of local semi-trivial equilibrium where the diffusive

migration of u followed carrying capacity K and the movement

of other species is directed toward their resource distribution

N. According to Theorem 3, as time increases, v dies out and

the solution of u converges to K as shown in Figures 10A,C.

However, in Figures 10B,D, the solution converges to v, and

as time grows, u does not sustain in battle. In this case, the

values of both competition coefficients are greater than 1, and

interspecific competition is strong between the competing species.

As we know, one possible effect of intense interspecific competition

is competitive exclusion. If two species compete for a similar

habitat, then one of them will eventually outcompete the others

and drive them out of the environment. On the other hand, due

to quite small per capita resource consumption the growth of

species u increases rapidly seen in the case of Figures 10A,C, and

other populations move toward extinction. A similar observation

is noticed in Figures 10B,D for which v sustains in competition. For

example, consider bird populations, as most birds rely on the same

resources to survive in competition. It could result in fierce rivalry

among the species. The more competition in the environment, the

more difficult it is to sustain.

However, Figure 11 represents the diagram of scaled average

population density of u and v for different levels of competition

coefficients at t = T = 1, 000. Here µ ∈ [1, 2.5] and ν ∈ [1, 2.5]

which is obtained from equation (2.6) on � ∈ (0, 1) × (0, 1) for

M+N < K whenM = 0.3K and N = 1.0+0.7 cos(πx) cos(πy).

Here, we have calculated the dependency of u and v at each point

for the consider fixed upper and lower estimates of µ and ν in

the domain.
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FIGURE 10

Contour plots of u and v of (2.5) at t = T = 400 when M + N < K where K = 2.0+ cos(πx) cos(πy), d1 = d2 = 1.0, r1 = r2 = 1.0, (u0 , v0) = (0.7, 0.7) for

(A,C) M = 0.3K = 0.6+ 0.3 cos(πx) cos(πy), N = 1.0+ 0.7 cos(πx) cos(πy), µ(x, y) =
1.4+0.7 cos(πx) cos(πy)
1.0+0.7 cos(πx) cos(πy)

∈ [1.24, 2.33],

ν(x, y) =
1.0+0.3 cos(πx) cos(πy)
0.6+0.3 cos(πx) cos(πy)

∈ [1.45, 2.33], and (B,D) M = 0.6K = 1.2+ 0.6 cos(πx) cos(πy), N = 0.6+ 0.4 cos(πx) cos(πy),

µ(x, y) =
0.8+0.4 cos(πx) cos(πy)
0.6+0.4 cos(πx) cos(πy)

∈ [1.2, 2.0], ν(x, y) =
1.4+0.6 cos(πx) cos(πy)
1.2+0.6 cos(πx) cos(πy)

∈ [1.11, 1.33] on � = (0, 1)× (0, 1).

Also, Figure 12 reveals the comparison of the average scaled

population density of u and v for different levels of competition

coefficients where µ ∈ [1, 2] and ν ∈ [1, 2] on � ∈

(0, 1) × (0, 1) at time t = T = 1, 000. Here we set,

M = 0.6K = 1.2 + 0.6 cos(πx) cos(πy), N = 0.6 +

0.4 cos(πx) cos(πy) and considering other parameters are fixed

as before.

Example 6. Take K = 2.0 + cos(πx) cos(πy) where M =

0.9 + 0.5 cos(πx) cos(πy), N = 1.1 + 0.5 cos(πx) cos(πy) in

Figures 13A,B and M = 1.5 + 0.6 cos(πx) cos(πy), N = 0.8 +

0.7 cos(πx) cos(πy) in Figures 13C,D on � = (0, 1) × (0, 1) for

the model (2.5) when M + N ≥ K for which the contour profiles

in Figure 13 form an ideal free pair. Here also let, d1 = d2 = 1.0,

r1 = r2 = 1.0, (u0, v0) = (0.5, 0.5) whereµ(x, y) = ν(x, y) = 1.0

and µ(x, y) =
0.5+0.4 cos(πx) cos(πy)
0.8+0.7 cos(πx) cos(πy)

∈ [0.6, 1.0], ν(x, y) =

1.2+0.3 cos(πx) cos(πy)
1.5+0.6 cos(πx)

∈ [0.71, 1.0], respectively in the prescribed

domain. Here, we perceive that the contour profile of u follows M

and the contour profiles of v correlate with N, respectively (refer

to, Figures 13A,B) while M + N = K. In this case both species are

diffusing in the direction of their resource functions and for the

fixed values of competition coefficients, the coexistence of species

appears, and they form an ideal pair. The total density for such

a pair is identical to the carrying capacity. In this condition, the

availability of resources for the couple species is spatially distinct,

which can specialize through resource consumption. However, a

similar observation is noticed for the case M + N > K (refer to,

Figures 13C,D) and the contour profile approaches toward their

respective resource function that will form an ideal pair with
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FIGURE 11

Average scaled density of u and v of (2.5) as a function of competition coe�cients µ ∈ [1, 2.5] and ν ∈ [1, 2.5] on � ∈ (0, 1)× (0, 1) when M+N > K

with K = 2.0+ cos(πx) cos(πy), M = 0.3K = 0.6+ 0.3 cos(πx) cos(πy), N = 1.0+ 0.7 cos(πx) cos(πy), d1 = d2 = 1.0, r1 = r2 = 1.0, (u0 , v0) = (0.7, 0.7) on

� = (0, 1)× (0, 1) at t = T = 1, 000.

FIGURE 12

Average scaled density of u and v of (2.5) as a function of competition coe�cients µ ∈ [1.2, 2] and ν ∈ [1.1, 1.3] on � ∈ (0, 1)× (0, 1) when

M + N > K with K = 2.0+ cos(πx) cos(πy), M = 0.6K = 1.2+ 0.6 cos(πx) cos(πy), N = 0.6+ 0.4 cos(πx) cos(πy), d1 = d2 = 1.0, r1 = r2 = 1.0,

(u0 , v0) = (0.7, 0.7) on � = (0, 1)× (0, 1) at t = T = 1, 000.

the increase of time, which is one of the confirmations of the

Theorem 4.

5.2. When K, M, N, µ, and ν are time
dependent

5.2.1. Case of two-space dimensions

In this section, we will study the model (2.5) numerically

when K,M, and N are two-dimensional time dependent

functions, which may occur for seasonal variations. We will

present the instantaneous contour profiles of u(t, x, y) and

v(t, x, y) for t = T, t = T + 2π
k�

where k = 1, 2, . . . , that confirm

the existence of a positive periodic state during a particular time

interval. Here, T is substantially sufficient to reach the time

periodicity of the population density. Furthermore, we exhibit

the space averaged density profile as a function of time to show

its approach to a periodic state. Here we will compare the time

periodic case with the case of steady state only by including

the time periodic function. The time dependent case has been
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FIGURE 13

Contour plots of u and v of (2.5) at t = T = 350 when M + N ≥ K with K = 2.0+ cos(πx) cos(πy) for (A,B) M = 0.9+ 0.5 cos(πx) cos(πy),

N = 1.1+ 0.5 cos(πx) cos(πy), µ(x, y) = 1.0, ν(x, y) = 1.0, and (C,D) M = 1.5+ 0.6 cos(πx) cos(πy), N = 0.8+ 0.7 cos(πx) cos(πy),

µ(x, y) =
0.5+0.4 cos(πx) cos(πy)
0.8+0.7 cos(πx) cos(πy)

∈ [0.6, 1.0], ν(x, y) =
1.2+0.3 cos(πx) cos(πy)

1.5+0.6 cos(πx)
∈ [0.71, 1.0], d1 = d2 = 1.0, r1 = r2 = 1.0, (u0 , v0) = (0.5, 0.5) on � = (0, 1)× (0, 1).

FIGURE 14

Contour plots of u(t, x, y) of (2.5) when M + N > K where K = (2.0+ cos(πx) cos(πy))(1.0+ 0.2 cos(t)),

M = 0.6K = (1.2+ 0.6 cos(πx) cos(πy))(1.0+ 0.2 cos(t)), N = (1.0+ 0.4 cos(πx) cos(πy))(1.0+ 0.2 cos(t)), µ(t, x, y) ∈ [0.67, 0.86], ν(t, x, y) ∈ [0.67, 0.89],

r1 = r2 = r = 1.0, (u0 , v0) = (0.5, 0.5), d1 = d2 = 1.0, � = (0, 1)× (0, 1) for (A) T, (B) T + π
2
, (C) T + π , (D) T + 3π

2
, and (E) T + 2π , where T = 38.55.

computed to examine, do the periodic state represents the same

patterns as the same steady state cases studied in the earlier

section? We will discover this question in this section.

Example 7. Consider the time dependent functions for the case of

(2.5) whenM+N > K where K = (2.0+cos(πx) cos(πy))(1.0+

0.2 cos(t)), M = 0.6K = (1.2 + 0.6 cos(πx) cos(πy))(1.0 +

0.2 cos(t)), N = (1.0+ 0.4 cos(πx) cos(πy))(1.0+ 0.2 cos(t)) on

� = (0, 1) × (0, 1). Here µ(t, x, y) ∈ [0.67, 0.86], ν(t, x, y) ∈

[0.67, 0.89] with r1 = r2 = r = 1.0, (u0, v0) = (0.5, 0.5), d1 =

d2 = 1.0. Here, Figure 14 demonstrates the instantaneous change

in population development of u(t, x, y) and v(t, x, y) through

contour profiles for a specific time period. At this point, we have

computed the instantaneous contour profiles of u for (Figure 14A)

T, (Figure 14B) T+ π
2 , (Figure 14C) T+π , (Figure 14D) T+ 3π

2 ,

and (Figure 14E) T + 2π , where t = T = 38.55, which is large

Frontiers in AppliedMathematics and Statistics 19 frontiersin.org

https://doi.org/10.3389/fams.2022.949585
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Zahan et al. 10.3389/fams.2022.949585

FIGURE 15

Contour plots of v(t, x, y) of (2.5) when M + N > K where K = (2.0+ cos(πx) cos(πy))(1.0+ 0.2 cos(t)),

M = 0.6K = (1.2+ 0.6 cos(πx) cos(πy))(1.0+ 0.2 cos(t)), N = (1.0+ 0.4 cos(πx) cos(πy))(1.0+ 0.2 cos(t)), µ(t, x, y) ∈ [0.67, 0.86], ν(t, x, y) ∈ [0.67, 0.89],

r1 = r2 = r = 1.0, (u0 , v0) = (0.5, 0.5), d1 = d2 = 1.0, � = (0, 1)× (0, 1) for (A) T, (B) T + π
2
, (C) T + π , (D) T + 3π

2
, and (E) T + 2π , where T = 19.71.

enough to reach the steady state. As we know, due to seasonal

variation or any other periodic factors during a time phase, the

population growth is not always even everywhere, its growth rises

and falls during specific seasons. There are many reasons, such

as food availability, space, water supply, climate change, diseases,

and predators that influence the growth of population during a

time interval.

Thus, at all times during a period, we will not get the same

population density. As we have shown in Figure 14. We observe

that at T = 38.55 and T = 38.55+2π the instantaneous contours

plots correspond to identical values that provide the existence

of positive periodic solutions. It is also noted that Figure 14

corresponds to Figure 8A of the steady state case for which both

species survive in competition. Here, we have only included the

time periodic function with the same steady state function to see

the existence of the periodic state.

However, Figure 15 represents the instantaneous contour

profiles of v(t, x, y) for (Figure 15A) T, (Figure 15B) T + π
2 ,

(Figure 15C) T + π , (Figure 15D) T + 3π
2 , and (Figure 15E)

T + 2π , where t = T = 19.71 for which species v is found

to survive. Similar to Figure 14, we observe that at T = 19.71

and T = 19.71+ 2π the instantaneous contours plots of v(t, x, y)

resemble indistinguishable values which corresponds to Figure 8C

of the steady state case.

Example 8. Consider K = (2.0 + cos(πx) cos(πy))(1.0 +

0.2 cos(t)) when M + N < K where M = 0.3K =

(0.6 + 0.3 cos(πx) cos(πy))(1.0 + 0.2 cos(t)), N = (1.0 +

0.7 cos(πx) cos(πy))(1.0 + 0.2 cos(t)), µ(t, x, y) ∈ [1.23, 2.33],

ν(t, x, y) ∈ [1.44, 2.33] in Figures 16A,B and M = 0.6K =

(1.2 + 0.0.6 cos(πx) cos(πy))(0.6 + 0.4 cos(t)), N = (0.6 +

0.4 cos(πx) cos(πy))(1.0 + 0.2 cos(t)), µ(t, x, y) ∈ [1.2, 2.0],

ν(t, x, y) ∈ [1.11, 1.33] in Figures 16C,D. Also let, r1 = r2 =

r = 1.0, (u0, v0) = (0.5, 0.5), d1 = d2 = 1.0 on

� = (0, 1) × (0, 1). The time average over a specific time

interval are 〈u(., x, y)〉 = 1
2π

2π+T
∫

T

u(t, x, y)dt and 〈v(., x, y)〉 =

1
2π

2π+T
∫

T

v(t, x, y)dt, respectively. It is noticed that the time

average profiles in Figures 16A,B is similar to the steady pattern

in Figures 10A,C. We found that due to intense interspecific

competition and slightly higher values of ν compared to µ

species u is persist and v dies out (refer to, Figures 16A,B),

which is expected according to Theorem 3. Also, the contour

profile of u corresponds to the contour pattern of K with the

increase of time. Opposite observation is found while considering

M = 0.6K, and N = (0.6 + 0.4 cos(πx) cos(πy))(1.0 +

0.2 cos(t)) for µ, ν > 1 and it is observed that the time

average for periodic time dependent function the patterns
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FIGURE 16

Contour plots of 〈u(., x, y)〉, and 〈v(., x, y)〉 of (2.5) when M + N < K where K = (2.0+ cos(πx) cos(πy))(1.0+ 0.2 cos(t)), r1 = r2 = r = 1.0,

(u0 , v0) = (0.5, 0.5), d1 = d2 = 1.0, for (A,B) M = 0.3K = (0.6+ 0.3 cos(πx) cos(πy))(1.0+ 0.2 cos(t)), N = (1.0+ 0.7 cos(πx) cos(πy))(1.0+ 0.2 cos(t)),

µ(t, x, y) ∈ [1.23, 2.33], ν(t, x, y) ∈ [1.44, 2.33], and (C,D) M = 0.6K = (1.2+ 0.0.6 cos(πx) cos(πy))(0.6+ 0.4 cos(t)),

N = (0.6+ 0.4 cos(πx) cos(πy))(1.0+ 0.2 cos(t)), µ(t, x, y) ∈ [1.2, 2.0], ν(t, x, y) ∈ [1.11, 1.33] on � = (0, 1)× (0, 1).

FIGURE 17

Contour plots of 〈u(., x, y)〉, and 〈v(., x, y)〉 of (2.5) when M + N ≥ K where K = (2.0+ cos(πx) cos(πy))(1.0+ 0.2 cos(t)),

M = (1.5+ 0.0.6 cos(πx) cos(πy))(1.0+ 0.2 cos(t)), N = (0.8+ 0.7 cos(πx) cos(πy))(1.0+ 0.2 cos(t)), µ(t, x, y) ∈ [0.6, 1.0], ν(t, x, y) ∈ [0.71, 1.0],

r1 = r2 = r = 1.0, (u0 , v0) = (0.5, 0.5), d1 = d2 = 1.0 on � = (0, 1)× (0, 1).

in Figures 16C,D correspond to the steady state patterns

in Figures 10B,D.

Example 9. Consider the time dependent function for model

(2.5) when M + N ≥ K on � = (0, 1) × (0, 1). Assume

K = (2.0 + cos(πx) cos(πy))(1.0 + 0.2 cos(t)), M =

(1.5 + 0.0.6 cos(πx) cos(πy))(1.0 + 0.2 cos(t)), N = (0.8 +

0.7 cos(πx) cos(πy))(1.0 + 0.2 cos(t)) for which µ(t, x, y) ∈

[0.6, 1.0], ν(t, x, y) ∈ [0.71, 1.0]. Also let, r1 = r2 = r = 1.0,

(u0, v0) = (0.5, 0.5), d1 = d2 = 1.0. We get the time average

contour profiles of u(t, x, y) and v(t, x, y) produce ideal pair for

the time dependent function which converges to M and N as time

grows up. Also, the time average contour profiles in Figure 17

relate to the steady state pattern in Figure 13. We find that while

both M and N are non-proportional with K than for µ, ν ∈ (0, 1)

both species survive and pick up the finest solution (M,N) known

as the ideal free pair.

6. Summary of the study

We studied two species’ competition dynamics that describe

the competition and cooperation of both species in a

heterogeneous environment with different imposed diffusion

strategies. Several results have been established, considering

the weak and strong competition, based on the intensity of

spatially dependent competition coefficients. For a generalized

non-symmetric growth function, we have discovered that if

the first species follow K− driven diffusion and at the same

time, the other species diffuse according to their resource
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distribution, then in the case of weak competition (µ(x), ν(x) <

1) both species sustain in the competition. Additionally, rising

over time, its solution converges to the resource functions,

forming an ideal free pair. However, in the case of strong

competition (µ(x), ν(x) > 1), no coexistence is possible and

there exists at least one semi-trivial solution. Furthermore, if

both organisms follow the resource base diffusion, then once

again, for µ(x), ν(x) < 1 ideal pair is guaranteed to be attained

in battle. The model’s efficacy for the case of one and two

space dimensions is presented via numerical computation both

for space and time-dependent cases, which is very effective

from an ecological perspective. The findings may provide

insight into the management of species invasions. If a more

efficient diffuser is an invader, and all other factors remain

constant, the invasive species’ higher competitive coefficient

may drive the local species to extinction. In addition, the

enforced diffusion tactics are essential for researching grazing

animals, marine organisms, and various winter birds. On

the other hand, the population always moves in a good

environment and leaves an unfavorable one, which can lead

to unpredictable habits, like human behavior. The idea of

different diffusion strategies is often closely connected to

the creation and diffusion of knowledge as well as to the

technological evolution of society. For more current advanced

study on the model of human dynamical analysis, refer to

Ali et al. [24]. The outcomes of the investigation can be

extended by considering three species’ population dynamics

while they follow similar diffusion strategies with different

competition coefficients.
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