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In this article, we present a unified framework for the analysis and

characterization of a complex system and demonstrate its application in two

diverse fields: neuroscience and astrophysics. The framework brings together

techniques from graph theory, applied mathematics, and dimensionality

reduction through principal component analysis (PCA), separating linear PCA

and its extensions. The implementation of the framework maps an abstract

multidimensional set of data into reduced representations, which enable

the extraction of its most important properties (features) characterizing its

complexity. These reduced representations can be sign-posted by known

examples to provide meaningful descriptions of the results that can spur

explanations of phenomena and support or negate proposed mechanisms in

each application. In this work, we focus on the clustering aspects, highlighting

relatively fixed stable properties of the system under study. We include

examples where clustering leads to semantic maps and representations of

dynamic processes within the same display. Although the framework is

composed of existing theories and methods, its usefulness is exactly that it

brings together seemingly di�erent approaches, into a common framework,

revealing their di�erences/commonalities, advantages/disadvantages, and

suitability for a given application. The framework provides a number of di�erent

computational paths and techniques to choose from, based on the dimension

reduction method to apply, the clustering approaches to be used, as well as

the representations (embeddings) of the data in the reduced space. Although

here it is applied to just two scientific domains, neuroscience and astrophysics,

it can potentially be applied in several other branches of sciences, since it is not

based on any specific domain knowledge.

KEYWORDS

principal component analysis, graph clustering, graph spectral clustering, manifold

learning, semantic maps, sleep staging, early brain responses, galaxy evolution
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1. Introduction

Complex systems, a common framework for scientific

studies of phenomena composed of more than one entity, stand

as a prominent framework of scientific computing. It is hard to

think of single phenomenon which do not involve a number of

interacting entities.

The notion of network modeling lies in the heart of

systems science, providing a solid framework for the study

of systems of many interacting entities, requiring no central

control. In a network, simple rules of operation can give rise

to sophisticated information processing, and adaptation via

learning or evolution [1]. A network or a graph [2] can be

used to represent any system of a set of entities (consisting

of the nodes of the graph) that may be related to each

other via pairwise relationships (constituting the edges of

the graph). The entities could be any set; a set of atoms,

brain centers, molecules, humans, societies, machines, brain

centers, countries, planets, stars, or galaxies. The edges are

pairwise relations that may declare dependency among the

involved entities, conflict, binding, allocation, assignment, (dis)-

similarity, friendship, positive or negative relationship, etc.

Despite its simple definition, networks and network science have

become one of the most powerful interdisciplinary frameworks

for the study of complex systems. The strong mathematical

foundation of graph theory supports the core of network

science while its flexibility and generality make it adaptable

to applications in a wide and diverse range of domains

of knowledge.

Defining what the nodes and the edges of a graph correspond

to in the real system is a crucial step and can be a deceptively

challenging task. For more details about structure/function

relationships, emerging properties and other factors playing

a critical role in the description of complex systems refer to

Turnbull et al. [3].

In this work, we present a unified framework for analyzing

complex systems and apply it to problems in two diverse

fields: neuroscience and astrophysics. The framework brings

together different approaches for the analysis of a complex

system, i.e., principal component analysis (PCA) and graph

theory, under common ground. It provides a number of different

computational paths for the analysis of complex systems which

enables the juxtaposition of each of them. It also allows different

visualization of the core elements of the system, revealing

different aspects of it (physical properties or similarities, etc.).

In particular, the framework consists of the following steps:

(i) the modeling of the data set as a system in a concrete

mathematical form leading to a matrix representation (i.e., a

similarity matrix), (ii) The representation of the system either as

a graph or as a set of features in space of few dimensions, where

(some of the original) metric properties are preserved. These

reduced representations provide a fundamental skeleton that

captures the most intrinsic and hidden properties of the system.

(iii) The application of several kinds of clustering algorithms

either directly on the graph or in the reduced feature space,

and finally, (iv) The application of various embeddings of the

clustered data in the reduced space or using the graph. The

embeddings allow both the comparison of the cluster data with

other physical properties, the extraction of the most important

features of the data set, possible embeddings of new data in

the feature space, and the interpretation of the results with the

use of domain knowledge. Overall, the framework allows the

clarification of the underlying mechanisms and processes within

each scientific domain. It can also unveil hidden theoretical

similarities in the description of complex systems that can

guide the quest for a better overall understanding of each

individual system and highlight global patterns that run across

scientific domains.

The applicability of the framework is demonstrated in the

study of two distinct and apparently very different complex

systems, each one affording clear definitions of the nodes

and edges at distinct spatial and temporal scales. The first

system comes from the domain of neuroscience with structural

elements on the large spatial scale of the entire brain, with

constituent parts of the cytoarchitectonic areas (CA) [4] on the

cortical mantle and other areas in the deep brain nuclei. Two

neuroscience problems are addressed, each one as a problems

of clustering of functional data from a number of CAs. The

first one probes the organization of sleep, where the framework

is utilized to characterize the relationship between sleep stages

and accommodate the periods of high activity within each sleep

stage and periods representing transitions between them. For the

second neuroscience application, the framework is applied to

probe the nature of evoked responses and the way the thalamus

and cortex influence each other. The second system where the

framework is applied deals with problems in astrophysics, where

galaxies are the nodes. In particular, we study the evolution of

ultraluminous infrared galaxies (ULIRGs), through the study

of their spectral energy distributions (SEDs). The framework

is employed here for the detection of galaxies of similar SEDs

which correspond to different galaxy evolution stages, and

for the investigation of the relation between various physical

properties of the galaxies and in relation to their SEDs.

1.1. Roadmap

In Section 2, we first introduce the theoretical background

we use and then present the proposed framework. The first

two subsections of Section 2 introduce the related theory

and methods of the PCA together with one of its non-linear

extensions (Section 2.1) and graph theory (Section 2.2). The

following Section 2.3 presents and discusses the proposed

framework. Section 2.4 introduces two specific extensions of

the framework which are used to produce good effect in the
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applications of neuroscience. The applicability of the framework

is demonstrated in Section 3, where it is successfully applied to

the analysis of two distinct complex systems in Neuroscience

(Section 3.1) and a problem in Astrophysics (Section 3.2).

The article concludes with Section 4 where we summarize the

proposed framework, its advantages, and its applicability in

diverse sciences.

2. Mathematical framework and
methods

2.1. Principal components analysis:
Background and methods

Dimension Reduction (DR) techniques provide a mapping

of the original data into a lower dimensional space which

maintains its main features. PCA is the prototypical

dimensionality reduction method, with applications in

data clustering, pattern recognition, image analysis, etc. [5, 6].

It is a linear method with the data spread in a Euclidean space

of N dimensions that yields an appropriate low-dimensional

orthogonal coordinate system with axes defining the direction

of the principal variances of the data.

Due to its limited applicability to linearly structured data,

various extensions of PCA have been developed in order to

cover data with non-linear dependencies [see [5, 7]]. Non-

linear DR techniques can deal with highly complex data by

assuming that the data lies on a highly non-linear manifold that

can be described in a linear space of much lower dimensions

than that of linear PCA. In this study, we will also explore a

common non-linear dimension reduction technique, the Kernel

PCAmethod [8].

2.1.1. Linear PCA

Assume a set of data of N elements in a D−dimensional

Euclidean space, called Input space, represented by N column

vectors xi, i ∈ [N] 1, each of dimensionD, constituting theD×N

matrixX. For technical reasons, we consider centered initial data

by subtracting the average vector µ
2 from the data obtaining the

new variables xi = xi − µ and the corresponding matrix X.

The principal component analysis method attempts to

project optimally3. the data points onto a linear subspace

(affine subspace in the case of uncentered raw data) of RD of

dimension d (usually d << D), which reduces the eigenvalue

decomposition of the D × D matrix S = XX
⊤
. The principal

directions of the variations of the data are given by the

1 [N] = {1, 2, . . . ,N}.

2 µ = 1
N

6N
i=1xi ∈ R

D.

3 Optimality here means maximization of the projected variance of the

data [for more details, see [5, 6]].

eigenvectors uj of the matrix S with corresponding eigenvalues

λj that yield the projected variance4.

Since the matrix S is positive semi-definite, its eigenvalues

are all non-negative numbers that can be arranged in

descending order and the corresponding eigenvectors are

pairwise orthogonal, a fundamental property that provides

linear independent principal directions. The dimensional

reduction of the problem is then achieved by considering only

the d-eigenvectors that correspond to the d-largest eigenvalues,

where d is a parameter that can be determined using the spectral

gap heuristic, which is explained next in Section 2.1.3. These

eigenvectors constitute the principal directions or components

of the variance of the data. As a result, projections of the d

(most significant) eigenvectors of the data correspond to their

embeddings in a d-dimensional space that captures their main

features, i.e., in the feature space of the data.

2.1.2. Kernel PCA

The Kernel PCA method (KPCA), introduced by Schölkopf

et al. [8], is a particular non-linear extension of linear PCA.

Many modern methods of analysis, e.g., machine learning, make

extensive use of it [9]. It is based on the idea of embedding

the data into a higher-dimensional space, called Feature Space,

and denoted by F. Application of linear PCA on F allows the

data to be eventually linearly separable. More formally, KPCA

transforms the data from the input space to the feature space

through a non-linear map φ :R
D −→ F which relates the

feature variables to the input variables as xi 7→ φ(xi). The feature

space F can have an arbitrarily large dimension which will be

denoted by D̃ >> D. The new data matrix will be given in terms

of the D̃ × D̃ matrix 8, formed by the columns of the centered

transformed data φ(xi) = φ(xi)− φ(µ) as S̃ = 8 8⊤.

The principal directions in F correspond to the N

eigenvectors v1, . . . , vN of S̃, associated to the non-zero

eigenvalues λ̃1, . . . , λ̃N . The remaining D̃ − N eigenvectors

correspond to the zero eigenvalues. This suggests that there exist

N-column vectors wi, i ∈ [N], such that

vi = 8wi. (1)

Due to the increase in dimension of the problem from D to D̃,

the order of S̃ can be huge posing computational challenges.

However5, the problem is reduced to the eigenvalue problem of

the N × N matrix:

G : = S̃⊤ = 8⊤ 8. (2)

4 The total variance of the data is then given by the sum of the

eigenvalues var(D) = 6D
j=1λi.

5 Due to the fact that the non-zero eigenvalues of the matrix S̃ are

identical with the eigenvalues of its transpose [[10], p. 555].
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It can be shown that the eigenvectors of G are precisely the N-

vectors wi of (1) [see [5]]. The latter allows the recovering of

the principal directions (i.e., the vectors vi) of the problem. We

note that we choose to normalize wi
6 so that the principal axes

vi become orthonormal.

In every non-linear PCA method, in general, φ is an

unknown map. This can be resolved by the formulation of

the KPCA method, thought a certain positive definite kernel

function7 K :R
D × R

D −→ R such that

K(xi, xj) : = φ(xi)
⊤φ(xj), xi, xj ∈ R

D. (3)

In terms of centered data, the formula for the corresponding

kernel function, i.e., K(xi, xj) = φ(xi)
⊤ φ(xi), can be calculated

by the matrix form expression K = JKJ, where J = I− 1
N 1, with

I being the identity matrix and 1 is a matrix of ones. In view of

(3), we can use an a priori positive definite kernel, which, in turn,

will implicitly introduce a corresponding map φ from the input

space to the feature space F [see [5, 11]].

In the literature, there is a variety of kernels that can be

used to extract the type of non-linear structures that govern

the physical problem at hand. The most commonly used kernel,

apart from the linear one K(xi, xj) = x⊤i xj + α—which is just

the Euclidean dot product, so that KPCA naturally generalizes

PCA—is the Gaussian kernel

K(xi, xj) = exp (−γ
∥∥xi − xj

∥∥2),

where γ = 1
2σ 2 and σ determines the width of the kernel [12].

We have chosen to apply the Gaussian kernel on our data. A

common choice of σ is the standard deviation of the sample of

the
(N
2

)
distances ||xi − xj|| [see [13]].

Having chosen the kernel function K, now (2) yields the

following N × N Gramianmatrix of the centered data:

G(K) = (K(xi, xj)) ∈ R
N×N (4)

The final step of the method states that for every data vector xi,

its l-th non-linear principal component is given by the number:

yil = wl
⊤ Coli(G), i, l ∈ [N], where Coli(G) denotes the i-th

column of the matrix G.

2.1.3. Parameters of the PCA method

Successful application of both linear and Gaussian PCA

(KPCA for the Gaussian kernel) methods depends on two

important issues: the realization of the tuning parameter γ

needed for the Gaussian PCA, and the determination of the

actual number d of the principal components to encapsulate the

main variations of the data (needed both for PCA and Gaussian

PCA). To address these two issues, we need to find the optimal

6 according to ‖wi‖
2 = λ̃−1

i .

7 A function which can be viewed as a matrix with positive eigenvalues.

value γ ∗ of γ and the optimal dimension d that maximize

the variance of the data. In the literature [e.g., see [14]], it is

commonly accepted that both γ ∗ and d are dictated by the

largest gap, known as the spectral gap, in the eigenvalue spectrum

of the Gramian matrix G, i.e., δ(G) = max1≤i≤N−1

∣∣̃λi+1 − λ̃i
∣∣.

More precisely, γ ∗ is the particular value of γ for which δ(G) is

maximized if such a value exists, and the optimal dimension d is

equal to the smallest index i∗ + 1, for which this maximization

occurs. Additionally, more features of the data can be captured

with a more detailed analysis of the spectral gap together with

domain knowledge, leading to a slightly larger. Finally, the

parameter d of the principal components obtained corresponds

to the number of clusters partitioning the data.

2.2. Graph theoretical background and
graph clustering

Here, we present the graph theoretic background utilized

in this work. We start with some basic graph theoretic notions

and then we present the graph clustering problem and related

algorithms utilized.

2.2.1. General graph theoretical background

Graph Theory, standing out as a foundation concept

in Network Science [15], is one of the oldest branches of

Mathematics, with remarkable interdisciplinary applicability

in diverse areas, spanning from Social and Political

Sciences, Biology, Chemistry to Neuroscience [16] and

Astrophysics/Cosmology [17–19]. A graph can be used to

model any system of entities that are pairwise related to each

other. The entities in a graph are represented by the vertices

(nodes) of it, while the pair-wised (possibly weighted) relations

of entities are captured by the edges of the graph, connecting

corresponding nodes. More formally, a graph G is an ordered

triple G = G(V ,E), where the set V specifies the set of vertices

of the graph G and E the set of its edges; a set of un-ordered

pairs (i, j) of vertices of V , connecting the corresponding nodes.

We denote by N the cardinality |V| of V . In a weighted graph

G(V ,E,w), each edge (i, j) is associated with a numerical

value, w(i, j), specified by the function w :E → R
+. A binary

or un-weighted graph is a graph such that all the weights

in G are binary, i.e., w(i, j) ∈ {0, 1}. To represent a graph

G = G(V ,E,w), we use its (weighted) adjacency matrix: a N ×N

matrix A = (aij) where aij ≡ w(i, j), for each edge e = {i, j} ∈ E

and aij = 0, otherwise. The degree of the vertex i, denoted as

degi, is the sum of the weights of the edges incident to it, i.e.,

degi =
∑

j∈V w(i, j).

A path of the graph G is a sequence of nodes

{v1, . . . , vi, vi+1, . . . , vk} such that (vi, vi+1) ∈ E. A complete

graph G(V ,E) is a graph for which ∀i, j ∈ V , it holds that

(i, v) ∈ E. A graph G′ = (V ′,E′) is a sub-graph of a graph
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FIGURE 1

Two examples of graphs: an un-weighted one (left) and a weighted one (right), the values of the sets V,E and edge weights (in case of the

weighted graph, specified by the function w), the adjacency matrix A, the degree of some nodes as well as a path (in light blue) are shown in

the figure.

G = (V ,E) if V ′ ⊆ V and E′ ⊆ E. For any S ⊆ V , we denote

by S, its complement V\S in V . The (un-normalized) Laplacian

matrix of G is defined as L = D − A, where D is the degree

matrix of G8. Examples of un-weighted and weighted graphs

and their various properties are shown in Figure 1.

2.2.1.1. Similarity graphs

A similarity function associated with the edges of a graph

is a function w :E → R that measures how similar the

corresponding nodes associated with each edge are. The

corresponding graph and its adjacency matrix are called

similarity graph and similarity matrix, respectively. Assume a

set of N elements in a D−dimensional space, represented by

xi ∈ R
D, for i = 1, . . . ,N. A widely used non-linear similarity

measure is the Gaussian kernel, defined in Section 2.1.2, where

w(i, j) ≡ exp (−γ ||xi − xj||
2), where ||xi − xj|| is the Euclidean

8 The D degree matrix of G is the diagonal matrix (having non-zero

values only in its diagonal) for which the value of the entry i is the degree

of vertex i of G.

distance between the vectors xi, xj ∈ R
D and γ = 1/2σ 2.

There exist various suggestions for choosing the parameter σ ,

discussed in Sections 2.1.2 and in more detail in Section 2.1.3.

2.2.1.2. Graph sparsification

Graph sparsification is a graph simplification method that

applies to the dense (complete) similarity graph in order to

reduce its density, making the resulting graph sparse while

keeping its most significant (of large relatively weights) edges.

Two of the most common sparsification methods apply either

a global or a local criterion for choosing which edges to be

removed. Using a global threshold on the whole graph, we keep

only the edges above that threshold [ǫ-neighborhood method

[12]]. Using a local criterion, at each node, we keep the k

largest weighted edges incident to it [k-nearest neighbor (k-nn)

method9 [12]]. In order to choose the parameters ǫ, k there are

no clear guidelines. However, we note that a basic prerequisite

9 The parameter k used in the k-nn should not be confused with the k

used in the k-means algorithm, also discussed in this paper; we use the
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is that the resulting graph should be connected. In this work, we

utilize the k-nn method for graph sparsification, with a careful

choice for the value of k. In particular, we choose the parameter

k using the mutual k-nn, in order to guarantee high levels of

connectivity with mutually significant edges between nodes and

then we apply the k-nn method for the construction of the

sparsified graph, in order to guarantee connectivity between

regions of different densities.

2.2.2. The graph clustering problem: Quality
measures and algorithms

The graph clustering problem is the task of finding a partition

C of the nodes of the graph into groups, called clusters or

communities, such that the nodes within each group are highly

connected to each other, while the inter-crossing connections

between nodes of different groups are as few as possible [20].

In this work, we consider similarity graphs. A clustering in such

a graph reveals a partitioning into nodes of similar properties.

Note that in graph clustering, the number of communities to

be detected—denoted here by r—is not a priori known, in

contrast to the similar problem of graph partitioning, where this

information is part of the input of the problem10.

2.2.2.1. Quality measures of graph clustering

Modularity [21] is perhaps the most common measure

of good graph clustering C, denoted by mC . It measures the

fraction of the edges that fall within clusters minus the expected

number in an equivalent network where edges were distributed

at random. Thus, the larger the value of the modularity is, the

better the quality of the clustering. Note that mC ∈ [−1/2, 1].

The conductance of a cluster C [20] of a graph clustering C,

denoted as h(C), is the fraction of edges with only one end in

the cluster over the total number of edges of the cluster C (with

either one of two ends in the cluster). The conductance of the

clustering C is the maximum such value over its clusters C ∈ C.

Thus, the smaller the value of the conductance is, the better is

the quality of the clustering. Note that hC ∈ [0, 1].

2.2.2.2. Graph clustering algorithms

After the construction of the similarity graph and its

sparsification, one can employ graph clustering algorithms in an

attempt to simplify the system to significantly fewer entities—the

clusters—which however manage to maintain the fundamental

properties of the initial entities. This allows a characterization

of the clusters of similar entities enabling finally the feature

same letter (k) in both algorithms, since it is actually a part of the name of

both of them.

10 We note that graph spectral clustering, which is utilized by the

framework, actually requires the parameter r to be known; however the

same method provides a heuristic for the determination of the r, called

eigengap heuristic, which is also described in this article.

extraction of the initial complex system under investigation.

Existing graph clustering algorithms follow several approaches

for the detection of the clusters (or communities) in a given

network, spanning from hierarchical ones [22] [agglomerative

[23]] or divisive ones [e.g., [21, 24]], ones driven by various

measures of clustering quality [e.g., modularity based [24, 25]],

using various graph properties, such as edges or cycles [e.g.,

[26]], ones utilizing spectral graph theory [e.g., [27, 28]], and

ones that combine the aforementioned approaches.

Here, we choose to present the results of two of the

aforementioned approaches that follow a distinct method for

obtaining the clusters: the first algorithm chosen is the Walktrap

algorithm of Pons and Latapy [29] applied directly on the

similarity graph, while the second one is a particular spectral

graph clustering algorithm applied to the eigenvectors of the

(Laplacian matrix) of the similarity graph to detect the clusters.

The outputs of both algorithms are correspondingly evaluated

using modularity and conductance as quality measures of the

clustering obtained. The selected algorithms have been shown

experimentally to obtain the most natural and representative

results among several graph clustering algorithms tested.

The Walktrap algorithm is a hierarchical agglomerative

algorithm. Using random walks to measure the similarity

between two vertices, it detects network communities by

building a hierarchy of clusters, starting from each node being

a cluster of its own and merging pairs of clusters, trying to

maximize the quality of the obtained clusters.

The second type of algorithm we utilize is the spectral graph

clustering algorithm [12] and in particular the algorithm of Shi

and Malik [28]11. The algorithm uses the eigen decomposition

of the un-normalized Laplacian matrix to perform a dimension

reduction of the data space in a lower dimensional space,

such that similar items are embedded closely in that space. It

extracts the r (number of clusters to be detected) generalized

eigenvectors of the un-normalized Laplacian of the graph,

corresponding to the smallest eigenvalues. Finally, on this

reduced dimension space, a standard clustering method then

applies; typically the k-means clustering [30]. We note that this

algorithm, as all other spectral clustering algorithms, requires

the number of clusters r to be given as input. Here, for the

specification of the value of r, we utilize a popular method

followed, i.e., the eigengap heuristic [12].

2.3. A unified framework for feature
extraction of complex systems

We now present a unified framework that brings together

seemingly different approaches for modeling and analyzing

11 For the specification of the parameter σ used by the algorithm, we

utilize the standard deviation procedure [13].
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FIGURE 2

The unified framework for modeling, clustering, embedding, and feature extraction of complex systems. Various numbered boxes indicate the

steps of the analysis. After the first step, where the appropriate similarity function is chosen and applied [box (1) of the figure], the framework

allows two alternative computational paths to be followed; both of them allow a clustering (orange dotted surrounding box) and then

embedding of the (clustered) data (purple dotted surrounding box): the principal component analysis (PCA) approach [indicated with green

dotted surrounding box, numbered as 2(i)] or the graph theoretic approach [indicated with brown dotted surrounding box, numbered as 2(ii)].

Following the PCA approach computational path, the Gramian matrix is mapped to the Eigen space (i.e., the Feature space), where clustering is

performed [boxes (A–C) of the figure]. On the other hand, following the graph theoretic computational path, the clustering is performed on the

constructed similarity graph [computed in step (a)], either directly on the graph [box b(2)], following the graph clustering option (indicated with

corresponding labeled arrow) or indirectly on the eigen space of the Laplacian of the graph, following box [b(2) and then (A–C)]. Finally, the

clustered data are embedded either in the feature space [step (D)], if the PCA approach is followed, or through various graph embeddings

(including also the eigen space embedding), in the case where the graph theoretic approach is chosen.

complex systems, in particular principal component and

graph theoretic analysis described above, under a common

ground. This common ground allows one to understand better

the differences, advantages, disadvantages, and commonalities

between various approaches that can be used for analyzing a

complex system, such as dimension reduction, clustering, and

embeddings. Additionally, the framework does not provide a

single procedure to follow but a number of computational

paths or branches (i.e., PCA and Graph theoretical approach,

and within each branch, other sub-branches). The framework

is open to alternate usage of its elements. It can be used to

analyze a complex system through a set of distinct questions.

Each of these questions can be addressed by following different

computational paths of the framework, as demonstrated in

the Section 3.1.2. Different computational paths can be tested

and compared for choosing the most suitable one to address

each question. Finally, although it can be customized and

enriched with domain knowledge, its individual steps are generic

and domain independent. As a result, it is applicable to a wide

range of scientific domains.

According to this framework, demonstrated in Figure 2,

the analysis can be divided into the following steps

and branches:

(1) The first step of the analysis [box (1) of Figure 2] takes as

input the raw data of the problem (i.e., a collection of values

(vectors or scalars) of the data set). During this step, a suitable

Kernel function or the similarity function (see Sections 2.2.1.1

and 2.1.2) is specified. This function is then applied to the

input raw data for the computation of the Gramian or

similarity matrix.

(2) In the second step of the analysis, we distinguish two

computational paths: (i) the PCA approach and (ii) the graph

theoretic approach. Both approaches perform the tasks of

clustering and embedding the data to reveal features of the

complex system. The steps of each of these computational

paths are indicated with colored dotted boxes surrounding

them: a green surrounding box, numbered as [2(i)] PCA

approach and a brown surrounding box, numbered as [2(ii)]

Graph Theoretic approach, of Figure 2.
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2(i) PCA approach

(A) Compute the N (N is the number of entities of the

system) eigenvectors of the Gramian matrix G. Let V

be the corresponding N × N matrix containing the

eigenvectors of G as columns [box (A) of Figure 2].

(B) Select the first d columns of V. This reduced matrix

gives the reduced feature space of data, capturing

their dmost significant features [box (B) of Figure 2].

For the specification of parameter d, the spectral

gap method can be applied (refer to Sections 2.1

and 2.1.3).

(C) Now, in the reduced feature space of the data set,

apply a data clustering algorithm, usually, the k-

means [30] algorithm to cluster the data to groups

of similar properties, according to the similarity

function or Kernel chosen [box (C) of Figure 2]. For

specification of the value of k needed for the k-means

algorithm, again the spectral gap can be utilized as

explained in Section 2.1.3.

(D) The final step of the analysis is to embed the clustered

data in the feature space, selecting two or three

of the principal components identified [box (D) of

Figure 2]. This will reveal possible relations both

between the clusters obtained but also with relation

to other properties of the entities of the system.

2(ii) Graph Theoretic approach

(a) Alternatively, following a graph theoretic approach

[surrounding dotted brown box 2(ii) of Figure 2],

from the Gramian or similarity matrix computed

in step (1), here we construct a sparsified version

of the original dense graph (see Section 2.2), where

the edges connecting pairs of entities with low

similarity are removed. Finally, in this step, we

display the constructed (sparse) graph using suitable

embeddings, in order to visualize appropriate

properties and relations between entities of the

system under investigation. For example, we can

use the force-directed layout [31], in order to place

neighbor nodes closely in the plane. This step is

shown in box (a) of Figure 2.

(b) The next step of the graph theoretic analysis is

to apply graph clustering on the graph to obtain

groups of entities (nodes in the graph) of similar

properties [boxes b(1) and b(2) of Figure 2]. For this

task, there are two alternative computational paths:

either to move the graph in the eigenvectors space

and perform the clustering in the reduced feature

space or to apply graph clustering algorithms

directly on the similarity graph. Each one of the two

computation paths is indicated with corresponding

labeled brown arrows in Figure 2.

– Spectral Graph clustering: Following this

computational path, we basically apply the

PCA method on the Laplacian of the graph, as

described by some of the most popular spectral

graph clustering algorithms, such as the Shi

and Malik [28] algorithm: we first compute the

Laplacian (or a variation of it) of the graph [step

b(1)] and then (mainly) follow steps (A)–(C)

of the PCA approach [surrounding box 2(i)] of

the framework.

– Graph clustering: Following this computational

path, we apply a graph clustering algorithm, such

as the Louvain algorithm Blondel et al. [25],

Leiden Traag et al. [32], or Pons and Latapy [29],

directly to the (sparsified) similarity graph [box

b(2)] of Figure 2).

(c) The final step of the graph theoretic approach is,

similarly to the PCA approach, to draw or embed

the graph with the clustered nodes (entities). The

graph theoretic approach allows the embedding of

the graph to be done either in the reduced feature

space (eigenspace) selecting two or three of the

principal components of the eigen decomposition

of the graph [step (D) of the PCA approach] or

using an appropriate graph layout, such as the force-

directed layout [31], in which neighbor nodes are

placed closely in the plane.

2.3.1. Discussion on the framework

As illustrated in Figure 2, the framework brings together

different approaches for analyzing complex systems, i.e., a

PCA approach [green surrounding box numbered as 2(i)

PCA approach, of Figure 2] and a graph theoretic approach

[brown surrounding box numbered as 2(ii) Graph Theoretic

Approach, of Figure 2], under a common ground, in an aim

to help analyzers to compare and choose between alternative

computational paths as well to help for a better understanding

of commonalities, differences, advantages, and disadvantages

between the various computationally paths.

In particular, it distinguishes the different steps of the

analysis, juxtaposing the characteristic of corresponding steps in

each approach. For example, the representation of the system

can be made through the eigen decomposition of the Gramian

matrix, following the PCA approach [box (A) of the framework]

or through the construction and corresponding embedding of

the similarity graph, following the graph theoretic approach

or through [box (a) of the framework]. The graph theoretic

approach allows the visualization of the system data through

the graph embedding while the eigen decomposition enables

the representation of the data through another space, i.e., the

feature space.
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After the representation of the system, according to

the framework, the next main step is clustering the data

[surrounding orange box labeled asClustering and boxes (C) and

b(2) within it]. This task can be performed in the feature space,

following the PCA approach [box (C)] or it can be performed

either directly in the similarity graph [box b(2)] or indirectly

on the reduced representation of the system through the most

important eigenvectors of the Gramian matrix [box b(1)].

Finally, the last step of the framework is the embedding

of the clustered data either of the reduced feature space or

of the similarity graph (purple surrounding box, labeled as

Embedding, of the framework). The PCA approach [green dotted

surrounding box, numbered as 2(i)] allows the embedding

to be done using combinations of the principal components

(eigenvectors) of the reduced representation of the system.

In contrast, the graph theoretic approach [green dotted

surrounding box, numbered as 2(ii)] allows both an embedding

using selections of the principal components (eigenvectors),

through the spectral graph clustering computational branch

of the graph theoretic approach, or using various graph

embeddings, such as the spring-layout embedding that places

neighbor nodes close in the plane.

Both the PCA and the graph theoretic approach possess

individual characteristics, which can be seen as advantages or

disadvantages by the analyzer, depending on the specific targeted

goals of the analysis. Overall, the graph theoretic approach

offers insights on the relations (similarities) between the entities

of the system, through the various graph layouts, such as

the force-directed layout [31]. However, these representations

“loose” the real (initial) distances (dissimilarities) of the

entities, and additionally most of the graph drawings use some

randomization which makes the corresponding layout also

non-deterministic.

2.4. Extensions of the framework

As already pointed out, the framework is flexible. It can be

used for exploratory data analysis and to provide displays of

skeleton results as part of an iterative procedure, as used in the

first extension of the framework described next. It can also allow

a mixed representation of what we might loosely refer to as

structural and functional properties, as described in the second

extension of the framework.

2.4.1. Labeling the terrain to make semantic
maps

In the general framework we have outlined so far, results

are represented in a way that is practically independent of the

specific domain from where the data are coming from.

In the graph theory side of the representations, even the

metric properties of the space are lost in the dimensionality

reduction process. It is then difficult to assign a measure of

how close the actual nodes which belong to a cluster are

compared to nodes in other clusters. In the case of PCA,

the metric properties are preserved and can be computed

taking into account only the retained principal components.

Nevertheless, there is no guarantee that nodes that appear

close in the reduced space are not far apart in one or

more of the hidden dimensions. If the reduced space is

indeed representative of the natural patterns of interest in

the data, large excursions in the hidden dimensions may

represent noise or irrelevant information and hence the

dimensionality reduction process can also be viewed as a noise

elimination pre-processing.

In the non-linear kernel PCA, the same considerations hold

regarding the metric properties within and beyond the retained

spaces. In addition, the data are preferentially distributed in

the native manifold described by the kernel function and the

specific values chosen for its adjustable parameters. The images

of the manifold (extracted from the data) can be useful tools. For

example, consider two ways of introducing new data. First, new

data can be generated by fresh measurements using the same

sensors and processes as the ones used to record the original

data. Second, new nodes can be generated by combining in some

way a subset of nodes of the original data set, for example the

nodes of predefined clusters. If the original data are dense and

cover well the underlying manifold we would expect that newly

introduced data will lie close to the original manifold, and can

therefore be easily embedded in the existing displays. In the

case of the generated data to represent clusters identified in the

data set, the representative node representing each cluster can

be defined by averaging the coordinates across the nodes of each

cluster in each (reduced) dimension. All new nodes can then

be added to the existing representation. In some applications,

it is possible to make a preliminary assignment of each node

on the basis of a priori information, accepting that some of the

labels may be wrong. In such cases, for each cluster, a subset

of the nodes within it can be used to define the representative

nodes of that cluster. In this way, the original nodes can be

hidden, maintaining in storage their coordinates and labels

while leaving on the displays the representative nodes of each

cluster and an image of the underlying manifold. The images

of the cluster exemplars, which we will call CENTERS, can be

displayed with the manifold derived from the original data. The

process transforms the abstract mathematical distributions into

a semantic map, i.e., a labeled map of the data terrain.

An iterative clustering approach can be defined to extract a

skeleton of the underlying structure, derived directly from the

input data. The linear PCA or the non-linear Gaussian Kernel

PCA can first be used to define the reduced representation of

the input data. A combination of prior information (if it is

available) and clustering techniques can then be used to define

distinct clusters. For each cluster, a representative prototype, the

CENTER can be defined (if necessary excluding outliers). The
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display of the CENTERs in the reduced representation of the

first few principal components constitutes an initial semantic

map of the underlying structure. Each CENTER can in turn

be expanded (bringing back outliers). The distribution of the

nodes of the expanded center can be visually inspected to decide

whether a single representative CENTER suffices or more than

one CENTER must be defined, producing a sequence of refined

semantic maps. Similar operations can be defined for merging

nearby clusters (in the reduced representation), and the process

is repeated to arrive at a more refined semantic map.

2.4.2. Transitions through geodesic paths

In many applications, the data separate into well-defined

classes. The data between these classes define connecting

pathways between the classes. Such pathways can be very

important but, by nature, difficult to describe. The unified

framework we propose offers a natural way of incorporating

such pathways, as geodesic paths in the manifold defined by

the combined data of the stable classes and the transition

data. We simply embed the transition data into the existing

manifold or recompute the manifold after augmenting the

original data by adding the data belonging to transitions. In

this way, the semantic maps of the last section become dynamic

maps showing the transitions with the semantic maps in the

background. This is particularly useful when different time

scales are involved, which in the limit of very different dual time

scales can describe structural/functional relationships. We will

describe such an example in the first neuroscience application,

where we show how the framework we propose can provide a

powerful description of sleep with a semantic map providing

the structural properties derived from periods of equilibrium

(quiet periods of each sleep stage). Even during periods of

apparently chaotic behavior, the dynamics can be described in

a meaningful way. Nodes representing successive periods within

a well-defined transition are connected in a strict chronological

order and displayed as a path in the reduced space with labeled

CENTERS serving as background (semantic map). A good

example of such dual time-scale analysis is the first neuroscience

application presented in Section 3.1.

3. Application of the unified
framework in neuroscience and
astrophysics

In this section, we demonstrate the application of the

unified framework to three problems. The first two are from

neuroscience, one dealing with a new approach to sleep staging

and the other applying the framework for the clustering of

early somatosensory evoked responses. The third one is from

astrophysics and deals with the study of galaxy evolution.

3.1. Applications of the unified
framework in neuroscience

3.1.1. Neuroscience background

Network analysis is highly relevant for modern

neuroscience. Great advances in neuroimaging methods

have demonstrated that brain function can be understood as

a double parcellation of processing in space and time: “What

appears as a noisy pattern when a single channel or a single

area activation is observed from trial to trial, is seen to be less

so when the activations between regions, across single trials, are

examined” [33].

In the first parcellation, what we might call a structural

network [34], the brain is partitioned into areas spread on the

cortical mantle and in individual sub-cortical structures and

their subdivisions. These areas are connected into well-defined

networks. Some of these deal with processing signals from

the sensory organs while others deal with attention, emotion

arousal, and even the neural representation of self.

The second parcellation, what we might call a functional

network [35], describes how particular processes evolve

to accomplish specific tasks. Brain function involves an

orchestrated organization in the time of cascades of activity

within the nodes leading to diverging output from some nodes

to many others and converging input on some nodes from

many others. The normal operation of the functional network

demands exquisite organization in time, which is achieved

through multiplexing of interactions. We can think of them as

cross-frequency coupling between the nodes of the network.

We distinguish two distinct ways of studying brain function

and describe the application of our unified framework to one

example from each one. In the first, we study periods of

(apparent) quiescence which is further divided into resting

states, awake state, and sleep stages; we show how the unified

framework can guide the exploration of sleep stages and

transitions between them. In the second, we study how the

brain responds to well-defined stimulation; we show how the

unified framework can help us separate responses to repeated

identical median nerve stimulation into clusters. The input for

this analysis will be special linear combinations of the raw

magnetoencephalography (MEG) and electroencephalography

(EEG) signals designed to selectively identify the first evoked

responses at the level of the thalamus and cortex.

3.1.2. Classical and modern sleep staging

Sleep has been the subject of theorizing and speculation

for millenia. The scientific study of sleep started in earnest in

the early twentieth century with the pioneering studies of Dr.

Nathaniel Kleitman in the first sleep laboratory established in

the 1920s at the University of Chicago. Three decades of work

culminated in the 1950s with landmark discoveries, including

the identification of Rapid Eye Movement (REM) sleep [36].
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The detailed study of sleep in many laboratories using the

then available EEG technology led to the notion of distinctive

periods of sleep, which was codified by Allan Rechtschaffen

and Anthony Kales in the first guideline for assigning periods

of sleep into “sleep stages” [37]. The guidelines depend on

the identification of high amplitude or oscillations at specific

frequencies that become the hallmarks of each sleep stage. The

identification of these hallmarks assigns sleep period (usually

30 s) to undefined/movement, eyes closed waking before sleep

(ECW), light or deep sleep, and REM. Non-REM (NREM) sleep

is further divided into four parts, with NREM1 and NREM2

making up light sleep and NREM3 and NREM4 constituting

deep sleep. Quiet periods with no graphoelements are found

between periods with characteristic graphoelements of a given

sleep stages; these quiet periods inherit the sleep stage label of

such preceding periods, thus contributing to the smoothness

of the sleep staging outcome. During each evening, a sleep

cycle (SC), i.e., the progression from light to deep sleep and

REM repeats three to five times. The resulting summary of a

night’s sleep is called hypnogram. The hypnogram has been the

cornerstone for both sleep research and sleep medicine [35, 38].

A huge amount of research effort has been devoted

to understanding the essence of each sleep stage through

understanding its hallmarks, but with limited success. The key

conclusion from this work has been the realization that each

exemplar of a hallmark of a sleep stage was very different

and that each one was made up of widely distributed and

highly variable focal generators; in the case of spindles, the

first and last focal generators were usually only detected better

with MEG, with only a fraction of spindles extended widely

in between and sometimes appeared as synchronous EEG

events [39].

Classical sleep staging was introduced more than half

a century ago, revolutionizing sleep research and clinical

medicine. Nevertheless, at the time of its introduction,

knowledge about brain processes and ways of monitoring them

were limited compared to what is routinely available today.

Using some of the new information that can be routinely

extracted with today’s EEG and MEG technology, it allows us

to go beyond classical sleep staging and extend the description

of sleep to periods where the standard hypnogram could not

describe and even demonstrate that a different classification

scheme may be more informative. For example, the sleep stage

REM would separate into at least two clusters, as suggested

recently [40]. Recent changes in sleep staging, collapse the

two divisions of deep sleep into the new NREM3 sleep

stage [41] and prescribe ways of resolving ambiguities when

hallmarks of different sleep stages are identified within the

same 30 s period used for sleep staging. In our recent work,

we have ignored these recent changes because although they

reinforce uniformity across sleep scoring by human experts,

they have no other theoretical foundation and eliminate valuable

details [42–45].

3.1.2.1. Problem specification

Classical sleep staging relies on human experts to interpret

large excursions of the EEG recordings from the time domain

descriptions. The implicit assumption that individual exemplars

of each hallmark represented similar events is inconsistent with

the Dehghani et al. [39] results and demonstrated to be wrong

by more recent results using intracranial recordings [46–49] and

tomography of MEG data [43, 45]. It, therefore, seems that the

periods of large graphoelements are unlikely to be useful for

revealing the key properties of each sleep stage because they

are chaotic periods representing a system that has nearly gone

out of control on its way back to equilibrium. A key result of

our recent studies was the demonstration that the quiet periods

of sleep that classical sleep staging ignores completely, far from

being uninteresting and void of useful information, are in many

respects the best representatives of the core characteristics of

each sleep stage [50]. Our earlier results led us to the then

disruptive claim that sleep staging is possible from the properties

of core periods alone. We will provide evidence of the veracity

of this claim in this subsection using the extensions of the

framework we have described in Section 2.4. Since there is no

time marker to time-lock events, this question is best addressed

using spectral analysis as we will describe below. For this

analysis, we used a unique set of whole nightMEGdata, collected

from four subjects at the Brain Science Institute RIKEN, some

20 years ago [51]. We will show results from one subject which

are typical of the results we obtained for each one of the

four subjects.

3.1.2.2. Methodology utilized

The details of the analysis have been described elsewhere;

magnetic field tomography (MFT) was used for extracting

tomographic estimates of brain activity for each time slice of

available MEG data [52, 53]. The full pipeline for preprocessing

andMFT analysis leading to regional spectra of each 2 s segment

of tomographic estimates of activity and further statistical

analysis is described in detail [can be found in [43]]. For

the purpose of the analysis in this subsection, 29 Regions of

interest (ROI) are defined in areas of the brain known to change

appreciably during sleep. The normalized regional spectral

power, hereafter simply referred to as the regional spectra are

then computed for each 2 s exemplar of MFT estimates of brain

activity. We typically use 8 or more exemplars for each category

of data (e.g., sleep stage). The regional spectra for each exemplar

can be used over the entire spectrum 0–98 Hz in steps 0.2 Hz

or reduced to the power within each of the classical bands,

delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), sigma (11–17

Hz), beta (15–35 Hz), low gamma (35–45 Hz), and high gamma

(55–95 Hz).

The Gramian matrix [step (1) of the framework] is then

constructed with each element computed as the Gaussian kernel

of weighted overlaps of pairs of regional spectra. It is then

used as the input for step (A) of the framework, for the

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2022.947053
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Ioannides et al. 10.3389/fams.2022.947053

computation of its eigen decomposition [step (B)], following

the PCA approach [surrounding box 2(i)] of the framework.

For the main clustering analysis [step (C) of the PCA approach

of the framework], the input consists of three sets of data:

the bulk of the data is from the noise data, ECW, and each

sleep stage. The second set of events included in the analysis

are from the hallmarks of NREM2, spindles, and unitary k-

complexes (KC1) i.e., avoiding KCs running in succession.

Finally, new nodes representing transitions or other periods (e.g,

representing hallmarks of individual sleep stages) are added.

For each hallmark exemplar, two regional spectra are used, one

from the 2 s before the start of the hallmark and the other from

the 2 s beginning with the stat of the hallmark. The final set

consists of a set of three successive periods of the 2 s of undefined

period between two sleep stages or between the awake state

and sleep (i.e., transitions). The clustering is performed with

ROI details presented at one of two resolutions. In the united

ROI resolution, only the category of the time period is retained

(e.g., sleep stage, transition etc.), while the identity of each ROI

is lost. In the un-united resolution, each node represents the

2 s period for each ROI separately, i.e., a single united node

splits into a number (in our case 29) of distinct nodes, one

for each ROI. In general, PCA is sufficient for the analysis at

the united resolution level, while for the un-united resolution,

KPCA is more appropriate. We will show examples of

both next.

An automatic approach to sleep staging is possible but

tedious because the choice of frequencies and ROIs for best

separation between pairs of sleep stages must be made and these

can vary a little from subject to subject. Here, we followed a

slightly different approach which is a natural progression from

the classical procedures. The approach utilizes the Extension

2.4.1 of the framework. First, we used expert classification as

a starting point. The centers for each sleep stage are then

defined using all available exemplars, except extreme outliers. If

transitions are included, then all exemplars of each transition are

collapsed to their respective centers. At this point, the centers

are defined by the list of indices of the chosen exemplars. The

centers of each sleep stage are then embedded in the reduced

space for the case of linear PCA or on the manifold in the case of

the KPCA. The actual nodes are then hidden, leaving a skeleton

display showing only the centers in the reduced dimensions or

on the manifold.

A second iteration of the framework is then initiated

validating the expert classification for each sleep stage in turn.

The nodes of each category, one category each time, are

expanded (made visible). Usually, either visual inspection of

the distribution of nodes or a formal clustering approach is

enough to make a confident decision whether the single center is

maintained or more than one centers must be used to adequately

describe poles with high node density. The outliers and the

nodes of each new center are then hidden leaving at the end

of the second iteration, a revised skeleton display of the new

centers in the reduced space or on the manifold. Note that the

centers representing transitions are not processed in the second

iteration step. A final step can be added in which the outliers are

returned to the display and any ones that now are close to one

of the centers are incorporated in to it; this allows to completely

reverse the original expert classification in a data drivenway. The

final presentation can represent the centers in either the reduced

space on themanifold with any one ormore categories expanded

to show how the nodes representing individual exemplars are

spread. Also, one or more of the centers representing transitions

can be expanded and the nodes of each transition linked to a path

by joining successive nodes for which an ordering is appropriate

(for example close chronological order).

Finally, we showed the topology of categories (e.g., sleep

stages) relative to each other and transitions between these

categories in the labeled terrain, implementing extension 2.4.2

of the framework. The labeled terrain could be displayed across

planes in the reduced dimensions of the linear space of the PCA

components or as the manifold of the terrain formed by the

KPCA analysis. Next, we presented four displays showing results

for the analysis of the sleep of one subject; for the first two,

we employed the linear PCA analysis, switching to its Gaussian

Kernel extension for the last two displays.

3.1.2.3. Results

For the first analysis, we used eight exemplars of regional

spectra for each set of the 29 ROIs of each sleep stage and the

ECW condition. We also used the noise measurement of the

MEG (recordings with the MEG system in exactly the same

position as in the real MEG measurements, but with no subject

in the shielded room). Exactly the same analysis is performed for

the noise as for the real data to compute virtual brain activations

in the time and frequency domain. The resulting virtual noise

regional spectra are appended in the analysis as exemplars

of an additional “noise” conditions, which we interpret as a

generalized origin. The actual spread of the images of the noise

exemplars represented the spread of this zero level activity.

Finally, the analysis is performed for eight exemplars for the

periods before and during the spindles and unitary k-complexes

(KC1). We also add three 2 s periods corresponding to a quiet

period just before the first NREM1 period, representing the

transition from the awake state to light sleep. Counting all these

cases, we have 91 nodes available for the united ROI resolution

analysis and 2,639 nodes for the un-united ROI resolution.

In the first analysis, we use the united ROI resolution and

perform a PCA analysis of the 91 nodes using as components

all ROIs and all frequency steps. The procedure described in

the previous section is used to define centers, one for each

category, except for REM which we separate into two sub-

categories. The results are displayed in Figure 3, which shows

the clusters extracted by the analysis described above. This

graph was generated by using the Euclidean distance on the

feature space and an optimum threshold. The values above this
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FIGURE 3

Clustering and transitions from eyes closed waking (ECW) to Non-REM1 (NREM1) on the semantic map defined by CENTERS of key sleep

categories. To produce the figure, 94 (united) nodes were used, which were made up of the 91 nodes from core periods, awake, noise, and

NREM2 hallmarks (pre and during spindles and KC1 events), and three nodes from the transition period from ECW to just before the NREM1

period. The details of the computations and what is actually displayed are described in the main text. The CENTER representations of the main

categories are displayed in the reduced space of the first two eigenvectors of the PCA analysis providing a semantic map, on which the

transition from ECW to sleep is portrayed by connecting (in chronological order) the nodes representing that period. For clarity and to avoid

clutter in the display, the labels of the CENTER nodes begin with C and then S for the NREM sleep stage (e.g., C S1 for CENTER of NREM1) and

obvious notations for the rest (e.g., C S2-sp- dur for the CENTER of the NREM2 period during spindles).

threshold are given the value of zero. The non-zero elements of

the resultingmatrix were the edges of the graph with edge weight

the inverse of each value (Euclidean distance). We also mark

with separate colors the clusters extracted from the k-means

algorithm [implementation of step (C) of the PCA approach 2(i)

of the framework]. Using four clusters, the k-means algorithm

groups the noise center and the noise nodes in a separate (black)

cluster, the awake state, and transition into a second (red)

cluster, both the two REM clusters and NREM1 into the third

(deep blue) cluster and all remaining ones [NREM2, deep sleep,

and the periods before and during the hallmarks of NREM2

(spindle and KC events)] into the fourth (pale blue cluster).

The transition from awake state to light sleep is highlighted by

connecting with heavy black, dash arrows the ECW center (C

Sawake) to the sequence of transition nodes, finally connecting

in a similar way the last of the transition nodes to the NREM1

center (C S1), providing a visualization of the path in the graph

[implementation extension 2.4.2 of the PCA approach 2(i) of

the framework].

In the previous paragraph, the description of Figure 3

demonstrates how well the results of the united representation

reflect the known properties of sleep stages, which in turn serve

as a background for the dynamic display of the short transition

from the awake state to sleep. The united approach collapses the

details of regional spectra of each ROI for all exemplars of each

category into one CENTER node. In the final representation,

a single CENTER node represents the core period of each

sleep stage or one of the other categories for which exemplars

were included. This is a huge simplification, arrived through

an essentially unsupervised application of the framework. The

resulting display portrays well the known similarity between

the classical sleep stages in a novel way. The skeleton of the

representation is defined by the CENTERS of the core periods

of each sleep stage. Within this skeleton the algorithm places

in a very reasonable way two CENTERS for each hallmark of

NREM2, one for the two second periods before and one for the

two seconds that start with the onset of each hallmark event.

Furthermore, a representation of a virtual baseline is included

that provides a natural minimal level point of reference. The

raw signal for this baseline are eight measurements, each of

two second duration, recorded with no subject in the shielded

room. These background noise measurements were processed

in exactly the same way as the measurements with the subject

in place. The regional spectra produced by these computation
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FIGURE 4

The results of PCA analysis using the un-united region of interest (ROI) resolution in the plane defined by the first two PCA. Exactly the same

data are used as in the previous figure, and the same analysis, except that in collapsing the centers, each sleep stage, including REM, is

represented by a single representative node (CENTER). The three nodes representing the transition from ECW to NREM1 in figure are now

represented by 87 nodes and the single transition in Figure 3 is now represented by four paths, one for each V1 and FG in each hemisphere.

represented images of the background noise of the instrument

and the ambient magnetic field inside the shielded room. The

images of these eight noise exemplars were collapsed into a

single CENTER, which is the best representation of the zero

level of our data, which we refer to as a virtual origin for

our skeleton representation. This static representation of the

structure of sleep can serve as the background for the description

of highly dynamic processes like transitions from the awake state

to sleep and between sleep stages. The display thus summarizes

an entire night’s sleep of a single subject. A measure of what

has been achieved can be appreciated by noting that, to the

best of our knowledge, this is the first such representation of

sleep, from either supervised or unsupervised analysis of sleep

data. The result is also deceptively simple because underneath

its simplicity lurks a more complex system, which can only be

exposed if the un-united analysis is adopted, as we describe next.

Figure 4 shows again the results of PCA analysis, but this time

using the un-united ROI.

In Figure 4, each category of sleep is collapsed into one node

(collapsing all exemplars and ROI nodes into one including

REM), leaving only the nodes for each ROI for the three

transition periods (3 × 29 = 87 nodes). Because of the large

number of nodes, no attempt is made to produce a graph, thus

no edges are shown in Figure 4. For this case, the nonlinear

PCA is often a better representation (as we will explore in the

next two figures), but for now, we stay with PCA, so there

is a better correspondence in the methods when we compare

Figures 3 and 4. Note that the k-means clustering (using seven

clusters) maintains some of the patterns of the previous figure;

the noise is still in a separate (black) cluster, and a separate

(pale blue) cluster groups together NREM2 core periods and

hallmarks with deep sleep (NREM3 and NREM4). This time

ECW, NREM1, and REM are grouped into one (deep blue)

cluster. Importantly, the transition period separates into a set of

clusters beginning close to the noise cluster and extending across

and beyond the REM (magenta), ECW and NREM1 (deep blue)

cluster and beyond. The k-means cluster assigns some of the 87

nodes to the deep blue cluster and others to five more (yellow,

magenta, gray, red, and green) clusters. These results suggest

that collapsing all ROIs together may provide a powerful grand

summary of sleep albeit, at the expense of missing considerable

detail about the behavior of each ROI. An optimal description

that may demand the use of more complicated methods may

be appropriate, e.g., multilayer networks. Nevertheless, some

useful observations can be made for the ROIs that are known

to show distinct regional spectra for the start and end points

of transitions. For example, in the classification of sleep stages

from regional spectra, the ROIs for left and right primary visual
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cortex (V1) (14 and 15, respectively) and left and right Fusiform

Gyrus (FG) (28 and 29, respectively) are effective for separating

the awake state and NREM1. In Figure 4, the paths of the four

regional spectra for V1 and FG are displayed (by connecting

in the correct chronological order the three exemplars for the

transition), showing that a consistent movement in the space of

the two PCA, which is more apparent on the right hemisphere

(ROIs 14 and 28). Finally, we draw attention to the pattern

identified here for the transition from ECW to NREM1, more

clearly seen in the united representation of Figure 3: the initial

direction away from ECW is away from the NREM1 center,

which just before the NREM1 onset, turns round 180◦ jumping

to the NREM1 neighborhood of the semantic map. This pattern

is not a peculiarity of this subject; it is identified in most other

subjects during the first transition from ECW to NREM1 in SC1.

This feature has important implications which are beyond this

methodological paper and will be fully described elsewhere.

For the next two displays, Figures 5, 6, we use the same data

in the un-united ROI resolution with the Gaussian kernel for the

PCA analysis. We use only the noise, ECW, and the five sleep

stages, which produce 1,624 nodes. The plot of the spectral gap

shows two peaks, which correspond to two different scales in our

data. The lower peak is found for γ = 0.003255 and corresponds

to the scale appropriate for the variations encountered in the

actual ROIs. The next display, Figure 5 shows the nodes spread

in the ellipsoid with different colors representing the noise,

ECW, and the different sleep stages, as these were defined by

the human sleep experts. Note the importance of the noise data,

which in the scale of the real brain activations are minute, thus

collapsing to almost a point which we can use as the marker for

the origin from which each node can be measured. There is a

clear tendency for the nodes to spread in two dimensions with

the long axis of the ellipse to describe a global increase, probably

the overall strength of activations, while the variation in the

orthogonal direction along the ellipsoid’s surface to spread the

nodes according to sleep stage membership. The pattern shows

three bands. The lower band contains nodes belonging to awake

(red), REM (yellow) and NREM1 (light green). The higher band

contains nodes belonging to deep sleep, i.e. NREM3 andNREM4

shown by different pales of blue. Most NREM2 nodes (dark

green) fall in the middle band on the ellipsoid surface, between

the two bands described above.

The final display for the sleep analysis, Figure 6 shows

the same analysis as that of Figure 5, but with the γ =

0.1497, which is value of the second and higher peak (also

marked here in the insert of the semi-log plot of spectral gap

vs. the γ -value). This γ value is appropriate for the range

of values of the virtual brain activations generated by the

analysis of the noise data. These noise variations are very

small compared to the real brain activations, except in the

directions that are in the null (noise) space of the real data,

where these are scaled to adequately represent their range

(which actually is over a very small real magnitude). Therefore,

the noise components in the directions where the real data

are silent are emphasized, forcing the first principal direction

along the null space of the real data. The real data are then

branching off in two, nearly orthogonal, directions in the plane

at right angles to the first principal direction defined by the

noise measurements.

3.1.3. Clustering of single trials of early brain
responses

3.1.3.1. Background

In the previous application, the brain was studied during

sleep where no external stimuli is presented to the subject.

In contrast, in this application, early brain responses elicited

by stimulation of the median nerve of the wrist are analyzed.

Such somatosensory stimulation gives rise to the so called

somatosensory evoked potentials (SEP) and somatosensory

evoked fields (SEF) that are recorded and seen in the EEG and

MEG signals, respectively. These kind of brain responses are

quite strong compared to the background activity of the brain,

easily identified in the raw EEG/MEG signals, time-locked to the

stimulus onset and one of the most reproducible brain responses

to an external stimulus [54]. While this type of stimulation

excites many areas across the brain, experiments with animals

and humans have identified the times of the first arrival of the

signal in the area of the thalamus [55–57] and in the cortical area

S1 [55, 57–60].

Specifically, at around 14 ms after the presentation of the

stimulus, a prominent positive peak is shown at the SEPs, called

the P14 component; this is related to the neural activity in the

thalamus [55, 56]. A few milliseconds later, around 20 ms post

stimulus, peaks can be seen in both in SEPs and SEFs; this is

related to the neural activity in S1 [55, 56, 60, 61]. The peaks at

20 ms, are known as P20 for EEG and M20 for MEG, and they

are seen as dipolar patterns rotated by 90◦ to each other. Both

the P20 and the M20 have been localized independently in the

primary somatosensory cortex, Broadman area 3b [59, 60, 62].

For our purposes, the primary thing is that these are the first

arrivals of the evoked response at the level of the thalamus

and the cortex, and they are therefore the components that are

least influenced by activity in the many other cortical areas that

come later.

3.1.3.2. Problem specification

In experiments with EEG/MEG recordings in response to

somatosensory stimulation, the stimulus is presented to the

subject many times with a predefined interstimulus interval.

Each repetition of the stimulus is called a trial. Even though

responses to somatosensory stimulation are quite strong and

time-locked to the stimulus, there are still some variations from

trial to trial, for reasons that are not yet understood. Here, we

explore the causes of these variations using the following two

steps. First, the concept of the virtual sensor (VS) is used to get
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FIGURE 5

The results of Gaussian Kernel PCA analysis using the un-united ROI resolution in the 3D space defined by the first three PCA. There are over

one and a half thousand nodes which are now labeled according to the category each one belongs (noise, ECW, and the five sleep stages). The

insert shows the spectral gap as a function of the γ -parameter value in a semi-log scale, which has two peaks. The display shows the results

using the value of γ at the first peak, marked by the dash vertical line in the insert (at γ = 0.00326). With this choice of γ , the nodes from the

noise measurement collapse to almost a point which serves as the origin of the representation since it represents the region of feature space

with very small values. The nodes corresponding to measurements with the subject in place are well-spread forming a good representation of

the underlying ellipsoid.

a good estimation of the underlying sources at the single trial

level, then the framework is utilized for clustering of the single

trial virtual sensor signals. The input to the unified framework

for clustering is the time-domain signals extracted directly from

the output of the VS applied to the raw signals.

3.1.3.3. Data and methods

The data used here are simultaneous EEG/MEG recordings

from 1 human subject. The EEG/MEG recordings were made

available to us in an anonymized form without any MR images,

by the corresponding author of the study [60]. Experiment

involved 1,198 trials (repetitions) of electrical stimulation of the

median nerve at the right wrist of subject. The raw EEG and

MEG data were cleaned from stimulation artifacts, line noise,

and band pass filtered in the frequency range [20–250 Hz]. In

the case of EEG, the mean of all channels was used for re-

referencing the signals of the individual EEG electrodes. Once

the data were cleaned and filtered, the continued data were

epoched into trials of 0.3 s total duration. Each trial was defined

as the signals starting 100 ms before (pre-stimulus period) and

200ms after (post-stimulus period) stimulus onset. The next step

was to group the trials into sets, such that the members of each

set contained trials with the head in the same position relative

to the MEG sensors. This was done by identifying the periods

with head movement from visual inspection of the continuous

MEG signals. Since the MEG sensors are stationary above the

head, even slight movements of the head cause big distortions

of the signals that can be easily distinguished visually. Finally,

one group of 239 trials with no head movement was selected for

further analysis. From the mean of the 239 trials, the P14 and

M20 components were identified as prominent peaks at 14 and

20 ms after stimulus onset, respectively.

We know that even for the relatively strong stimulus used

here, there is some variation in the responses of each trial.

In order to get a good estimation of the time course of the

underlying sources, one VS was defined for each component.

Analysis of evoked responses using virtual sensors has been

employed for the identification of early sensory responses for

the somatosensory, auditory, and visual cortex [63–65]. A VS

is constructed using a very simple procedure founded on well-

understood physics principles for the generation of electric and

magnetic fields. In this work, we construct two VS, the EEG

P14-VS to get an estimate for the thalamic activity at around 14

ms, and the MEG M20-VS to get an estimate for the activity of

S1 at 20 ms, using the EEG and MEG raw signals, respectively.

Here, the selection of the channels for the construction of the

two VS is based on the signal power (SP) and signal to noise

ratio (SNR) at the specific latencies (14, 20 ms) and across all
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FIGURE 6

It is same as Figure 5, but for the value of γ at the second peak, marked by the dash vertical line in the insert (at γ = 0.1497). With this choice of

γ , the ellipsoid is lost because the non-linear mapping emphasizes on the distribution of the nodes representing the low amplitude noise. In this

case, the method selects the null (noise) direction of the data to be the first principal direction (the most important direction), while the

remaining of the data are distributed along the second and third principal direction representing the amplitude of the deep and light sleep. The

ellipsoid is lost because the non-linear representation emphasizes the representation of the nodes representing the low amplitude noise in the

principal direction constraining the nodes representing the real data on the 2D plane of the second and third principal directions, thus projecting

the ellipsoid onto a plane.

the 239 trials. The definition of the VS is fixed from the average

signal at the time points of little variation of the first thalamic

and primary somatosensory cortex (BA 3b) from the average

of the ensemble of all trials. The estimate of each thalamic and

cortical (BA 3b) response is then estimated from the signals of

each individual trial.

For the strong median nerve stimulation used in this

experiment, the evoked response at the level of the cortex is

present in almost all single trials. The M20 corresponds to the

first arrival at the cortex and there is little interference from any

other generators since all previous responses were at the level

of the thalamus and the brainstem. We can therefore assume

that the M20-VS estimates within the first 20 ms correspond to

the activity of the primary somatosensory cortex. In contrast,

the thalamic activity around 14 ms is likely to have some

contribution from other deeper brain activations corresponding

to the arrival of the slower components of the evoked responses

or even different pathways. Hence, the EEG P14-VS estimates at

the ST level will vary. We use the unified framework to cluster

the 239 trials into groups of trials. The clustering is applied to

the signals from both VS, separately.

First, we use the Gaussian Kernel as a similarity function

on the trial signals, to construct a similarity matrix [step (1) of

the framework, see Figure 2]. In the resulting graph, the nodes

represent the single trials and the edges between nodes measure

how similar the corresponding nodes (trials) are. Next, we apply

graph sparsification [step (a) of the graph theoretic approach

2(ii) of the framework] in order to get a good visualization

of the corresponding similarity graph. Then, we utilize the

spectral graph clustering computational path, following steps

[b(1)] and (A)–(C) of the framework, to detect nodes (trials)

with similar signals. The last step of the graph theoretic analysis

is to draw the graph, using the force-directed layout [31]

and show the detected clusters [step (d) of the framework].

Once the single trials (nodes) have been assigned to different

clusters, we compute and show the average signal for each

detected cluster.

Finally, functional connectivity [3] analysis on a

single trial level is performed between the clusters of the

two different VS. This is done with the goal to identify

possible communication mechanisms between the two

areas (thalamus—cortex) in response to somatosensory

stimulation. The Pearson’s correlation coefficient (PCC) in

a fixed window of 8 ms length and with introduced time

delays at every 0.833 ms, is used to quantify the values of

the time-delayed correlation between the time courses of

two signals.

For the implementation part, we have developed our own

Matlab code for extracting and pre-processing the necessary data

from this data set and for the connectivity analysis. Also, we

have employed Python and the package igraph for the graph

theoretical analysis employed.
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FIGURE 7

The clusters of virtual sensors (VS) single trial signals obtained. (A) Shows with di�erent colors, five clusters for the P14-VS detected using the Shi

and Malik [28] algorithm and obtained modularity = 0.36 and conductance = 0.44. (B) Shows three clusters for the M20-VS, detected using the

Shi and Malik [28] algorithm and obtained modularity = 0.45 and conductance = 0.27.

3.1.3.4. Results

Figure 7 shows the results of the graph clustering of the

VS single trial signals for case of the P14-VS (left plot) and

M20-VS (right plot). For the embedding of (clustered) data,

the step (d) of the approach [2(ii)] of the framework has

been used. In order to explore the differences between the

signals belonging to each cluster, we compute and plot the

average time-course across the signals (nodes) of the same

cluster. The results are shown in Figure 8. As expected, in

the case of the M20-VS signals (Figure 7B), there are fewer

clusters (three clusters) compared to the P14-VS signals (five

clusters). More importantly, all three clusters extracted from

the M20-VS show the first peak at exactly the same latency,

20 ms. In contrast, the five clusters extracted from the P14-

VS show distinct peaks for a range of latencies before and

after the expected peak at 14 ms. This is an argument that the

“thalamic” VS picks up strong contributions frommore than one

deep area.

The cluster with 81 nodes in P14-VS clusters (red color in

Figure 8A) shows a prominent and distinct peak at 14 ms.There

are two main reasons that allow us to relate this peak at 14

ms with the activation in the thalamus. First, the spatial filter

applied by the P14-VS captures the electric field at the surface of

the head that is generated by a radially oriented source in the

brain, as a source in the thalamus is expected to be oriented.

Second, other studies have reported that this peak at 14 ms

is generated by neuronal activity in the ventral posterolateral

nucleus (VPL) of the thalamus in response to median nerve

stimulation [55, 56].

The functional connectivity between the thalamus (P14-VS)

and the cortex (M20-VS) was estimated for the trials in cluster

1 (81 trials) of the P14-VS. For each trial, the time-delayed

correlation coefficient (CC) was calculated with a moving

window of 8 ms. The correlation values are shown in Figure 9.

The left plot shows the correlation values at all time points and

all the time-delays used, while the right plot is a zoomed version

to show the exact timings of the significant CC values. The

red contour lines show the areas (times and time delays) with

statistically significant correlation values (p < 0.05, Bonferroni

Correction). As can be seen in the zoom in version of the results

(right plot Figure 9), at around 14 ms (x-axis), the signal of

P14-VS is highly correlated with the signal of M20-VS with two

different time delays, 5.8 and 18.3 ms (y-axis).

The results suggest that there are two waves both starting at

the same latency from the thalamus and arriving at the cortex

with different time-delays. The first wave starts at 14 ms and

reaches the cortex at 5.8 ms later (20.8 ms), and the second

wave arrives at the cortex 18.3 ms later (33.3 ms). It is worth

mentioning that both waves last∼4ms. The first wave arriving at

the cortex begins at 20.8 ms and ends at 24.8 ms while the second

wave begins at 33.3 ms and ends at 37.3 ms. In both waves, the

CC values suggest that there might be a continuous traveling of

information (communication) from the thalamus to the cortex

that lasts around 4 ms.
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FIGURE 8

The mean of the signals belonging to each of the clusters of the two di�erent virtual sensor’s data. (A,B) Show the mean of the trials in each

cluster for the P14-Vs (thalamus) and the M20-VS, respectively. On the right bottom of each plot, a zoomed version of the cluster averages is

displayed in the time window from 10 to 40 ms post-stimulus.

FIGURE 9

Single trial functional connectivity results between VS signals P14-VS and M20-VS, for the trials belonging to Cluster 1 (81 trials) of the P14-VS

(see Figure 7A). (A) Shows a color map with the correlation coe�cient values at each time and time-delay. The red outlined areas show

statistically significant values (p < 0.05, Bonferroni correction). (B) Shows a zoom-in version of the figure in (A), which shows in more detail the

precise timing of start and end times of the statistically significant increases in connectivity values.

The different time delays of the two waves (5.8 and

18.3 ms) might be due to the conduction of the electrical

signals through two distinct neural pathways. One possible

explanation is that the first pathway might consist of heavily

myelinated fibers with high conductivity and speed, while

the second pathway is through less myelinated fibers of

lower conductivity slower by a factor of three relative to the

first one. This ratio between the conductivity speed of the

two fiber types is reflected to the different time delays of

5.8 and 18.3 ms. This explanation invites further investigation

using other functional connectivity measures and data from

more subjects.

Frontiers in AppliedMathematics and Statistics 19 frontiersin.org

https://doi.org/10.3389/fams.2022.947053
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Ioannides et al. 10.3389/fams.2022.947053

To summarize the outcome of this subsection, the use of the

unified framework for performing clustering on the VS Signals

extracted from the simultaneous EEG-MEG recordings allowed

us to identify and assess thalamocortical functional connectivity

only by using directly the pre - processed EEG/MEG data (e.g.,

without utilizing any source reconstruction algorithms). Our

functional connectivity results show that there is information

flow between the thalamus and the cortex in response to median

nerve stimulation, which is consistent with results of other

studies [55, 66, 67].

3.2. Astrophysics

3.2.1. Astrophysical background

A major field of study and open question in astrophysical

research is the study of galaxy formation and evolution. In this

study, we specifically focus on the evolution of ultraluminous

infrared galaxies (ULIRGs): pairs of galaxies that are interacting

gravitationally. During this interaction, the galaxies collide and

ultimately merge into a larger—usually elliptical—galaxy. This

process (which is called a “merger” event) results in an increase

in luminosity, mainly in the infrared part of the spectrum.

This luminosity increase is primarily caused by the burst of

star formation activity inside these galaxies and/or the accretion

of matter onto the galaxies’ supermassive black hole (SMBH).

Galaxies that display a high star formation rate are called

“starburst galaxies.” Recent models of galactic mergers have

shown that galaxies in the post-merger phase display an increase

in activity in their core, where the SMBH resides. An active

SMBH at the center of a galaxy is called an active galactic nucleus

(or AGN). Starburst galaxies display different characteristics

than galaxies that go through an AGN-dominated phase. During

the starburst phase, the galaxy contains large quantities of gas

and dust, which collapse under gravity to form new stars at a very

high rate. During the AGN-dominated phase, large amounts of

gas are accreted onto the SMBH and are subsequently ejected

from the galaxy via highly energetic outflows and jets. The effects

of these processes result in certain differences in the observed

characteristics in the spectra of ULIRGs and studying these

differences is the key to understanding the evolutionary stages

these galaxies go through.

3.2.2. Problem specification

In order to understand the numerous processes that govern

galaxy formation and evolution (quiescent star formation, bursts

of star formation, and accretion onto SMBHs), multi-wavelength

or panchromatic observations of galaxies at all cosmic epochs are

needed. The necessity to characterize the panchromatic emission

of galaxies has led to a series of surveys at all wavelengths,

from X-rays to radio emission, with ever improving sensitivity,

resolution, and sky coverage. Most of the surveys can only be

carried out from space, so this became possible mainly in the

last two or three decades with missions such as IRAS, ISO,

Spitzer, AKARI, Herschel, Planck, WISE, and GALEX. One of

the most important conclusions arising from the study of the

panchromatic spectral energy distributions (SEDs) of galaxies in

recent years is that the properties of luminous galaxies at high

redshift are distinctly different from those at low redshift. The

most luminous infrared galaxies at low redshift are associated

with mergers but this does not appear to be the norm in

the distant universe [e.g., [68]]. Establishing the fraction of

luminous infrared galaxies at high redshift that are caused by

mergers is a subject of current research. Recent research [e.g.,

[69]] also suggests that even if mergers were present in the early

Universe, they were probably not as efficient at causing starburst

events as in the local Universe.

The inference from the SEDs of galaxies to determine their

nature traditionally involves taking into account a range of

processes. These include stellar population synthesis models

[e.g., [70, 71]] andmodels describing how the presence of cosmic

dust in the interstellar medium of galaxies affects significantly

their ultraviolet (UV) to millimeter spectra (which covers the

wavelength range from 0.1 to 1,000 µm). Models for the latter

treat the effects of dust either in a simplified geometry (e.g.,

in codes like MAGPHYS and CIGALE) or in more detailed

treatments like radiative transfer models [e.g., GRASIL by [72–

75]].

In the present work, we study the evolution of ULIRGs

by employing the graph theoretic approach of the unified

framework [2(ii)], described in detail in the following sections.

The results we present here are part of the more extensive work

of Pavlou et al. [76].

3.2.2.1. Data description

To study ULIRGs, we gather and analyze data collected by

the infrared spectrograph (IRS) onboard NASA’s Spitzer Space

Telescope. We study publicly available low and high-resolution

IRS data provided by the “Combined Atlas of Sources with Spitzer

IRS Spectra” (CASSIS) website at https://cassis.sirtf.com/. These

data are provided in the form of tables and graphs of spectral flux

density (Fν ) over wavelength (λ).

3.2.3. Methodology utilized

We investigate data for galaxies taken at mid-infrared

wavelengths, combined with other physical properties of the

galaxies, employing the unified framework and following the

graph theoretic approach.

Initially, we employ the Gaussian Kernel as a similarity

function on the galaxies SEDs to construct a similarity

matrix [step (1) of the framework]. Then, following the

graph theoretic approach [surrounding box 2(ii) of the

framework], we construct the corresponding similarity graph,

where ULIRGs are represented as the nodes of the graph
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and edges between nodes are constructed as a measure of

the similarity between the SEDs of the corresponding nodes

(galaxies). The resulting graph is obtained by applying a

graph sparsification in the similarity matrix [step (a) of the

Graph Theoretic approach]. Then, we explore various graph

clustering algorithms [both steps b(1) or b(2)] for detecting

nodes of similar SEDs, corresponding to galaxies of similar

evolutionary stages, in order to extract an evolutionary paradigm

for ULIRGs.

The last step of the graph theoretic analysis is to

employ suitable graph embeddings [step (c) of the graph

theoretic approach], such as the force-directed layout [31],

to show and compare the detected SED clusters with other

physical properties of the galaxies, such as the 6.2µm

polycyclic aromatic hydrocarbon (PAH) emission and the

silicate absorption/emission feature, using the graph drawing.

Furthermore, we compute and present the average SEDs of each

detected cluster.

Finally, we perform an interpretation of the graph

theoretical outputs, employing domain specific knowledge. The

outcome of this analysis based on graph theory produces

a description of the evolution of ULIRGs from the pre-

merger phase up to their AGN-dominated and/or quasi-

stellar object (QSO) phases. This offers a data driven

alternative to the (domain oriented) “Fork diagram,” introduced

by [77].

For the implementation part, we have developed our

own Python code for extracting and pre-processing the

necessary data from this data set. Also, we have employed

Python and the package igraph for the graph theoretical

analysis employed.

3.2.4. Related work

Despite the long history of graph theory and its successful

application in various sciences, there are very few works

that exploit graph theory in order to study problems in

Astrophysics. A prominent work is the paper of Farrah

et al. [18]. This work’s methodology represents the main

research motivation for our own astrophysics research

project. The authors of this paper studied a sample of

local ULIRGs (z < 0.4) with low-resolution data from

the Spitzer/IRS instrument by combining the methods

of graph theory and Bayesian inferencing, in an attempt

to identify and distinguish between different phases of

temporal evolution.

The study of specific galactic features, such as the correlation

between the PAH emission and star formation in galaxies,

enables the distinction between different evolutionary stages.

The relationship between PAH emission and star formation in

nearby galaxies at z < 0.2 was also examined by Murata et al.

[78]. Analysis of data obtained by several instruments (namely

AKARI, WISE, IRAS, Hubble Space Telescope, and SDSS), led

to an investigation of 55 star-forming galaxies and the discovery

that PAH emissions are partially extinguished during the later

stages of galactic mergers. The authors determined that the main

causes for this extinction are strong radiation fields and large-

scale shocks taking place during the merger events. Shipley et al.

[79] studied the PAH emission features in high-redshift galaxies

(1<z<3) in order to calibrate their star formation rates (SFRs).

Using Spitzer (IRS) observations, they demonstrated how PAH

emissions can accurately describe SFRs in galaxies and thus help

distinguish between star-forming and AGN-dominated galaxies.

A classification of the evolutionary phase of galaxies via

the study of silicate absorption/emission strength and PAH

emissions in the mid-IR range were also performed by Spoon

et al. [77]. The authors showcased how specific emission

features, such as PAHs at 6.2µm and silicate absorption at

9.7µm can betused as indicators to distinguish between starburst

and AGN-dominated galaxies. Their results are presented

graphically, in the form of a “Fork” classification diagram.

Although the exploration of graph theory in astrophysics is

limited, a more extensive research literature is available in the

field of cosmology, with very interesting results. In particular,

Coutinho et al. [80] utilized dynamical network analysis to

cosmological models of large-scale structure, containing a

simulated number of galaxy distributions, in order to study

the gravitational interactions and evolution of galaxy clusters

and superclusters. Additionally, Hong and Dey [81] as well

as Sabiu et al. [82] demonstrated how graph theoretical

methods and tools can be successfully applied on simulated and

observational data. All of the aforementioned works suggest

that, by extension, the application of graph theory can also be

a very useful tool in cosmological studies of galaxy formation

and distribution.

3.2.5. Results

In this section, we present the results we obtain by

applying the unified framework for the astrophysics problem

described above.

3.2.5.1. The similarity graph

Wefirst use the raw data (SEDs) of 139 galaxies (102ULIRGs

and 37 quasars) to construct the similarity matrix, using the

Gaussian Kernel (see Section 2.1.2), implementing step (1) of

the framework. For choosing the value of σ , we use the SD of

the sample (see Section 2.2.2.2) obtaining a value of σ = 0.0328.

In this application of the unified framework, we follow the

graph theoretic approach [surrounding box 2(ii)]. Thus, we next

apply a sparsification of the similarity matrix to obtain the

similarity graph [step (a)]. We are interested in maintaining

both connectedness (i.e., the graph to be connected) and an

adequate representation of the original data. Applying the k-nn
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FIGURE 10

A force-directed layout [31] of the resulting (sparsified) similarity graph, which uses the Gaussian Kernel as a similarity function.

method, the connectedness requirement is achieved with very

small values of k, which leads to a very sparse graph. Thus,

we use the mutual k-nn (where connectedness is achieved for

higher values of k). We choose the smallest k for which the size

of the largest connected component is stabilized. Having chosen

an appropriate parameter k and given that connectedness is not

guaranteed inmutual k-nn, we apply the selected value of k in the

ordinary k-nn method (since the mutual k-nn method results in

a subgraph of the graph resulting from the k-nn method).

Applying this heuristic we obtain that k = 6. A drawing

of the resulting sparsified graph (in a two-dimensional space)

is shown in Figure 10. For the drawing, we use the force-

directed layout algorithm of Jacomy et al. [31]. Force-directed

layout algorithms [83] produce graph drawings (layouts)

of as few crossing edges as possible (by assigning forces

between nodes so that neighboring nodes are placed closely in

the plane).

3.2.5.2. Extraction of SED communities

Next, we apply graph clustering algorithms on the SED

similarity graph, to detect galaxies of similar SEDs [steps b(1)

and b(2) of the framework]. We have tested several graph

clustering algorithms (described in Section 2.2.2.2), obtaining

similar results. This similarity in the detected clusters from

different clustering algorithms is an indication on the robustness

of the results of this methodology. Here, we present the

most representative results, obtained by the implementation

of the Walktrap algorithm [29], which applies directly to the
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FIGURE 11

Five clusters identified from the Shi and Malik algorithm (A) (modularity = 0.70 and conductance = 0.11) and Walktrap algorithm (B) (modularity

= 0.70 and conductance = 0.11).

adjacency matrix of the similarity graph [step b(2) of the

framework], and the spectral graph clustering algorithm of

Shi and Malik [28], which applies to the eigenvalues of the

Laplacian of the similarity graph (more details are provided

in Section 2.2.2), following steps b(1) and (A)–(C) of the

framework. For the specification of the number of clusters to

be detected, which is required by both algorithms, applying the

method described in Section 2.2.2, we select the number of

clusters that maximizes the quality of the clustering obtained

both in terms of modularity and conductance. By using this

quantitative criterion, both algorithms detect five clusters as the

optimal number.

Figure 11 shows the clusters identified by these two graph

clustering algorithms [(a) Shi and Malik algorithm and (b)

Walktrap algorithm], using the force-directed layout of Jacomy

et al. [31] [step (c) of the framework]. Interestingly, both

algorithms achieve the same modularity score (0.7) and

conductance value (0.111) of the clustering obtained.

3.2.5.3. Interpretation of communities detected,

relations with other physical properties, discussion, and

comparison

The outcome of the application of the unified framework is

now utilized for the interpretation of the results obtained. A first

interesting observation of the clustering obtained (Figure 11A)

is that the clusters form a (higher level) path graph: that is, the

vertices of the blue cluster are connected to the vertices of the

yellow cluster, which is connected to the purple one, which is, in

turn, connected to the green one, which finally is connected to

the red cluster. This path formed between clusters may suggest

a quasilinear evolutionary path for these galaxies. Let us call this

path as the path of clusters of galaxies.

First, in order to characterize the clusters detected, we

compute the average SEDs of galaxies in each detected

cluster. The result is shown in Figure 12. We observe that

the graph clusterings manage to distinguish between galaxies

of seemingly different SEDs. Furthermore, we observe that

there is a consistency between “neighboring” average SEDs in

Figure 12 and neighboring clusters in the path of clusters of

galaxies formed by the clustering. PAH emission and silicate

absorption features are clearly observable in the red and green

clusters, indicators of intense star-forming (starburst) activity

present in these galaxies. Conversely, these features are mostly

extinguished in the yellow and blue clusters, which are consistent

with AGN-dominant activity taking place in the galaxies of

these clusters.

An interesting question is whether the communities

detected using the galaxies’ SEDs are related to other

physical properties of the galaxies, and in particular, the

PAH emission features of the galaxies as well as their silicate

absorption/emission feature. We utilize graph theory to address

this question. We apply a color mapping on the nodes

of the graph using their value in the particular property

under investigation. Figure 13 shows the color mapping of

the nodes using the 9.7µm silicate absorption/emission feature

distribution on the graph. The transition from weak to strong
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FIGURE 12

The average spectral energy distributions (SEDs) of galaxies in each one of the detected clusters [as obtained by the Shi and Malik [28]

algorithm]. Note that each average SED is colored with the same color as the corresponding cluster obtained by the Shi and Malik algorithm.

silicate emission between AGN-dominated PG quasars (blue–

yellow clusters) and starburst galaxies (green–red clusters)

is clearly distinguishable. A corresponding color mapping

of the graph for the 6.2 µm PAH feature is shown in

the Appendix.

We note that it is very interesting that while our

classification utilizes a different approach than the well

established Spoon classification fork diagram [77], it is quite

consistent to it. Additionally, it provides an alternative

embedding of the galaxies through the graph drawing

(compared to the PAH-Silicate plane utilized in Spoon et al.).

These results are consistent with the current theoretical

framework for the evolution of ULIRGs, based on the

merger scenario, with ULIRGs displaying characteristics of

starburst galaxies in the pre-merger stage (red-green clusters)

and AGN-dominated quasar properties in the post-merger

stage (yellow-blue clusters). Thus, the implementation of

graph theoretical tools and clustering analysis on galaxy

data can successfully identify and distinguish between

different evolutionary stages of galaxy mergers. Finally,

the application of the unified framework (following

the graph theoretic approach) extends the grouping of
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FIGURE 13

The Silicate absorption/emission feature distribution on the graph. The transition from weak to strong silicate between PG quasars (orange-cyan

clusters) and starburst galaxies (green-yellow clusters) is clearly observable.

Farrah et al. [18], which is based on the graph layout the

authors obtained.

4. General discussion and
conclusions

In this article, we presented a framework for the analysis of

complex systems, which brings together classical and modern

techniques from graph theory and PCA. The framework

provides a network modeling of the complex data and provides

a mapping of the multidimensional, complex data into lower

dimensional spaces and embeddings. It allows first a clustering

of the data into groups of similar entities and then through

appropriate embeddings (representations) the extraction of

the most important properties characterizing the system, i.e.,

extracting the most important feature of the complex system.

The framework was demonstrated in three applications: one

originating in astrophysics and two from neuroscience. The

power of the framework lies in the flexibility it offers: it is

based on sound mathematical foundations that can be applied

to diverse domains knowledge, providing a useful tool for

exploring and visualizing data from a wide range of sciences.
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Appendix A1

TABLE A1 Table of label numbering and galaxy names used in graphs, for reference.

0 IRAS05189-2524 35 IRAS06009-7716 70 IRAS16300+1558 105 PG1151+117

1 IRAS08572+3915 36 IRAS06035-7102 71 IRAS16334+4630 106 PG1307+085

2 IRAS12112+0305 37 IRAS06206-6315 72 IRAS16576+3553 107 PG1309+355

3 IRAS14348-1447 38 IRAS06301-7934 73 IRAS17068+4027 108 PG1402+261

4 IRAS15250+3609 39 IRAS06361-6217 74 IRAS17179+5444 109 PG1501+106

5 IRAS22491-1808 40 IRAS07145-2914 75 IRAS17208-0014 110 PG1535+547

6 Arp220 41 IRAS07449+3350 76 IRAS17252+3659 111 I Zw 1

7 Mrk231 42 IRAS07598+6508 77 IRAS17463+5806 112 pg0049+171

8 Mrk273 43 IRAS08208+3211 78 IRAS18030+0705 113 pg0921+525

9 UGC 5101 44 IRAS08559+1053 79 IRAS18443+7433 114 pg0923+129

10 IRAS F00183-7111 45 IRAS09022-3615 80 IRAS19254-7245south 115 pg0934+013

11 IRAS00188-0856 46 IRAS09463+8141 81 IRAS19297-0406 116 pg1011-040

12 IRAS00199-7426 47 IRAS10091+4704 82 IRAS19458+0944 117 pg1012+008

13 IRAS00275-0044 48 IRAS10378+1109 83 IRAS20037-1547 118 pg1022+519

14 IRAS00275-2859 49 IRAS10565+2448 84 IRAS20087-0308 119 pg1048+342

15 IRAS00397-1312 50 IRAS11038+3217 85 IRAS20100-4156 120 pg1114+445

16 IRAS00406-3127 51 IRAS11095-0238 86 IRAS20414-1651 121 pg1115+407

17 IRAS01003-2238 52 IRAS11223-1244 87 IRAS20551-4250 122 pg1149-110

18 IRAS01199-2307 53 IRAS11582+3020 88 IRAS21272+2514 123 pg1202+281

19 IRAS01298-0744 54 IRAS12018+1941 89 IRAS23060+0505 124 pg1244+026

20 IRAS01355-1814 55 IRAS12032+1707 90 IRAS23128-5919 125 pg1310-108

21 IRAS01388-4618 56 IRAS12072-0444 91 IRAS23129+2548 126 pg1322+659

22 IRAS01494-1845 57 IRAS12205+3356 92 IRAS23230-6926 127 pg1341+258

23 IRAS02054+0835 58 IRAS12514+1027 93 IRAS23253-5415 128 pg1351+236

24 IRAS02113-2937 59 IRAS13120-5453 94 IRAS23498+2423 129 pg1404+226

25 IRAS02115+0226 60 IRAS13218+0552 95 3C273 130 pg1415+451

26 IRAS02455-2220 61 IRAS13342+3932 96 Mrk 1014 131 pg1416-129

27 IRAS02530+0211 62 IRAS13352+6402 97 Mrk463E 132 pg1448+273

28 IRAS03000-2719 63 IRAS13451+1232 98 PG1119+120 133 pg1519+226

29 IRAS03158+4227 64 IRAS14070+0525 99 PG1211+143 134 pg1534+580

30 IRAS03521+0028 65 IRAS14378-3651 100 PG1351+640 135 pg1552+085

31 IRAS03538-6432 66 IRAS15001+1433 101 PG2130+099 136 pg1612+261

32 IRAS04114-5117 67 IRAS15206+3342 102 PG0052+251 137 pg2209+184

33 IRAS04313-1649 68 IRAS15462-0450 103 PG0804+761 138 pg2304+042

34 IRAS04384-4848 69 IRAS16090-0139 104 PG1116+215
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FIGURE A1

The PAH feature distribution on the graph.
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