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In this study, a new market representation from persistence homology, known as the

L1-norm time series, is used and applied independently with three critical slowing down

indicators [autocorrelation function at lag 1, variance, and mean for power spectrum

(MPS)] to examine two historical financial crises (Dotcom crash and Lehman Brothers

bankruptcy) in the US market. The captured signal is the rising trend in the indicator

time series, which can be determined by Kendall’s tau correlation test. Furthermore, we

examined Pearson’s and Spearman’s rho correlation tests as potential substitutes for

Kendall’s tau correlation. After that, we determined a correlation threshold and predicted

the whole available date. The point of comparison between these correlation tests is to

determine which test is significant and consistent in classifying the rising trend. The results

of such a comparison will suggest the best test that can classify the observed rising trend

and detect early warning signals (EWSs) of impending financial crises. Our outcome

shows that the L1-norm time series is more likely to increase before the two financial

crises. Kendall’s tau, Pearson’s, and Spearman’s rho correlation tests consistently

indicate a significant rising trend in the MPS time series before the two financial crises.

Based on the two evaluation scores (the probability of successful anticipation and

probability of erroneous anticipation), by using the L1-norm time series with MPS, our

result in the whole prediction demonstrated that Spearman’s rho correlation (46.15 and

53.85%) obtains the best score as compared to Kendall’s tau (42.31 and 57.69%) and

Pearson’s (40 and 60%) correlations. Therefore, by using Spearman’s rho correlation

test, L1-norm time series with MPS is shown to be a better way to detect EWSs of US

financial crises.

Keywords: topological data analysis, persistent homology, critical transition, critical slowing down, correlation

tests, early warning signal, financial crises, complex system

INTRODUCTION

Understanding behaviors of financial crises (unexpected and huge declines in the stock market)
are crucial to explaining the dynamics of the financial market. However, such financial events are
very challenging to study. Among them, the challenges are understanding how the financial market
behaves before financial crises and developing a method that is capable to detect early warning
signals (EWSs) of the financial crises. The detection method will become more beneficial if it can
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accurately distinguish the financial market into two classification
periods, which are EWS periods (indicating a possible huge
downtrend is coming in the market) and safe periods. Such
a method helps investors and traders to develop an early
precaution strategy and protect their investments from any losses
due to a financial crisis.

In practice, the Chicago Board Options Exchange’s CBOE
Volatility Index or VIX index—a real-time market index
representing the market’s expectations for volatility over the
coming 30 days—is always used by market participants to alert
any upcoming financial crisis. The uptrend patterns in the VIX
were observed before financial crises, unfortunately, low-level
VIX also reported occurred before financial crises [1, 2]. This
suggests that the VIX can provide EWSs; however, a reliable
method to predict financial crises remains a challenge in this
field. Therefore, extensive studies have been conducted by many
researchers in an attempt to provide other rationales to explain
why financial crises occurred and provide any other possible
EWS. Some of those methods are bubble theory [3–5], financial
stress indicator [6, 7], information-based measures [8, 9],
financial network analysis [10–12], and graphical analysis [13].

However, this study is focusing on critical transition theory.
This theory viewed the financial market as a complex system
with episodes of critical transitions (abrupt shifts from a current
stable state to another stable state when the system reaches critical
points) [14, 15]. When approaching a critical point, this theory
stated that a generic phenomenon happened known as critical
slowing down (CSD) because of decreasing stability in themarket
and its recovery rate took longer to preserve the stability. At
a critical point, the financial market loses its stability in the
dynamic state and then suddenly causes a market movement into
a financial crisis. CSD gives a rising trend in the time series of
some indicators, such as autocorrelation function at lag 1 (AC1),
variance (VAR), and mean for power spectrum (MPS) at low
frequencies [16–18].

In the traditional method, the rising trend in the time series
of CSD indicator that happens before the critical transition
point is determined using Kendall’s tau correlation test. By using
Kendall’s tau correlation test, previous studies have shown that
the observed rising trend can provide EWSs before financial
crises [19–23]. Despite the successful results obtained, there is
a realization that some indicator like AC1 also tends to decline
before financial crises. All of these lead to mixing results such
as recorded in Guttal et al. [21] and Diks et al. [23]. However,
as compared to critical transitions, Guttal et al. [21] argued that
financial crises are more likely to follow stochastic transition,
in which variability indicators (VAR and MPS) can signal early
warnings for financial markets. This also points out that abrupt
transitions in the financial market are hardly the same as a
complex system in nature such as the earth’s global climate and
interaction between species in ecology. One of the reasons behind
this is the financial market is involved with human behaviors that
influence the market’s movement [23].

Recently, using persistent homology (PH) (a robust method
to compute topological features of financial data at different
spatial scales [24]), Gidea and Katz [25] suggested a new
market representative obtained from persistence landscapes

called L1−norm time series. Since the persistence landscapes
are robust under perturbations of the underlying data, the
L1-normtime series has the advantage to reflect the loss of
stability in dynamic states of the original system. When the
stock market becomes more volatile, loops in the relevant
point clouds become much more pronounced and give more
significant features within persistence landscapes [25]. At that
time, the corresponding L1-normvalues are more likely to
jump up, and this behavior is believed to correspond with
an undergoing CSD. Therefore, to test the presence of CSD,
the CSD indicators are used with the L1-normtime series,
where these indicators should alert upcoming financial crises
by showing their significant rising trend that can be classified
by Kendall’s tau correlation test. In their work, Gidea and Katz
[25] showed that theL1-normtime series grew substantially before
the Dotcom crash and Lehman Brothers bankruptcy in the US
market. Interestingly, by using CSD indicators and Kendall’s tau
correlation test on the L1-normtime series, Gidea and Katz [25]
confirmed that a significant strong rising trend happen in the
MPS time series before those two financial crises. Therefore,
the method is suggested as a new potential EWS. Later, the
application of PH to financial data analysis has attracted more
attention from researchers, especially in detecting EWSs. All
the articles published in this area are discussed in Section
Literature Review.

In this article, we also used PH and CSD indicators (AC1,
VAR, and MPS) to detect EWSs of financial crises. Unlike Gidea
and Katz [25], instead of using Kendall’s tau correlation test to
indicate the rising trend in the time series of the indicators, we
also examined Pearson’s and Spearman’s rho correlation tests
as a potential substitute for Kendall’s tau correlation. The point
of comparison between these correlation tests is to determine
which test is significant and consistent in classifying the rising
trend. The results of such a comparison will suggest the best
test that can classify the observed rising trend and detect EWSs
of impending financial crises. The remaining portion of this
article is organized as follows. Section Literature Review briefly
discusses our literature review, Section Persistent Homology
introduces PH, Section Data Analysis elaborates on our data,
Section Methods presents the applied methods, Section Result
mentions our results and their corresponding discussions, and
Section Conclusion wraps our conclusion.

LITERATURE REVIEW

Topological information from financial data obtained using PH
has been used to study financial problems. In recent times, this
topic has attracted attention from many researchers around the
globe. In the finance market, the most application currently
investigated by PH is financial crises and their EWS detection
tools. In a multivariate setting, by begin with examining chaotic
time series with noise and a growing variance, Gidea and Katz
[25] showed that PH can exhibit strong growth in its market
representative time series prior to the critical point. This growth
can be analyzed using CSD indicators (AC1, VAR, and MPS)
and correlation tests (Kendall’s tau) to indicate corresponding
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CSD that happen before critical point. After that, Gidea and
Katz [25] used the pipeline method to examine the Dotcom
crash and Lehman Brothers bankruptcy in the US market as
mentioned earlier.

After that, Ismail et al. [26] expanded the study of Gidea
and Katz [25] by using PH and CSD indicators to examine
financial crises in the US, Singapore, and Malaysia markets.
Aspects of the method’s robustness and prediction performance
have been rigorously evaluated in Ismail et al. [26]. Meanwhile,
Aromi et al. [27] substantiated that PH reflects changes in
the underlying multivariate distribution and strong covariance
could nullify the persistence of homologies. On the other
hand, [28] also analyzed time-dependent correlation networks
using PH to detect early signs of critical transitions in
financial data.

In Guo et al. [29], an EWS based on PH is also built
to detect the critical dates on the financial time series.
Guo et al. [30] also used topological features of complex
networks that were extracted using PH to find critical dates
for financial crises. In addition, dynamics of financial market
correlations based on topology and geometry are examined
using PH in Yen et al. [31]. Moreover, Yen and Cheong
[32]also tested PH to analyze Singapore and Taiwan markets.
The extreme event called flash crash was also explored
in Kim et al. [33] by applying PH and dynamic time
series analysis.

Furthermore, anomalies detection in the dynamics of amarket
index also is studied with PH [34]. Katz and Biem [35] also
showed that early signatures of growing market instabilities can
be captured by PH. Besides, Gidea et al. [3] used PH and k-
means clustering to detect critical transitions in the time series
of cryptocurrencies. For Bitcoin [36], also uses PH and CSD
indicators to detect such transitions and substantiated that PH
can detect EWSs better than the detrending time-series approach
(the most common approach used in previous studies to detect
CSD indicators).

Other than that, PH also has been developed to improve
portfolio investment strategies. Studied ten global indices and
all their underlying assets, Goel et al. [37] showed that a
new strategy based on PH leads to more robust portfolios.
Baitinger and Flegel [38] also demonstrated that investment
strategies relying on a PH-based turbulence detection outperform
investment strategies based on other popular turbulence indices.
In clustering and classification of financial time series, Majumdar
and Laha [39] showed that PH outperforms other methods in
this task.

Additionally, PH is applied with machine learning to predict
the movement of financial data. Such a task has been done in
Ismail et al. [40] by using PH and machine learning methods
(logistic regression, neural network, support vector machine,
and random forest) to predict the next-day direction of the
Kuala Lumpur Composite Index (KLCI). Moreover, Baitinger
and Flegel [41] also introduced PH to produce microstructural
predictors, where these predictors are combined with machine
learning and statistical factor extraction methods to predict
asset returns.

PERSISTENT HOMOLOGY

Persistent homology is a new quantitative method of topological
data analysis to compute topology features (connected
components, loops, voids, and others) that persistently
emerge across multiple scales. Interestingly, PH is robust to
small perturbations of input data, independent of dimensions
and coordinates and provides a compact representation of the
qualitative features of the input [42–44]. These characteristics
make PH suitable to analyze complex, non-linear, noisy, and
high-dimensional data like financial data [45].

Later, a summary of PH in the way that it is used in this
article is provided. We noted that the concepts of PH stated here
can also be found in most books and journals related to PH.
To further explore the theories and other concepts of PH, we
recommend Otter et al. [24] and Edelsbrunner and Harer [46]
to the interested readers.

Input data analyzed by PH is called point cloud dataset (PCD),

which can be denoted as X =

{

xi ∈ Rd|i = 1, · · · , n
}

for d ≥ 2.

Let X be a PCD, a Rips complex at a scale ε > 0 (denoted as
R (X, ε)) can be constructed as follows:

• For each dimensional k = 0, 1, · · · , a k-simplex of X points
{

xi1 , · · · , xi(k+1)

}

belongs to a R (X, ε) if and only if for every

pair
{

xir , xis
}

, we have
∣

∣xir − xis
∣

∣ ≤ ε for all xir , xis ∈
{

xi1 , · · · , xi(k+1)

}

[24].

Roughly speaking, a Rips complex is a combination of vertices
(0-simplex), edges (1-simplex), solid triangles (2-simplex), and
higher dimensional analog, joined according to the above-
mentioned rule. Figure 1 illustrates 0-simplex until 2-simplex
and a two-dimensional Rips complex R (X, ε) ,respectively. In
Figure 1, the scale ε is the diameter of balls around each point
in the different PCDs.

In a real-world application, finding a single ε is impractical
since the real space behind PCD is mostly unknown. Therefore,
PH provides a better way to interpret topological information
regarding the shape behind PCD by varying the scale ε. Let
ε ∈ {ε0, · · · εm} such that 0 ≤ ε0 < · · · < εm, then filtration
of Rips complexes is R (X, ε0) ⊂ · · · ⊂ R (X, εm). Figure 2 shows
a filtration containing six Rips complexes constructed of a PCD
at multiple scales.

For i = 1, · · · ,m, we can compute the k-homology of
each Rips complex R (X, εi), denoted as Hk (R (X, εi)). Roughly
speaking, H0 (R (X, εi)) is the free group generated by the
connected components of R (X, εi), H1 (R (X, εi)) is the free
group generated by the loops in R (X, εi), H2 (R (X, εi)) is the
free group generated by the voids of R (X, εi). The Betti numbers
count the number of generators of such homology groups. This
number of generators indicates the number of corresponding
topological features that emerge at each scale.

In addition, information regarding the lifespans of topological
features also can be obtained by using PH. In the PH community,
most believe that a topological feature that has a longer lifespan
(persists for a bigger range of scales) can be viewed as a more
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FIGURE 1 | (A,B) are 0-simplex, 1-simplex, 2-simplex, and a two-dimensional Rips complex, respectively.

significant one, whereas a feature that has a shorter lifespan
(persists for a smaller range) can be viewed as a less significant,
or a noisy feature. Nevertheless, the theoretical justification
for this is unclear and may be dependent on the problem at

hand [45]. However, this study used all the obtained lifespan in
our computation.

Let
{

(εb, εd)i|i = 1, · · · , n
}

be a collection of the lifespans of
topological features such that εb < εd and εb, εd ∈ {ε0, · · · εm}.
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FIGURE 2 | Filtration of six Rips complexes constructed of a PCD at six different scales.

The simplest tool to present this information is a persistent
barcode, which is a collection of n half-closed intervals [εb, εd)
representing the lifespans of topological features, see Figure 3A.
Other tools are a persistent diagram and a persistent landscape.
A persistent diagram is a finite collection of n birth–death points

(εb, εd) ∈ R2 that lie along or above a diagonal line. If there are
redundant birth–death points, then the points will be represented
as a single point but multiplied by its size to correspond to the
frequency of this point. Figure 3B provides an example of a
persistent diagram.

On the other hand, the persistence landscape λ is quite a recent
tool introduced by Bubenik and Dłotko [47] and Bubenik [48].
To define the persistent landscape, we transformed each lifespan
into a piecewise linear function f(εb ,εd)i : → [0,∞), which is
defined below:

f(εb ,εd)i (x) =







x− εb if x ∈ (εb, (εb + εd)/2 ]
−x+ εd if x ∈ ((εb + εd)/2 , εd)

0 if x /∈ ((εb + εd))

,

for i = 1, · · · , n. (1)

As a result, we obtained a set of n piecewise linear functions
{

f(εb ,εd)i (x) |i = 1, · · · , n
}

. Later the layer in the persistence
landscape was obtained for each k ∈ Z, which is a function
λk (x) :R → [0,∞)that is defined as follows λk (x) = k −

max
({

f(εb ,εd)i (x) |i = 1, · · · , n
})

, where k − max denotes the
kthlargest value of the piecewise linear functions. If the kth largest
value does not exist anymore for k = l, then λk (x) = 0for
all remaining k ≥ l. The persistent landscape λ is the infinite
sequence of λk (x), which can be denoted as {λ1 (x) , λ2 (x) , · · · }.
Figures 3C,D presents the persistence landscapes of connected
components and a loop, respectively.

In this study, we used persistent landscapes because this
representation can be summarized into a summary point, that is a
Lp-norm. This norm is a function ‖.‖p : λ → R, which is defined
as follows:

‖λ‖p =

[

∞
∑

k=1

∫

|λk (x)|pdx

]
1
p

for 1 ≤ p < ∞, (2)

and ‖λ‖∞ =
sup
k,x

|λk (x)| for p = ∞. (3)
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FIGURE 3 | Refer to the filtration of Rips complexes in Figure 2. By applying PH, compact representations: (A) a persistent barcode, (B) a persistence diagram (note

that the size for point (0, 2) is enlarged two times bigger than the others to indicate two connected components that share a redundant lifetime), (C) a persistence

landscape of connected components (note that the third sub-landscape is enlarged two times bigger than the others to indicate two connected components, which

share a redundant lifetime), and (D) a persistence landscape of a loop are obtained.

Furthermore, statistical properties of these norm values also
can be analyzed. Therefore, the CSD indicators are computed
from these norm values, and they are used to detect EWSs of
impending financial crises in this study.

SAMPLE DATA

For this study, four main stock indices of the US market
were collected, which span from 22/12/1987 until 29/12/2017.
The indices were the Standard and Poor’s 500 (S&P 500), the
Dow Jones Industrial Average (DJIA), the Nasdaq Composite
(Nasdaq), and the Russell 2000 Index (Russell 2000), which
were derived from the Yahoo Finance. All these indices are
shown in Figure 4. In Figure 4, for illustration purposes, the
indices are normalized using the max/min normalization using
the formula pnorm = 2 ×

((

pt −min
)

/ (max−min)
)

, where
pt ,max,and min are the closing price at date t, the maximum
closing price, and the minimum closing price of an index,
respectively. Such normalization does not involve our method

as discussed in Section Methods. Furthermore, in Figure 4,
the crisis dates for the Dotcom crash and Lehman Brothers
bankruptcy are mentioned.

METHODS

Pre-crisis Dataset
In this study, two pre-crisis datasets were generated. The two
datasets contained closing prices of the four indices (S&P 500,
DJIA, Nasdaq, and Russell 2000) with a length of 1000 before
the crisis date of the Dotcom crash and Lehman Brothers
bankruptcy, respectively. The objective of creating the two pre-
crisis datasets was to study the financial market’s behaviors before
the financial crises, where the obtained information based on
PH and CSD would be proceeded to form a EWS detection.
Later, we predicted and compared the performance for the case
of using different correlation tests: Kendall’s tau, Pearson’s, and
Spearman’s rho.
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FIGURE 4 | Indices for the Standard and Poor’s 500 (S&P 500), the Dow Jones Industrial Average (DJIA), the Nasdaq Composite (Nasdaq), and the Russell 2000

Index (Russell 2000), respectively. The crisis dates for the Dotcom crash and Lehman Brothers bankruptcy also are mentioned.

Persistent Homology
For i = 1, · · · , 4, 1000 closing prices of an index i in the pre-
crisis were transformed to daily log returns using the formula
rit = ln

(

pit/p
i
t−1

)

for t = 1, · · · , 1000, where pit is the
closing price at date t. As a result, for each pre-crisis dataset,
we obtained a transformed pre-crisis dataset, denoted as X =
{

rt ∈ R4|t = 1, · · · , 1000
}

, where rt =
(

r1t , · · · , r
4
t

)

is a point of
the X at the date t. Xcan be illustrated in matrix form as below:

X =











r11
r12
...

r11000

r21
r22
...

r21000

· · ·

· · ·

. . .

· · ·

r41
r42
...

r41000











(4)

Furthermore, the daily sliding window of length 50 approach
was applied to segment the X to obtain PCDs. For financial data
analysis, it had been demonstrated that a length of 50 was enough
to extract topological information through PH as reported in the
previous literature reviews [3, 25, 26, 35]. Consequently, each
respective PCD from X at the date t also can be illustrated in
matrix form as follows:

X (t) =











r1
((t−50)+1)

r1
((t−50)+2)

...

r1
((t−50)+50)

r2
((t−50)+1)

r2
((t−50)+2)

...

r2
((t−50)+50)

· · ·

· · ·

. . .

· · ·

r4
((t−50)+1)

r4
((t−50)+2)

...

r4
((t−50)+50)











,

for t = 1, · · · , 1000. (5)

For each t, as briefed in Section Persistent Homology, PH of Rips
filtration that built on PCD X (t) ,the corresponding persistence
landscape at the date t and the corresponding L1-norm value at
the date t were computed, accordingly. By doing so, we obtained
L1-normtime series, denoted by Y=

{

‖λ‖1,t|t = 50, · · · , 1000
}

,
where ‖λ‖1,t is a L

1-norm value at the date t.

Critical Slowing Down Indicators
Consequently, the L1-normtime series
Y=
{

‖λ‖1,t|t = 50, · · · , 1000
}

was segmented by using the
daily sliding window of the length 500 to obtain sequences of
500 L1-norm values. The length 500 was selected based on the
literature mentioned in Guttal et al. [21], Diks et al.[23], and
Ismail et al. [ 26], which uses half of the length of the pre-crisis
dataset. Each sequence of 500 L1-norm values at the date t can be
denoted as below:

Y (t) =
{

‖λ‖1,((t−500)+1), · · · , ‖λ‖1,((t−500)+500)

}

,

for t = 549, · · · , 1000. (6)

For each t ∈ {549, · · · , 1000}, we computed a value based on
the CSD indicators: AC1, VAR, and MPS at low frequencies as
accordingly defined below:

• The AC1 value at trading t is ac1t = ρ1,t�var t , where ρ1,t =

1
500−1

((t−500)+500)−1
∑

j=((t−500)+1)

(

‖λ‖1,j − ‖λ‖1,j
)

(

‖λ‖1,(j+1) − ‖λ‖1,j

)

,

[[Mathtype-mtef1-eqn-106.mtf]] is the mean of Y (t) and vart
is the VAR of Y (t) as defined in the point below.
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• The VAR value at the date t is vart =

1
500−1

((t−500)+500)−1
∑

j=((t−500)+1)

(

‖λ‖1,j − ‖λ‖1,j
)2
, where ‖λ‖1,j =

1
500

((t−500)+500)
∑

j=((t−500)+1)

‖λ‖1,j the mean of Y (t ).

• Given Y (t) =
{

‖λ‖1,((t−500)+1), · · · , ‖λ‖1,((t−500)+500)

}

,
we defined its discrete Fourier transformation as Fk,t =
((t−500)+500)

∑

j=((t−500)+1)

‖λ‖1,j · e
−2π ikj�500 , where k ∈ {1, · · · , 500}. The

power spectrum is PSk,t =
∣

∣Fk,t
∣

∣

2
for k ∈ {1, · · · , 500}. Then,

the MPS value at the date t, denoted as mpst is the mean of all
PSk,t for k ∈

{

2, · · · , 1�8 × 500
}

.

As a result, we obtained three sets of time series based on
AC1, VAR, and MPS values, which can be denoted as AC1 =

{ac1t|t = 549, · · · , 1000}, VAR = {vart|t = 549, · · · , 1000}, and
MPS =

{

mpst|t = 549, · · · , 1000
}

accordingly.

Correlation Tests
In the study, Kendall’s tau correlation was used to determine
a rising trend in the indicator’s time series (AC1, VAR,
or MPS). Nonetheless, Pearson’s and Spearman’s rho
correlations were included in addition to Kendall’s tau
correlation as alternative measures to detect the trend.
In brief, Kendall’s tau, Pearson’s, and Spearman’s rho
correlations computed the strength of concordance dependency,
the range of linear relationship, and the degree of the
association, respectively.

Daily sliding window of length 250 was used to
attain sequences containing 125 indicator values. In
addition, the length of 250 was chosen as half data of
the previous sliding window with length of 500. This
length was considered sufficient to capture rising trend
in the indicators as shown in Guttal et al. [21] and
Ismail et al. [26]. Therefore, three tests based on Kendall’s
tau, Pearson’s, and Spearman’s rho correlations from
each sequence containing 250 indicator values were
computed. Considering AC1 as an example, each sequence
containing 250 AC1 values at the date t can be denoted as
AC1 (t) = {ac1t|t = ((t − 250) + 1) , · · · , ((t − 250) + 250)},
for t = 798, · · · , 1000. For each t ∈ {798, · · · , 1000}, Kendall’s
tau, Pearson’s, and Spearman’s rho correlations from AC1 (t) are
computed as follow:

• τAC1,t = (C−D)�Z , where C is the number
of concordant pairs between AC1 (t) and
{((t − 250) + 1) , · · · , ((t − 250) + 250)}, D is the number
of discordant pairs between [[Mathtype-mtef1-eqn-
136.mtf]] and {((t − 250) + 1) , · · · , ((t − 250) + 250)}.
Z = (250× (250− 1))/2 is the total number of different
possible pair combinations.

• rAC1,t =

(

250
((t−250)+250)

∑

l=((t−250)+1)

ac1l · l−

(

((t−250)+250)
∑

l=((t−250)+1)

ac1l

)

(

((t−250)+250)
∑

l=((t−250)+1)

l

))

/





√

√

√

√250

(

((t−250)+250)
∑

l=((t−250)+1)

(ac1l)
2

)

−

(

((t−250)+250)
∑

l=((t−250)+1)

ac1l

)2

√

√

√

√250

(

((t−250)+250)
∑

l=((t−250)+1)

(

l
)2

)

−

(

((t−250)+250)
∑

l=((t−250)+1)

l

)2




• pAC1,t = 1 −

6
∑

i
d2i

250(2502−1)
, where di is the difference between

the ranks of the corresponding variables of AC1 (t), and
{((t − 250) + 1) , · · · , ((t − 250) + 250) }.

As a result, three sets of time series based on Kendall’s tau,
Pearson’s, and Spearman’s rho correlation values computed
from AC1 were obtained, which can be denoted as τAC1 =
{

τAC1,t|t = 798, · · · , 1000
}

, rAC1 =
{

rAC1,t|t = 798, · · · , 1000
}

,
and pAC1 =

{

pAC1,t|t = 798, · · · , 1000
}

., respectively. For, VAR
and MPS, the same three sets of time series based on these three
correlation values also can be obtained using the above formula.

Note that if any correlation (Kendall’s tau, Pearson’s, or
Spearman’s rho) provides a positive real value at the date t, we
conclude that a rising trend happened in the 250 indicator values
from the date (t − 250+ 1) to t. In critical transition theory, it
was expected that these indicators’ time series: AC1, VAR, and
MPS are increasing before a financial crisis. In addition, the rising
trend in the indicators will give rise to a positive real number of
the correlation ahead of a financial crisis.

Significant and Skewness Tests
Furthermore, we performed a significance test in this study to
examine whether the rising trend in the last 125 indicator values
at the date from 750 to 999, which was summarized by the
correlation value at the date t = 999 (1 day before the financial
crisis), was statistically significant at level 5%. To conduct the test,
we computed the p-value for each of the correlation values at the
date t = 999. The p-value obtained is a doubled probability of
getting the statistical value or a value with even greater evidence
against H0.

Let us take AC1 as an example; here, H0 represents no
monotonic trend (either rising or declining) that happens in the
time series AC1 (999) . A significance test at level 5% translates to
a requirement p-value less than 0.005 to interpret any monotonic
trend (rising or decline) in the time seriesAC1 (999) as significant
or otherwise. The same significant test was also applied to
VAR and MPS time series, that is, VAR (999) and MPS (999) ,
respectively. This significance test is vital to verify whether PH
via L1-normtime series associated with the used indicator (AC1,
VAR, orMPS) can provide a reliable EWS at least 1 day before the
observed financial crisis.

In addition, since the Pearson correlation is usually applied
to time series whose probability distribution is symmetric, such
as the normal or Gaussian probability distribution, it is better
to consider other association correlation measures (Kendall’s
tau or Spearman’s rho) when the probability distribution for
the considered time series is asymmetric. Therefore, we also
employed the skewness test to observe whether the probability
distribution of the last 125 indicator values at the date from 750
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to 999 is asymmetric. As a result, we also computed the skewness
value for each of the Pearson correlation at the date t = 999.

If the skewness value equals zero, the observed series is
perfectly symmetrical. But a skewness of exactly zero is quite
unlikely for real-world data, so we interpreted the skewness value
as follows:

• If skewness is between −1/2 and 1/2, the distribution
can be called approximately symmetric. For this case, the
Pearson correlation is applicable to detect EWSs of impending
financial crises.

• Otherwise, the distribution is called skewed, and the Pearson
correlation is not considered.

Threshold
In this study, by using the test (Kendall’s tau, Pearson’s,
or Spearman’s rho correlation), if there exist two significant
correlation values, which indicate the significant rising trend
in the observed indicator (AC1, VAR, or MPS) 1 day before
the two corresponding observed financial crises (Dotcom crash
and Lehman Brothers bankruptcy) in the US, a threshold was
determined by choosing the smaller value of those two values.
Let us assume that T1 and T2 are these two thresholds for the
US market, then T = min {T1,T1} is the threshold covering
all available dates. The minimum value was chosen because it
corresponded to the most extreme cases, which provided us with
the longest period of significant rising trends in the correlation
time series (AC1, VAR, and MPS) before the Dotcom crash and
Lehman Brothers bankruptcy.

After computing the threshold, all available dates were
covered, and the likelihood of an indicative period of significant
rising trends, which lay above the threshold, was determined.
The latter was made following the range of time at which the
indicative trend could be observed. Finally, all the recorded
events (periods with significant rising trends and breakpoints or
without that signal) were classified either as EWSs, false alarms
(FAs), false negatives (FNs), or true negatives (TNs) as described
in the later section.

Classification
In our practice, we classified any recorded event (a period with
significant rising trends and breakpoints or without that signal)
as a EWS, an FA, an FN, or a TN and is as follows:

• If there is a nearest financial crisis that happened within
a period of continuous significant rising trends with
breakpoints, which lies above the threshold, we consider the
event in this period as an EWS.

• If there is no nearest financial crisis that happened within
a period of continuous significant rising trends with
breakpoints, which lies above the threshold, the event on this
period is considered as an FA.

• If there is a financial crisis that happened within a period
without the observed signal, which lies below the threshold,
we consider the event in this period as an FN.

• If there is no nearest financial crisis within a period without
the observed signal, which lies below the threshold, the event
in this period is considered as a TN.

TABLE 1 | The classification matrix used in this study.

Does there exist a nearest

financial crisis within the duration?

Exist None

Has the correlation duration Yes EWS FA

exceeded the threshold?

No FN TN

Evaluation Measures
For evaluation measures, the classification matrix used in
our study is as given in Table 1. To evaluate the method’s
performance, we used two classification scores (in percentage),
namely probability of successful anticipation (PSA) and
probability of erroneous anticipation (PEA). These two scores
are defined as follows: let A, B, C, and D be the total number of
EWS, FA, FN, and TN, respectively, then

PSA = ((A+ D)/(A+ B+ C + D) ) × 100% (7)

PEA = ((B+ C)/(A+ B+ C + D) ) × 100% (8)

To evaluate, a method that scores the highest PSA and the lowest
PEA is considered the best EWS detection tool.

RESULT

Two pre-crisis datasets were analyzed, whereby each of those
datasets had a length of 1,000 days before a financial crisis. In
the first row of Figure 5, the two pre-crisis datasets before the
Dotcom crash and Lehman Brothers bankruptcy are presented,
respectively. For all indices in each pre-crisis dataset, we
computed all its corresponding daily log-return time series and
then combined all the computed daily log returns to build a high-
dimensional time series. Furthermore, the daily sliding window
of length 50 was applied to obtain PCDs. Then, we applied PH on
each PCD to obtain a corresponding L1-norm value. As a result,
we acquired a L1−norm time series. All obtained L1−norm time
series for every pre-crisis dataset is illustrated in the second row
of Figure 5.

Figure 5 demonstrates that the L1-norm time series exhibits
strong growth toward a primary peak prior to the Dotcom
crash and Lehman Brothers bankruptcy in the US market. These
results are consistent with Gidea and Katz [25]and Ismail et
al. [26]. As stock indices become increasingly volatile when
moving closer to a financial crisis, more peaks appear in its
corresponding persistent landscape. The latter gives growth in
the L1-norm values prior to the Dotcom crash and Lehman
Brothers bankruptcy [26].

Furthermore, the daily sliding window with the length of 500
was applied to each L1-norm time series as shown in Figure 5,
and the corresponding time series of three CSD indicators,
including AC1, VAR, and MPS at low frequencies were obtained.
Furthermore, for each computed CSD indicator’s time series,
we applied the daily sliding window with a length of 250 and
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FIGURE 5 | (A,C) two pre-crisis datasets before the Dotcom crash and Lehman Brothers bankruptcy and (B,D) the two L1-norm time series for these two datasets,

respectively.

computed the time series of three tests: Kendall’s tau, Pearson’s,
and Spearman’s rho correlations. In addition, we also employed
a significant test to compute p-values for each correlation test
1 day before the Dotcom crash and Lehman Brothers bankruptcy.
Figure 6 shows the time series of these CSD indicators (AC1,
VAR, and MPS) and presented the obtained value for Kendall’s
tau, Pearson’s, and Spearman’s rho correlations before the
financial crises. Moreover, in Figure 6, corresponding p-values
for Kendall’s tau, Pearson’s, and Spearman’s rho correlations
and skewness measure (for the Pearson correlation only) are
also mentioned. Kendall’s tau correlation, Pearson’s correlation,
Spearman’s rho correlation, p-values for Kendall’s tau correlation,
p-values for Pearson’s correlation, p-values for Spearman’s rho
correlation, and skewness values in Figure 6 are symbolized with
τ , r, p, pτ , pr , pp, and s, respectively.

Based on the results presented in Figure 6, for any CSD
indicator of the L1-normtime series, which consistently exhibits
a significant rising trend (indicated by the correlation values,

the corresponding p-values, and skewness) before the observed
financial crises, we considered such method as a EWS detection
tool. It is clearly shown that only the MPS time series of the
L1-norm time series fulfill this condition, and its significant rising
trend can be indicated by Kendall tau, Pearson, and Spearman
rho correlation. These because Kendall tau and Spearman rho
provide positive values and their corresponding p-values also
less than 0.05. For Pearson, this test obtains a positive value,
its corresponding p-values is less than 0.05, and its skewness
values lie in between −1/2 and 1/2 indicating that the data has
an approximately symmetrical distribution. For the others, they
did not achieve the above-mentioned characteristics, therefore
not considered as potential EWS detection tools.

In Figure 6, the highlighted values from different correlation
tests (Kendall’s tau, Pearson’s, and Spearman’s rho) are the
chosen threshold to predict the whole available date. These
values are 0.88, 0.94, and 0.96 for Kendall’s tau, Pearson’s, and
Spearman’s rho correlations, respectively. Therefore, we have
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FIGURE 6 | Time series of the CSD indicators (AC1, VAR, and MPS), the obtained value for Kendall’s tau, Pearson’s, and Spearman’s rho correlations, and their

corresponding p-values 1 day before the financial crises.
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FIGURE 7 | Results obtained from MPS of the L1-norm time series using Kendall’s tau, Pearson’s, and Spearman’s rho correlations. (A) Kendall’s tau correlations of

mean for power spectrum at low frequencies of L1-norms; (B) Pearson’s rho correlations of mean for power spectrum at low frequencies of L1-norms; (C) Spearman’s

rho correlations of mean for power spectrum at low frequencies of L1-norms.

three predictions performed using three different correlations,
and each correlation is obtained from the MPS time series of
the L1-normtime series. For each prediction, all individual events
(periods of continuous significant rising trends or otherwise) are
recorded, and these events are then classified whether they are
EWSs, FAs, FNs, or TNs.

Results obtained from MPS of the L1-normtime series
using Kendall’s tau, Pearson’s, and Spearman’s rho correlations,
respectively, are illustrated in Figure 7. All periods of continuous
significant rising trends in Figure 7 are indicated by blue
numbers and lines, which lie above the threshold. In contrast,
correlation values that lie below the threshold are indicated

with black numbers and lines. Details on these recorded events
and their corresponding classification as shown in Figure 7 for
Kendall’s tau, Pearson’s, and Spearman’s rho correlations are
provided in tables of Supplementary Material File.

By using MPS of the L1-norm time series, our results reported
that Spearman’s rho correlation test obtained the total number
of EWS, FA, FN, TN, PSA, and PEA of 4, 7, 7, 8, 46.15, and
53.85%, respectively. Furthermore, Kendall’s tau correlation test
provided the total number of EWS, FA, FN, TN, PSA, and PEA
of 3, 8, 7, 8, 42.31, and 57.69%, respectively. In addition, the
Pearson correlation test achieved the total number of EWS, FA,
FN, TN, PSA, and PEA of 2, 9, 9, 10, 40, and 60%, respectively.
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TABLE 2 | A summary for all obtained results.

Evaluation Kendall’s tau Pearson’s Spearman’s rho

measure correlation test correlation test correlation test

EWS 3 2 4

FA 8 9 7

FN 7 9 7

TN 8 10 8

PSA (%) 42.31 40 46.15

PEA (%) 57.69 60 53.85

All these results obtained are summarized in Table 2, where all
the bolded values represent the obtained highest scores for the
corresponding evaluation measure.

From Table 2, based on PSA and PEA, Spearman’s rho and
Kendall’s tau correlations are showed to obtain a better result
than the Pearson correlation. This shows that non-parametric
rank correlation, which computes statistical associations based
on the ranks of the data like Spearman’s rho and Kendall’s
tau correlations is better than the Pearson correlation, which
measures the degree of the linear relationship between related
variables. However, Spearman’s rho correlation, which measures
the degree of association between two variables is reported and
has a better result as compared to Kendall’s tau correlation, which
measures the strength of dependence between two variables. In
addition, our result in Table 2 clearly shows that Spearman’s rho
correlation outperforms other correlation tests (Kendall’s tau and
Pearson’s correlations) with the highest score of every evaluation
measure. Therefore, by using MPS of the L1-norm time series,
our results concluded that Spearman’s rho correlation can detect
EWSs better than Kendall’s tau and Pearson’s correlations.

CONCLUSION

In this study, PH and CSD were proposed to detect EWSs
of major financial crashes in the US market. Preliminarily,
two financial crises: Dotcom Crash and Lehman Brothers
Bankruptcy that happened in the US market were examined. By
using PH, L1-norm time series was obtained for each financial
crisis and used to compute the CSD indicators: AC1, VAR,
and MPS.

By using three different correlation tests, Kendall’s tau,
Pearson’s, and Spearman’s rho, the rising trend in these indicators
is observed prior to the financial crises. Furthermore, this study
applied significance and skewness tests to determine whether
the rising trends in the indicators (AC1, VAR, or MPS) are
statistically significant. This test aims to conclude that the rising
trend does not happen by chance. Subsequently, a threshold is

determined to predict the whole date, and then the classification
performance of our method is evaluated by using PSA and PEA.

Our result shows that the L1-norm time series exhibits a
strong growth before Dotcom Crash and Lehman Brothers
Bankruptcy. This portrays that the L1-norm time series
has the potential to be a representative to detect EWSs of
major financial crashes in the US market. Moreover, MPS
from the L1-norm time series is significantly rising before
these two financial crises. It has also been demonstrated
that all correlation tests, Kendall’s tau, Pearson’s, and
Spearman’s rho, can indicate the observed significant
rising trend.

Overall, based on PSA and PEA, our results revealed that
Spearman’s rho correlation predicts the US market better
than Kendall’s tau and Pearson’s correlations. Therefore, this
study demonstrates that PH via its L1-norm time series with
MPS and Spearman’s rho correlation offers a new potential
EWS detection tool for financial crises in the US market.
For future studies, we plan to examine and refine this
method of PH to provide more reliable EWSs for upcoming
financial crises.
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