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Nonlinear data assimilation methods like particle filters aim to improve the numerical

weather prediction (NWP) in non-Gaussian setting. In this manuscript, two recent

versions of particle filters, namely the Localized Adaptive Particle Filter (LAPF) and the

Localized Mixture Coefficient Particle Filter (LMCPF) are studied in comparison with the

Ensemble Kalman Filter when applied to the popular Lorenz 1963 and 1996 models.

As these particle filters showed mixed results in the global NWP system at the German

meteorological service (DWD), the goal of this work is to show that the LMCPF is able

to outperform the LETKF within an experimental design reflecting a standard NWP

setup and standard NWP scores. We focus on the root-mean-square-error (RMSE)

of truth minus background, respectively, analysis ensemble mean to measure the filter

performance. To simulate a standard NWP setup, the methods are studied in the realistic

situation where the numerical model is different from the true model or the nature run,

respectively. In this study, an improved version of the LMCPF with exact Gaussian mixture

particle weights instead of approximate weights is derived and used for the comparison

to the Localized Ensemble Transform Kalman Filter (LETKF). The advantages of the

LMCPF with exact weights are discovered and the two versions are compared. As in

complex NWP systems the individual steps of data assimilation methods are overlaid by

a multitude of other processes, the ingredients of the LMCPF are illustrated in a single

assimilation step with respect to the three-dimensional Lorenz 1963 model.

Keywords: data assimilation, particle filter, nonlinear systems, ensemble filter, Kalman filter, Lorenz 1963 system,

Lorenz 1996 system

1. INTRODUCTION

Data assimilation methods combine numerical models and observations to generate an improved
state estimate. Besides optimization approaches, ensemble methods use an ensemble of states
to approximate underlying probability distributions. For example the ensemble Kalman filter
presented in Evensen [1] (see also [2, 3]) carries out Bayesian state estimation and samples from
Gaussian distributions which equals a linearity assumption of the underlying system. However,
the local ensemble transform Kalman filter (LETKF; [4]) is widely used in high dimensional
environments. For example, the LETKF is successfully used as ensemble data assimilation method
in the numerical weather prediction (NWP) system at the German meteorological service (DWD).
Nevertheless, there is the aim to develop more general ensemble methods to account for the
increasing complexity of numerical models.
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Particle filter methods are based on Monte Carlo schemes and
aim to solve the nonlinear filtering problem without any further
assumptions on the distributions. Since Monte Carlo methods
suffer the curse of dimensionality, the application of classical or
bootstrap particle filters to high- dimensional problems results in
filter divergence or filter collapse (see [5–7]). After first attempts
to carry out nonlinear Bayesian state estimation approximately
by Gordon et al. [8], further particle filters are developed, which
are able to overcome filter collapse. For an overview of particle
filters we refer to van Leeuwen [5] and van Leeuwen et al. [9].

One idea to prevent filter collapse is to develop hybrid
methods between particle filters and ensemble Kalman filters.
Examples for hybrid filters are the adaptive Gaussian mixture
filters [10], the ensemble Kalman particle filter [11], which
is further developed in Robert and Künsch [12] and Robert
et al. [13], the merging particle filter [14] and the nonlinear
ensemble transform filter (e.g., [15, 16]) which resembles the
ensemble transform Kalman filter [17]. Transportation particle
filters follow the approach to use transformations to transport
particles in a deterministic way. A one-step transportation is
carried out in Reich [18] and tempering of the likelihood, which
leads to a multi-step transportation, is presented in, e.g., Neal
[19], DelMoral et al. [20], Emerick and Reynolds [21], and Beskos
et al. [22]. The guided particle filter described in van Leeuwen
et al. [23] and van Leeuwen [5] tempers in the time domain,
which means that background particles at each time step between
two observations are used. The transportation of particle filters
can also be described by differential equations. In Reich [24]
and Reich and Cotter [25], the differential equation is simulated
using more and more tempering steps. Approximations to the
differential equation can also be derived byMarkov-ChainMonte
Carlo methods [25–27]. Localization is another approach in
particle filter methods to overcome filter collapse. Localization
schemes based on resampling are used in e.g., the local particle
filter [28] which is applied for mesoscale weather prediction [29].
Additionally, the local particle filter (LPF) [30], the localized
adaptive particle filter (LAPF; [31]) and the localized mixture
coefficients particle filter (LMCPF; [32]) are based on localization
schemes.

Moreover, the localized mixture coefficients particle
filter (LMCPF) is based on Gaussian mixture distributions.
In 1972, Alspach and Sorenson already introduced an
approach to nonlinear Bayesian estimation using Gaussian
sum approximations combined with linearization ideas [33].
Anderson and Anderson first presented a Monte Carlo approach
with prior approximation by Gaussian or sum of Gaussian
kernels in geophysical literature [34]. They proposed to extend
the presented kernel filter by the transformation of the equations
to a subspace spanned by the ensemble members to apply the
filter in high-dimensional systems. The LMCPF is based on
this kind of transformation. The first attempts were followed
from various approaches to filtering with the usage of Gaussian
mixture distributions (e.g., [35–38]). Some of the particle filters
mentioned above are based on Gaussian mixture distributions as
well (e.g., [10, 11, 24]).

The localized particle filter methods LPF [30], LAPF and
LMCPF are structured in a way that a consistent implementation

in existing LETKF code is possible. In Kotsuki et al. [39], the
LPF and its Gaussian mixture extension, which resembles the
LMCPF, are tested in an intermediate AGCM (SPEEDY model).
Moreover, LAPF and LMCPF are applied in the global NWP
system at DWD (see [31, 32]). The comparison of the LMCPF to
the LETKF for the global ICON model [40] yields mixed results.
In this study, we investigate if the LMCPF can outperform the
LETKF with respect to a standard NWP setup and standard
NWP score in the dynamical systems Lorenz 1963 and Lorenz
1996. We will see later that the answer is indeed positive and
that the LMCPF yields far better results than the LAPF. To
this end, a model error is introduced by applying different
model parameters for the true run and in the forecast step.
Furthermore, we focus on the root-mean-square-error of truth
minus background, respectively, analysis ensemble mean, which
is an important score in NWP, rather than looking at an entire
collection of measures. In this study, we present and apply a
revised version of the LMCPF. We derive the exact Gaussian
particle weights, which are then used in the resampling step
instead of approximate weights. This promising completion of
the method was also recently introduced in Kotsuki et al. [39]
and tested for an intermediate AGCM model. We will see that
the revised method leads to the survival of a larger selection of
background particles and as a consequence thereof to a higher
filter stability concerning the spread control parameters.

In addition, the individual ingredients of the LMCPF method
are portrayed in one assimilation step with respect to the
Lorenz 1963 model. Background and analysis ensemble as
well as the true state and observation vector can be easily
displayed for this three dimensional model. With this part,
we want to illustrate the advantage of LMCPF compared to
LAPF in the case that the observation is far away from the
ensemble. Furthermore, the difference between the approximate
and exact particle weights are discussed and the improvement of
LMCPF over LETKF for a bimodal background distribution is
shown.

The manuscript is structured as follows. Section 2 covers
the experimental setup based on the dynamical systems
Lorenz 1963 and Lorenz 1996. The three localized ensemble
data assimilation methods LMCPF, LAPF and LETKF are
mathematically described in Section 3, which includes the
derivation of the exact particle weights for the LMCPF.
In Section 4, the LMCPF is studied for one assimilation
step with respect to the Lorenz 1963 model. Finally,
LMCPF is compared to LETKF and LAPF for Lorenz 1963
and Lorenz 1996 in Section 5 and the conclusion follows
in Section 6.

2. EXPERIMENTAL SETUP: LORENZ
MODELS

The mathematician Edward Lorenz first presented the chaotic
dynamical systems Lorenz 1963 and 1996. These are frequently
used to develop and test data assimilation methods in a well
understood and controllable environment. This section aims to
state the experimental setup.
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2.1. Lorenz 1963 Model
In Lorenz [41], Edward Lorenz introduced a nonlinear dynamical
model, which is denoted as Lorenz 1963. Due to its chaotic
behavior, the system has become a popular toy model to
investigate and compare data assimilation methods (e.g., [34, 38,
42]).

The dynamics of Lorenz 1963 represent a simplified version
of thermal convection. The three coupled nonlinear differential
equations are given by

dx1

dt
= σ (x2 − x1) (1)

dx2

dt
= ρx1 − x2 − x1x3 (2)

dx3

dt
= x1x2 − βx3 (3)

where x1(t), x2(t), and x3(t) are the prognostic variables and σ ,
ρ, and β denote the parameters of the model. In terms of the
physical interpretation, σ is the Prandtl number, ρ a normalized
Rayleigh number and β a non-dimensional wave number (see
[43]). In this work, we follow Lorenz’ suggestion to set σ = 10,
ρ = 28 and β = 8/3, for which the system shows chaotic
behavior [41]. In case of this parameter setting, the popular
butterfly attractor is obtained (see Figure 5). Furthermore,
x1 describes the intensity of the convective motion, x2 the
temperature difference between the ascending and descending
currents and the last variable x3 denotes the distortion of the
vertical temperature profile from linearity [41].

2.2. Lorenz 1996 Model
Since the introduction of the Lorenz 1996 model in Lorenz
[44], the dynamical system is used as popular test bed
for data assimilation methods (e.g., [28, 36, 45]). Not only
different adaptions of the ensemble Kalman filter but also
particle filter schemes or hybrid methods combining particle
filter and EnKF schemes are tested in the high-dimensional
and chaotic environment given by Lorenz 1996 with specific
parameter settings (e.g., [30, 46, 47]). In contrast to Lorenz
1963, localization is an important component of the investigation
of data assimilation methods and the later Lorenz 1996 model
invites to test localization schemes (e.g., [48]).

The model considers n ∈ N coupled time-dependent
variables, whose dynamics are described by a system of n ordinary
differential equations. We consider the state variable as x(t) =
(x(1)(t), . . . , x(n)(t)) ∈ R

n for t ∈ R+. The dynamics of the N-th
component are governed by the ordinary differential equation

dx(N)

dt
= −x(N−2)x(N−1) + x(N−1)x(N+1) − x(N) + F (4)

where the constant F is independent of N and describes a forcing
term. Furthermore, we define

x(N−n)
: = x(N) (5)

x(N+n)
: = x(N) (6)

so that Equation (4) is valid for any N = 1, . . . , n. In addition
to the external forcing term, the linear terms describe internal
dissipation whereas the nonlinear, respectively, quadratic terms
simulate advection. In this study, we use F = 8 as forcing
term for the true run and choose differing values for the model
propagation step.

In a meteorological context, each variable represents an
atmospheric quantity, e.g., temperature, at one longitude on a
latitude circle. The equidistant distribution of the nodes on a
latitude circle for n = 40 variables is illustrated in Figure 1.

2.3. Data Assimilation Setup
To test data assimilation methods with the Lorenz models,
observations are produced at equidistant distributed
measurement times. The system of differential equations of
Lorenz 1963 model, respectively, Lorenz 1996 model is solved by
a fourth-order Runge-Kutta scheme using a time-step of 0.05.
The integration over a certain time is stored as truth, from which
observations are generated with a distance of 1t time units.
The true run is performed with model parameters σ true = 10,
ρ = 28 and β = 8/3 for Lorenz 1963 and with the forcing
term Ftrue = 8 for the 40-dimensional Lorenz 1996 model. The
integration of the ensemble of states is accomplished for different
model parameters σ for Lorenz 1963 and F for Lorenz 1996 in
order to simulate model error. Furthermore, the observation
operatorH ∈ R

m×n is chosen linear for both dynamical systems.
The observation vector yk at the k−th measurement at time tk is
defined by

yk = H · xtruek + η ∈ R
m (7)

whereas the entries of η ∈ R
m are randomly drawn from

a Gaussian distribution with zero expectation and standard
deviation σobs. Additionally, the observation error covariance
matrix is represented by

R = σ 2
obs · Im ∈ R

m×m (8)

with the m × m-identity matrix Im. The ensemble is initialized
by random draws from a uniform distribution around the true
starting point xtrue0 .

3. LOCALIZED ENSEMBLE DATA
ASSIMILATION METHODS

Data assimilation methods aim to estimate some state vector.
Methods based on an ensemble of states can additionally estimate
the uncertainty of the state and provide an idea for the associated
distribution. This section covers three localized ensemble data
assimilation methods, which are compared against each other
later in this paper. The localized adaptive particle filter (LAPF;
[31]) describes a particle filter method which is applicable
to real-size numerical weather prediction and implemented in
the system of the German meteorological service (DWD). To
improve the method and approximate the scores, the LAPF
was further developed, which resulted in the localized mixture
coefficients particle filter (LMCPF). The LMCPF combines a
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FIGURE 1 | Set-up for Lorenz 1996 model with n = 40 variables.

resampling step following the Monte Carlo approach with a shift
of the particles toward the observation. The shift results from the
application of Gaussian (mixture) distributions and exists in the
localized ensemble transform Kalman filter (LETKF) [4] in the
form that the ensemble mean is shifted. The LETKF is widely
used in the data assimilation community and therefore already
improved. Due to similarities between LETKF and the particle
filter methods LAPF and LMCPF, the ensemble Kalman filter
represents a good method to compare the newer methods LAPF
and LMCPF with.

All of these ensemble methods fulfill Bayes’ theorem in
approximation. With the aid of Bayes’ formula, a given prior
or background distribution can be combined with the so-
called likelihood distribution to obtain a posterior or analysis
distribution. In terms of probability density functions, the
theorem yields

p(a)(x) = cap(y|x)p(b)(x), x ∈ R
n, y ∈ R

m (9)

for the prior probability density function (pdf) p(b) :Rn →
[0,∞), the likelihood pdf p(·|x) :Rm → [0,∞) for x ∈ R

n

and the resulting posterior pdf p(a) :Rn → [0,∞) with n,m ∈
N. In realistic NWP, the model space dimension n ∈ N is
in general larger than the dimension of the observation space
described by m ∈ N. Furthermore, the constant ca ∈ R in
Equation (9) ensures that the resulting function is again a pdf.
Due to the normalization constant, the likelihood function does

not necessarily have to be a pdf to satisfy Bayes’ formula. This
form of Bayes’ theorem is derived from the formula of the density
function of a conditional probability function which is proven in
Section 4-4 of Papoulis and Pillai [49].

In data assimilation, the likelihood is given by the observation
error pdf as function of x ∈ R

n for given observation vector
y ∈ R

m. We assume a Gaussian distributed observation error
for all presented filters, i.e.,

p(y|x) =
1

√
(2π)m det(R)

· exp
(

−
1

2
(y−Hx)TR−1(y−Hx)

)

,

(10)

for x ∈ R
n, some observation vector y ∈ R

m, the linear
observation operator H :R

n → R
m and the observation error

covariance matrix R ∈ R
m×m. The derivations of the following

methods are carried out for a time-constant linear observation
operator H. The assumption on the prior distribution differs for
the filters. In the LAPF, the prior pdf is approximated by a sum
of delta functions following the idea of the classical particle filter.
The LMCPF assumes a sum of Gaussian kernels while the LETKF
approximates the prior pdf by a Gaussian pdf.

All of the following methods are based on localization so that
the steps are carried out locally at a series of analysis points.
Furthermore, the observations are weighted depending on the
distance to the current location. As Lorenz 1963 is only built on
three variables, localization is not implemented for this model.
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For the Lorenz 1996 model, the implementation is based on the
smallest distance between two variables along the circle (e.g.,
[50]), which is plotted in Figure 1. The distances are weighted
by the fifth-order polynomial localizationGaspari-Cohn function
described in Gaspari and Cohn [51]. Moreover, the function
depends from the localization radius rloc > 0. The resulting
weight matrix is applied by the Schur-product to the observation
error covariance matrix R, which is then used to derive the
analysis ensemble by one of the following methods.

In addition, the equations of the following localized methods
are carried out in ensemble space to reduce the dimension. The
ensemble space is spanned by the columns of

X : =
(

x(b,1) − x̄(b), x(b,2) − x̄(b), . . . , x(b,L) − x̄(b)
)

∈ R
n×L (11)

with ensemble size L ∈ N>1, respectively

Y : =
(

y(b,1) − ȳ(b), y(b,2) − ȳ(b), . . . , y(b,L) − ȳ(b)
)

∈ R
m×L (12)

where x̄(b) and ȳ(b) denote the mean of the background ensemble
(x(b,l))l=1,...,L, i.e.,

x̄(b) =
1

L

L
∑

l=1

x(b,l) (13)

respectively the mean of the ensemble in observation space

ȳ(b) =
1

L

L
∑

l=1

y(b,l). (14)

The ensemble in observation space is obtained by the application
of the observation operator H to the background ensemble, i.e.,

y(b,l) : = Hx(b,l), l = 1, . . . , L. (15)

The orthogonal projection P onto the ensemble space span(Y)
weighted by R−1 is defined as

P : = Y(Y∗Y)−1Y∗ = Y(YTR−1Y)−1YTR−1 (16)

whereas

Y∗ = YTR−1 (17)

denotes the adjoint of Y with respect to the weighted scalar
product < ·, · >R−1 on R

m and the standard scalar product on
R

L. To ensure the invertibility of Y∗Y , the formulas are restricted
to C(Y∗) – the column space or range of Y∗ – which is a subset of
N(Y)⊥ ⊂ R

L (see Lemma 3.2.1 and Lemma 3.2.3 in Nakamura
and Potthast [52]). Additionally, the matrix Y∗Y is denoted as

A : = Y∗Y = YTR−1Y . (18)

3.1. Localized Adaptive Particle Filter
The LAPF, introduced in Potthast et al. [31], is based on the
idea for classical particle filters (e.g., the Sequential Importance
Resampling Filter by Gordon et al. [8]) to approximate the
background distribution by a sum of delta distributions. Let x(b,l)

for l = 1, . . . , L be an ensemble of background particles with
ensemble size L ∈ N>1. The background pdf is described by

p(b)(x) : =
1

L

L
∑

l=1

δ(x− x(b,l)). (19)

With Bayes’ Theorem for pdfs in Equation (9) and the
observation error pdf p(y|x), the posterior pdf results in

p(a)(x) = c(a)
L

∑

l=1

p(y|x)δ(x− x(b,l)) (20)

with the normalization factor c(a) ∈ R>0. Following Anderson
and Anderson [34], the relative probability pl that a sample
should be taken from the l-th summand of p(a) in the resampling
step, is derived by

pl =
∫

c(a)p(y|x)δ(x− x(b,l)) dx
∫

p(a)(x) dx
=

p(y|x(b,l))
∑L

l=1 p(y|x(b,l))
,

(21)

for l = 1, . . . , L. With the choice of a normal distributed
observation error (Equation 10) this leads to

pl =
e−

1
2 (y−Hx(b,l))TR−1(y−Hx(b,l))

∑L
l=1 e

− 1
2 (y−Hx(b,l))TR−1(y−Hx(b,l))

(22)

as the normalization factor in Equation (10) does not depend on l
and can be canceled. To resample from the posterior distribution,
stratified resampling is performed in ensemble space. To this end,
the weights

w̃(l)
: = e

1
2 (y−Hx(b,l))TR−1(y−Hx(b,l)), l = 1, . . . , L (23)

are transformed to ensemble space with the help of the
orthogonal projection P defined in Equation (16). With an
analogous approach as in Section 3.2.1, the weights in ensemble
space yield

w̃(l)
ens = e−

1
2 (C−el)

TA(C−el) (24)

for l = 1, . . . , Lwith A = YTR−1Y and the projected observation
vector

C = A−1YTR−1(y− ȳ(b)). (25)

A detailed derivation of the weights in ensemble space is given
in Potthast et al. [31]. These weights are normalized to obtain the
relative weights

w̃(a,l) = L ·
w̃
(l)
ens

∑L
l=1 w̃

(l)
ens

, l = 1, . . . , L (26)
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which sum up to L. As next step, stratified resampling [53]
is performed based on the ensemble weights. To this end,
accumulated weights are calculated. For l = 1, . . . , L, the
accumulated weights are defined by

wac0 = 0, wacl = wacl−1
+ w̃(a,l). (27)

Additionally, L on the interval [0, 1] uniformly distributed
random numbers rl are generated to introduce the variable Rl =
l−1+rl for l = 1, . . . , L. Then, the stratified resampling approach

yields a matrix

(

W ∈ {0, 1}L×L with entries

(

W =
{

1, Rl ∈ (waci−1 ,waci ]

0, else
(28)

where the number of ones in the i-th row indicates how often the
i-th particle is chosen.

The particles chosen in the stratified resampling step build
an ensemble of the background particles, which can be
contained multiple times. To increase the ensemble variation,
new particles are drawn from a Gaussian mixture distribution.
Let each chosen particle represent the expectation of a Gaussian
distribution with covariance σ (ρ)2/(L − 1) · IL ∈ R

L×L.
Under allowance of the frequency, new particles are drawn
from the Gaussian distribution. The covariance matrix equals
the estimated background covariance matrix in ensemble space
Bens = 1/(L − 1)· IL ∈ R

L×L multiplied with an inflation
factor σ (ρ). The inflation factor is a rescaled version of the
adaptive inflation factor ρ which is used in the LETKF (see [4]).
The parameter ρ is defined by Equations (86) and (87). The
dependence of σ (ρ) on ρ is given by Equation (88). The detailed
description is given in Potthast et al. [31] and in Section 3.2.3.

All in all, the steps can be combined in a matrix WLAPF. Let
Z ∈ R

L×L be a matrix whose entries originate from a standard

normal distribution. Together with the resampling matrix

(

W, the
matrixWLAPF is defined by

WLAPF =

(

W+
σ (ρ)

√
L− 1

· Z. (29)

The full analysis ensemble is calculated by multiplication of the
background ensemble with the matrixWLAPF, i.e.,

(x(a,l))l=1,...,L = x̄(b) · 1+ X ·WLAPF (30)

where X describes the ensemble pertubation matrix defined in
Equation (11) and 1 ∈ R

1×L denotes a row vector with ones as
entries. The multiplication of background mean with 1 results in
a matrix of size n × L with the mean vector replicated in each of
the L columns.

3.2. Localized Mixture Coefficients Particle
Filter
The LMCPF, presented in Walter et al. [32], builds on the LAPF
but differs in the assumption on the background distribution. In
difference to the ansatz of classical particle filters, the background
particles are interpreted as the mean of Gaussian distributions.

The background pdf is described as the sum of these Gaussians
where each distribution has the same covariance matrix, i.e.,

p(b)(x) : = c(b)
L

∑

l=1

e−
1
2 (x−x(b,l))TB−1(x−x(b,l)) (31)

with ensemble size L ∈ N>1 and the normalization factor

c(b) : =
1

L ·
√
(2π)n det (B)

. (32)

The covariance matrix is estimated by the background particles,
i.e.,

B : = γXXT (33)

with the ensemble pertubation matrix X defined in Equation (11)
and the parameter

γ =
κ

L− 1
∈ R+. (34)

With the parameter κ , the background uncertainty can be
controlled. The general covariance estimator is given for κ =
1. To ensure the invertibility of B, the formulas are restricted
to C(X) – the range of X. From definition (Equation 33) the
covariance matrix in ensemble space is derived by

Bens = γ IL ∈ R
L×L (35)

with the identity matrix IL ∈ R
L×L. Following Bayes’ Theorem,

the analysis pdf is given by

p(a)(x) : = p(y|x) · p(b)(x) = c̃(a)
L

∑

l=1

p(y|x) · p(b,l)(x) (36)

where p(b,l)(x) denotes the l-th summand of the background pdf
in Equation (31). The likelihood p(y|x) is chosen as Gaussian (see
Equation 10). Following Theorem 4.1 in Anderson and Moore
[54], the analysis pdf can be explicitly calculated. The result is
again a Gaussian mixture pdf, i.e.,

p(a)(x) = c(a)
L

∑

l=1

w(l) · e
(

− 1
2 (x−x(a,l))T (B(a))−1(x−x(a,l))

)

(37)

with

B(a) : = (B−1 +HTR−1H)−1 (38)

x(a,l) : = x(b,l) + B(a)HTR−1(y−Hx(b,l)) (39)

w(l)
: = e

(

− 1
2 (y−Hx(b,l))Tγ−1(γ−1R+YYT )−1(y−Hx(b,l))

)

(40)

and a normalization factor c(a) such that the integral of p(a)(x)

over the range of X denoted by C(X) yields one. The weights w(l)

are important to obtain a sample from the posterior distribution.
The relative probability that a sample from the l-th summand of
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p(a) should be taken is described in Anderson and Anderson [34]
by

pl =
∫

c(a)w(l) · e
(

− 1
2 (x−x(a,l))T (B(a))−1(x−x(a,l))

)

dx
∫

p(a)(x) dx
=

w(l)

∑L
l=1 w

(l)
. (41)

With the following steps, a posterior ensemble is generated as a
sample of the posterior distribution in Equation (37).

3.2.1. Stratified Resampling
In the original version of the LMCPF described in Walter et al.
[32], the particle weights are approximated by those of the
LAPF defined in Equation (23). In this work, the exact Gaussian
mixture weights are derived and applied in the resampling step.
Furthermore, the effect on the filter performance is discovered. In
Kotsuki et al. [39], the exact weights are applied to the Gaussian
mixture extension of the LPF [30] and an improvement of the
stability of the method is detected with respect to the inflation
parameters within an intermediate AGCM.

To reduce the dimensionality, the weights in Equation (40) are
transformed and projected in ensemble space. To this end, the
sum of the projection P defined in Equation (16) and I − P with
the identity matrix I is applied to the exponent of Equation (40).
The weights are transformed to

w(l) = e

(

− 1
2 ([P+(I−P)](y−Hx(b,l)))Tγ−1(γ−1R+YYT )−1[P+(I−P)](y−Hx(b,l))

)

(42)

= cI−P · e
(

− 1
2 (y−Hx(b,l))TPTγ−1(γ−1R+YYT )−1P(y−Hx(b,l))

)

(43)

whereas cI−P is defined by

cI−P : = e

(

− 1
2 (y−Hx(b,l))T (I−P)Tγ−1(γ−1R+YYT )−1(I−P)(y−Hx(b,l))

)

. (44)

First, the observation minus first guess vector can be reshaped to

y−Hx(b,l) = (y− ȳ(b))+ (ȳ(b) −Hx(b,l)) = y− ȳ(b) − Yel (45)

with the l-th unit vector el ∈ R
L. The application of the

projection matrix to Equation (45) leads to

P(y− Hx(b,l)) = YA−1YTR−1[(y− ȳ(b))− Yel] = Y(C − el) (46)

whereas C denotes the projected observation vector in ensemble
space

C : = A−1YTR−1(y− ȳ(b)). (47)

With the aid of Equation (45), the application of I − P to
observation minus first guess vector yields

(I − P)(y−Hx(b,l)) = (I − P)(y− ȳ(b))− (I − P)Yel (48)

= (y− ȳ(b))− YA−1YTR−1(y− ȳ(b))

− Yel + YA−1YTR−1Yel (49)

= (y− ȳ(b))− YC. (50)

This expression do not depend on l so that cI−P of Equation
(44) is constant and has no impact on the relative weights of the
particles [see Equation (43)]. To derive the transformation, the
equality

YT(γ−1R+ YYT)−1 = (γ−1I + YTR−1Y)−1YTR−1 (51)

is used. Equation (51) is shown by multiplying

(γ−1I + YTR−1Y)YT = YTR−1(γ−1R+ YYT) (52)

from the left with the inverse

(γ−1I + YTR−1Y)−1 (53)

and from the right with the inverse matrix

(γ−1R+ YYT)−1 = R−1(γ−1I + YYTR−1)−1. (54)

The invertibility of γ−1I + Y∗Y and γ−1I + YY∗ on N(Y)⊥,
respectively, C(Y) follows from Theorem 3.1.8 in Nakamura and
Potthast [52]. Y∗ denotes the adjoint matrix defined in Equation
(17). The first mixed term

(P(y−Hx(b,l)))Tγ−1(γ−1R+ YYT)−1(I − P)(y−Hx(b,l))

(55)

= (y−Hx(b,l))TPTγ−1(γ−1R+ YYT)−1(y−Hx(b,l)) (56)

−(y−Hx(b,l))TPTγ−1(γ−1R+ YYT)−1P(y−Hx(b,l)) (57)

reduce to zero if the equality

PT(γ−1R+ YYT)−1 = PT(γ−1R+ YYT)−1P (58)

holds. Starting with the right hand side of the equation, we obtain

PT(γ−1R+ YYT)−1P = R−1YA−1(γ−1I

+YTR−1Y)−1YTR−1YA−1YTR−1 (59)

= R−1YA−1(γ−1I + YTR−1Y)−1YTR−1

(60)

= PT(γ−1R+ YYT)−1 (61)

with the application of equality [Equation (51)] in the first and
last step and the definition of A in Equation (18) in the second
step. The reduction of the second mixed term to zero can be
proven following an analog approach. The combination of the
formulation in Equation (46) with Equation (51) leads to the
exponent

(P(y−Hx(b,l)))Tγ−1(γ−1R+ YYT)−1P(y−Hx(b,l))(62)

= (C − el)
TYTγ−1(γ−1R+ YYT)−1Y(C − el) (63)

= (C − el)
Tγ−1(γ−1I + YTR−1Y)−1YTR−1Y(C − el) (64)

Finally, the particle weights in ensemble space yield

w(l)
ens = e−

1
2 (C−el)

Tγ−1(γ−1I+A)−1A(C−el), l = 1, . . . , L. (65)
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with the relation w
(l)
ens = cI−P · w(l) to the weights in model

space with cI−P defined in Equation (44). In the following, the
normalized weights

w(a,l) = L ·
w
(l)
ens

∑L
l=1 w

(l)
ens

, l = 1, . . . , L (66)

are used which sum up to L.
Following the approach of stratified resampling [53],

uniformly distributed random numbers are used to calculate
the frequency of each particle with the aid of the respective
accumulated weights. For l = 1, . . . , L, the accumulated weights
are defined by

wac0 = 0, wacl = wacl−1
+ w(a,l). (67)

Then, L on the interval [0, 1] uniformly distributed random
numbers rl are generated to introduce the variable Rl = l− 1+ rl
for l = 1, . . . , L. The approach of stratified resampling then leads

to the matrix

(

W ∈ {0, 1}L×L with entries

(

W =
{

1, Rl ∈ (waci−1 ,waci ]

0, else
(68)

where the number of ones in the i-th row indicates how often the
i-th particle is chosen.

3.2.2. Shift of Particles
Compared to the LAPF, the Gaussian mixture representation
leads to a shift of the particles toward the observation. The
shift resembles the shift of the mean of all particles toward the
observation in ensemble space in the LETKF (see [4]). The new
location of the particles is described by the expectation vectors in
Equation (39) of the kernels of the posterior Gaussian mixture
distribution. To carry out the particle shift, the transformed
formula of Equation (39) is derived. First, the representation of
the analysis covariance matrix B(a) defined in Equation (38) is
derived. To this end, the analysis covariance matrix is reshaped
to the known representation

B(a) = (I − BHT(R+HBHT))−1B. (69)

The equivalence of both formulas is proven in Lemma 5.4.2 in
Nakamura and Potthast [52] for example. With the help of the
definition of B in Equation (33), the representation can further
reformulated to

B(a) = (I − γXXTHT(R+HγXXTHT)−1H)γXXT (70)

= γX(I − γYT(R+ γYYT)−1Y)XT (71)

= γX(I − YT(γ−1R+ YYT)−1Y)XT . (72)

The application of equality Equation (51) in Equation (72) in
combination with the definition of A (Equation (18)) leads to

B(a) = γX(I − (γ−1I + A)−1A)XT (73)

= γX((γ−1I + A)−1(γ−1I + A− A))XT (74)

= X(γ−1I + A)−1XT . (75)

so that the analysis covariance matrix in ensemble space is given
by

B(a)ens : = (γ−1I + A)−1. (76)

The insertion of Equation (75) in the definition of x(a,l) in
Equation (39) yields

x(a,l) = x(b,l) + X(γ−1I + A)−1XTHTR−1(y−Hx(b,l)) (77)

= x̄(b) + x(b,l) − x̄(b)X(γ−1I + A)−1YTR−1(y− ȳ(b) − Yel).

(78)

The second step results from the application of Equation (45).
The equation can be further reshaped with the equality x(b,l) −
x̄(b) = Xel and the multiplication of I = AA−1, i.e.,

x(a,l) = x̄(b) + X(el + (γ−1I + A)−1AA−1YTR−1(y− ȳ(b) − Yel))

(79)

= x̄(b) + X(el + (γ−1I + A)−1A(C − el)). (80)

The last formulation results from the definition of the
projected observation vector C given in Equation (47) and the
definition of A in Equation (18). The ensemble representation of
the analysis expectation is then given by

β(a,l)
: = el + (γ−1I + A)−1A(C − el) ∈ R

L. (81)

Since the l-th unit vector el ∈ R
L denotes the l-th background

particle in ensemble space, the second summand denotes the shift
vectors, i.e.,

β(shift,l)
: = (γ−1I + A)−1A(C − el) ∈ R

L. (82)

All shift vectors are taken together in the matrix

W(shift)
: =

(

β(shift,1), . . . ,β(shift,L)
)

∈ R
L×L. (83)

3.2.3. Draw Particles From Gaussian Mixture

Distribution
In the last part of the LMCPF method the analysis ensemble
is perturbed to increase the variability. To this end, new
particles are drawn from a Gaussian distribution around each
shifted particle which was previously selected. If a particle is
selected multiple times, the same amount of particles is drawn
from the respective Gaussian distribution. This approach equals
the generation of L particles following the Gaussian mixture
distribution in ensemble space, i.e.,

p(a)ens(β) : = c(a)ens

L
∑

l=1

e−
1
2 (β−β(a,l))T (σ (ρ)2B

(a)
ens)

−1(β−β(a,l)),

β ∈ R
L. (84)

The covariance matrix of each Gaussian is inflated by the factor
σ (ρ) ∈ R>0 to control the ensemble spread. The variable ρ
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denotes the inflation factor implemented in the LETKF method
(see [4]), which follows an ansatz introduced by Desroziers et al.
[55] and Li et al. [45]. Based on statistics of observations minus
background

do−b = y−Hx̄(b) (85)

an adaptive inflation factor is calculated (see [55] or section e on
page 352f. of Potthast et al. [31]), i.e.,

ρ̃ =
(do−b)Tdo−b − trace(R)

trace(HBHT)
. (86)

To smooth the factor over time, the formula

ρ = αρ̃ + (1− α)ρold (87)

is applied for some α ∈ [0, 1] and the inflation factor ρold of the
previous time step. In the LMCPF method as well as the LAPF
method, the inflation factor ρ of the LETKF method is scaled.
The factor σ (ρ) is derived by

σ (ρ) : =















c0, ρ < ρ(0),

c0 + (c1 − c0) · ρ−ρ(0)

ρ(1)−ρ(0) , ρ(0) ≤ ρ ≤ ρ(1),

c1, ρ > ρ(1)

(88)

with parameters ρ(0), ρ(1) ∈ R+ and c0, c1 ∈ R+. In the LETKF
method, the analysis ensemble is inflated around the analysis
ensemble mean. In the LAPF and LMCPF method, particles are
resampled from the background ensemble, shifted (in case of the
LMCPF) and then randomly perturbed to increase the ensemble
variability. Due to these differences in the multiplicative inflation
approach, the application of a scaled version of ρ is necessary and
yielded better results in experiments. The boundaries c0 and c1
are tuning parameters. Due to the random drawing around each
resampled particle, the parameters c0 and c1 should be chosen
smaller than the parameters ρ(0), ρ(1) in the LETKF method.
These parameters describe the upper and lower bound of ρ.

All in all, the steps of selecting, moving and drawing can be
combined in the matrixWLMCPF, i.e.,

WLMCPF : =

(

W+W(shift) (

W+σ (ρ) · [B(a)ens]
1/2 · Z. (89)

with

(

W defined in Equation (68), W(shift) following Equation
(83) and a random matrix Z ∈ R

L×L with standard normally
distributed random numbers as entries. Then, the full analysis
ensemble is obtained by

(x(a,l))l=1,...,L = x̄(b) · 1+ X ·WLMCPF (90)

where 1 ∈ R
1×L describes a row vector with ones as entries and

X the ensemble pertubation matrix defined in Equation (11).
In Feng et al. [56], two nonlinear filters are compared which

can preserve the first and secondmoments of the classical particle
filter. First, the local particle filter in its version introduced
in Poterjoy et al. [57] represent a localized adaption of the

classical particle filter. Second, the local nonlinear ensemble
transform filter (LNETF; [16]) is an approximation to the
classical particle filter as well but instead of a classical resampling
step a deterministic square root approach is followed. This is
based on ideas of LETKF. Compared to the local particle filter
and LNETF, the LMCPF uses a Gaussian mixture probability
density function to approximate the background. With the
stratified resampling step the particles are resampled following
the posterior distribution, which is exact for Gaussian mixtures
and Gaussian observation error. Due to the assumption of
Gaussian mixture densities, the resampled particles are shifted
which results in the exact mean vectors of the Gaussians of the
posterior pdf, and also, temporarily, the exact covariances. To
increase the variability of the ensemble, new particles are drawn
from the posterior distribution as follows. Around each particle,
new particles are randomly drawn from a Gaussian distribution
with the exact mean vector and the exact covariance multiplied
with an inflation factor. In contrast to the local particle filter, there
is no rescaling of the ensemble applied in the LMCPF method.
That means, the LMCPF will preserve the moments of a Gaussian
mixture filter approximately up to sampling errors and inflation.

3.3. Localized Ensemble Transform Kalman
Filter
The Localized Ensemble Transform Kalman Filter (LETKF)
is first introduced in Hunt et al. [4] and is widely used in
numerical weather prediction (e.g., [58]). The LETKF is based
on equations of the Ensemble Kalman Filter (EnKF; [1, 3, 59])
transformed and performed in ensemble space. As the LAPF
and LMCPF the observation error is chosen to be Gaussian
distributed with the pdf described in Equation (10). In contrast
to the methods described previously, this method assumes the
background ensemble to represent a Gaussian distribution as
well, i.e.,

p(b)(x) : = c(b) · e−
1
2 (x−x̄(b))TG−1(x−x̄(b)), x ∈ R

n. (91)

G denotes the estimated background covariance matrix following
Equation (33) with γ = 1/(L− 1), i.e.,

G : =
1

L− 1
XXT ∈ R

n×n. (92)

To distinguish from the more general version of the covariance
matrix introduced in Section 3.2 about the LMCPF method,
the standard covariance estimator is named G. The transformed
version in ensemble space—which is spanned by the columns of
X in Equation (11)—is then given by

Gens : =
1

L− 1
IL ∈ R

L×L (93)

with the L × L - identity matrix IL. The application of
Bayes’ formula (9) to the background distribution p(b) and
the observation error pdf Equation (10) leads to the Gaussian
analysis pdf

p(a)(x) = c(a)e

(

− 1
2 (x−x̄(a))T (G(a))−1(x−x̄(a))

)

(94)
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with the covariance matrix

G(a) = (G−1 +HTR−1H)−1 (95)

and the expectation vector

x̄(a) = x̄(b) + G(a)HTR−1(y−Hx̄(b)). (96)

The derivation can be found for example in Nakamura and
Potthast [52] or in Evensen et al. [3]. A more common
formulation of the update equations can be derived by
rearrangement of Equations (95) and (96). Following Lemma
5.4.2 in Nakamura and Potthast [52], an equivalent form of the
covariance matrix is given by

G(a) = (In − GHT(R+HGHT))−1G = (In − K)−1G (97)

with the Kalman gain matrix K ∈ R
n×n and identity matrix

In ∈ R
n×n. The covariance matrix in ensemble space is derived

in Equations (70)–(98), i.e.,

G(a)
ens : = ((L− 1) · IL + A)−1 (98)

with identity matrix IL ∈ R
L×L and A defined in Equation (18).

The insertion of Equation (75) applied toG
(a)
ens in the definition of

x̄(a) in Equation (96) leads to

x̄(a) = x̄(b) + X((L− 1) · I + A)−1XTHTR−1(y−Hx̄(b))(99)

= x̄(b) + X · G(a)
ensY

TR−1(y− ȳ(b)). (100)

That means, the analysis mean in ensemble space is given by

β̄(a)
: = G(a)

ensY
TR−1(y− ȳ(b)) ∈ R

L. (101)

There are multiple approaches to obtain the full analysis
ensemble in dependence on the analysis covariance matrix. The
LETKF is based on the square root method. The weightingmatrix
WLETKF is defined by the square root

WLETKF = [(L− 1)G(a)
ens]

1
2 (102)

which is related to the covariance matrix by

G(a)
ens = (L− 1)WLETKF(WLETKF)

T . (103)

Additionally, the posterior covariance is inflated. To this end,
an adaptive inflation factor ρ based on observation minus
background statistics is derived by Equations (86) and (87). Then,
the full analysis ensemble is calculated by

(x(a,l))l=1,...,L = x̄(a) · 1+ X · √ρ ·WLETKF (104)

where 1 ∈ R
1×L describes a row vector with ones as entries and

X the ensemble pertubation matrix defined in Equation (11).

4. STUDY OF INDIVIDUAL STEPS OF
LMCPF

The LMCPF method can be divided in three parts: stratified
resampling (Section 3.2.1), shift of particles (Section 3.2.2) and
drawing new particles from a Gaussian mixture distribution
(Section 3.2.3). In this section, we discuss the behavior of the
ensemble during the different parts of a single data assimilation
step performed by the LMCPF method.

4.1. Stratified Resampling
The stratified resampling step represents the main idea of the
particle filter method. Only the particles with sufficient weight
are chosen. In the LAPF and LMCPF methods, the resampling
step is carried out in the ensemble space in order to reduce
the dimension and prevent filter collapse. This step occurs in
both methods but different particle weights are used. The relative
weights of the LAPF Equation (26) depend on the distance
of the particles to the observation and the observation error
covariance. In case of the LMCPF, the exact weights Equation (66)
additionally depend on the particle uncertainty parameter κ .

Figure 2 illustrates the relation between these two weights.
If κ tends to zero, the normalized Gaussian mixture weights
tend to the classical particle filter weights, which are used in
the LAPF and were previously used in the LMCPF method. The
particle weights are derived from the case illustrated in Figure 3.
The approximate weights in Figure 2 suggest that in the LAPF
method only one particle would have been chosen as one particle
gets all the weight. Furthermore, the exact weights approach each
other for larger κ . That means, more particles would be chosen
in the stratified resampling step for larger κ . If κ tends to infinity,
the exact weights tend to one so that the probability to sample a
particle is the same for each particle.

Since the relative weights depend on the distance of the
particles to the observation, these background particles, which
are close to the observation, are chosen. This is illustrated in
Figure 3 as well as in the example with a bimodal background
distribution in Figure 4. In the bimodal case, all the particles
of the mode close to the observation are resampled. In both
examples, the observation is located outside of the background
ensemble. After the stratified resampling step, the particles are
still far from the observation. In Figure 4B, the shifted ensemble
mean of the LETKFmethod is even closer to the observation than
the nearest background particles. That leads to the idea, to use a
Gaussian mixture representation in the LMCPF, to include the
shifting step of the LETKF, which is discussed in the next part.

4.2. Shift of Particles
In contrast to the ensemble Kalman filter method, particle filters
do not shift particles toward the observation but only choose the
nearest ones, so that the ensemble mean is pulled toward the
observation. In the LMCPF, each remaining particle is shifted
as the ensemble mean in the ensemble Kalman filter method.
Furthermore, the shift is affected by the particle uncertainty
described by the background covariance matrix. Modification of
the parameter κ in Equation (34) yields changes in the valuation
of the particle uncertainty. If κ is set to a larger value, there is less
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FIGURE 2 | The exact Gaussian mixture weights w(a,l) Equation (66) are compared against the approximate weights w̃(a,l) Equation (26), which are used in the LAPF

method. Each color denotes the pair of weights (approximate and exact) for one of the 10 particles. The particle weights come from the scenario illustrated in

Figure 3. For the exact weights, the particle uncertainty parameter κ is varied.

confidence in the background ensemble. Hence, the confidence in
the observation ascends, relatively seen. Finally, this results in a
stronger shift of the remaining particles toward the observation.
To validate this intuition mathematically, the spectral norm of
the posterior covariance matrix

B(a)ens =
(

L− 1

κ
IL + A

)−1

(105)

with κ > 0, the identity matrix IL ∈ R
L×L and projected

observation error covariance matrix

A = YTR−1Y ∈ R
L×L (106)

is observed. The spectral norm is induced from the euclidean
vector norm and is defined by the square root of the maximal
eigenvalue ofATA. In the case of complex matrices, the transpose
matrix is replaced by the adjoint matrix. MatrixA is symmetric as
the observation error covariance matrix R is a symmetric matrix
by definition. Furthermore, every symmetric matrix is normal.
Let be U ∈ R

L×L the matrix with eigenvectors of the normal
matrix A as columns and D ∈ R

L×L the diagonal matrix with the
respective eigenvalues as diagonal entries ordered from maximal
to minimal eigenvalue such that

A = UDUT (107)

holds. Since U is a unitary matrix, i.e., UUT = IL, the inverse

term of B
(a)
ens can be reshaped to

L− 1

κ
IL + UDUT = U

(

L− 1

κ
IL + D

)

UT . (108)

That means,U also describes the unitary matrix of the eigenvalue

decomposition of the inverse of B
(a)
ens and the eigenvalues are

given by

λi =
L− 1

κ
+ µi, i = 1, . . . , L (109)

with eigenvalues (µi)i of A. We remark that µi > 0 holds for
all i = 1, . . . , L as A is positive definite. The spectral norm of
the inverse matrix equals the inverse of the smallest eigenvalue
min{λi|i = 1, . . . , L}, i.e.,

‖B(a)ens‖2 =
(

L− 1

κ
+ min

i=1,...,L
(µi)

)−1

. (110)

On the basis of this term, we can easily see that larger values for
κ leads to a larger spectral norm of B(a).

Furthermore, the shift vectors are defined by

β(shift,l) =
(

L− 1

κ
IL + A

)−1

A(C − el), l = 1, . . . , L. (111)
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FIGURE 3 | A single assimilation step is carried out with the LMCPF method. The observation (green point) is located outside of the background ensemble of size

L = 10 with the ensemble mean represented by the dark blue point. The particles chosen in the stratified resampling step (light blue points) are shifted toward the

observation (orange points). The particle uncertainty parameter κ is set to one. The shaded areas denote Gaussian ellipsoids with respect to the corresponding

covariance matrices. Darker colored ellipsoids around the background particles denote larger weights w(a,l) defined in Equation (66).

To discover the shifting strength for different κ , the spectral

norm of B
(a)
ens multiplied with A is examined. With the eigenvalue

decomposition of A, we obtain

(

L− 1

κ
IL + UDUT

)−1

UDUT

= (UT)−1

(

L− 1

κ
IL + D

)−1

U−1UDUT (112)

= U

(

L− 1

κ
IL + D

)−1

DUT (113)

which follows from the property U−1 = UT of a unitary matrix
U. This results in the spectral norm

‖B(a)ensA‖2 = max
i=1,...,L

{

(

L− 1

κ
+ µi

)−1

µi

}

(114)

which gets larger for greater κ .
In Figure 3, the shift of the two particles, which are chosen

in the stratified resampling step results in particles close to

the observation even for κ = 1. For this parameter choice,
the background error covariance matrix B equals the standard
covariance estimator. The shaded areas around the dots describe
the uncertainty. Compared to the background uncertainty, the
observation error covariance matrix R = 0.32 · I is smaller, which
explains the strong shift toward the observation. In comparison,
the difference between background and observation uncertainty
is smaller in the bimodal case in Figure 4. This results in shifted
particles, which are not as close to the observation as in Figure 3.

4.3. Draw Particles From Gaussian Mixture
Distribution
In the LMCPF as well as in the LAPF method, new particles
are drawn from a Gaussian mixture distribution but different
covariance matrices are applied. In the LAPF, an inflated version
of the background error covariance matrix in ensemble space
1/(L − 1) · I is used. The covariance matrix is adapted by the
spread control factor σ (ρ)2, which is derived in Equation (88). In

contrast, the newly derived covariance matrix B
(a)
ens Equation (98)

in ensemble space is applied in an inflated version in the LMCPF.
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FIGURE 4 | The background ensemble (blue circles) is generated from a bimodal distribution and the observation (green point) is located near one of the modes. The

dark blue point illustrates the background ensemble mean. In (A), the assimilation step is performed with the LMCPF method and in (B) with the LETKF method. The

light blue points in (A) illustrate the resampled particles and the orange points describe the shifted particles for κ = 1. The analysis particles resulting from LMCPF and

LETKF are represented by the red circles and the red point illustrates the analysis ensemble mean. In the LMCPF method, these particles are randomly generated

from Gaussian distributions with the shifted particles as expectation vectors. The shaded areas denote Gaussian ellipsoids with respect to the corresponding

covariance matrices.

TABLE 1 | Parameters of the model configuration and experimental setup for the Lorenz 1963 (L63) and 1996 (L96) models.

Forecast length 1t Model param. Std of obs error σobs Obs. variables DA steps

L63 0.15;0.3; 0.5 σ true = 10; σ = 12 0.5 First 1, 000

L96 0.3; 0.5 F true = 8; F = 8 : 9.5 0.2; 0.5; 0.8; 1.1 Every second 1, 000

The draw from a Gaussian mixture distribution is carried out
by drawing new particles from Gaussian distributions around
each chosen particle. For all Gaussian distributions, the same
covariance matrix is applied. In case of the LMCPF, the spectral

norm of the covariance matrix B
(a)
ens results in a larger value if the

particle uncertainty parameter κ is set to a greater value. This
counteracts the effect that a stronger shift toward the observation
vector leads to smaller distances among the particles.

Figure 4 shows the results of one LMCPF and LETKF
step for a bimodal background distribution. The Gaussian
ellipsoids cover random draws from the same three dimensional
distribution with a high probability. Nevertheless, the analysis
particles of LMCPF and LETKF are located outside of the
ellipsoids. The particles are resampled in the L − 1-dimensional
ensemble space and not in the three-dimensional model space.
This leads to a wider analysis ensemble for L > n than we
would obtain by drawing in the n-dimensional model space. In
practice, the dimension of the model space is much larger than
the dimension of the ensemble space so that this case does not
occur.

In comparison to the particle filter method, the analysis
ensemble derived by the LETKF method maintains the structure
of the background ensemble and is only shifted and contracted.
In that case, the ensemble mean, which represents the state
estimate, is not located in an area with high probability density
but in between the two modes (see Figure 4B). The analysis

ensemble aims to approximate the uncertainty distribution of the
state estimate. This more realistic uncertainty estimation is one
of the advantages of the particle filter methods over the ensemble
Kalman filter.

5. RESULTS FOR LONGER ASSIMILATION
PERIODS

In the following, the results of longer data assimilation
experiments for the Lorenz 1963 model as well as the 40-
dimensional Lorenz 1996 model are discussed. Beside the
comparison of root-mean-square errors following Equations
(115) and (116) for different methods, the development of the
effective ensemble size [see Equations (119) and (120)] in the
particle filter methods are observed. For both models, the initial
ensemble size is set to L = 20 in the following experiments.
Further parameters of the model configuration and experimental
setup, which are used in this section, are summarized in Table 1.

For the 40-dimensional Lorenz 1996 model, the methods
are used in a localized form, as described at the beginning of
Section 3. The localization depends on the localization radius rloc,
which affects the number of observations used in the analysis
step. Moreover, the optimal localization radius depends on the
method as well as the model parameters. For the LETKF method,
we choose rloc in between 4 and 7 in depending on the model
error, the integration time 1t and the observation noise after
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the investigation of different localization radii. With respect to
the LMCPF with exact weights, the localization radius rloc is set
to a value between 4 and 6 in the experiments of this section.
In addition, experiments revealed larger effective ensemble sizes
for smaller localization radii. Moreover, an automatic restart was
introduced for all methods to catch extreme cases.

5.1. Definition of RMSE and Effective
Ensemble Size
To compare different data assimilation methods, a measure is
needed. In general, the goodness of a DA method is associated
with the distance between the background or analysis state
estimate and the truth, or alternatively the observation if the
truth is not available. For that purpose, the normalized euclidean
norm or root-mean-square-error (RMSE) is used to calculate the
distance of background or analysis state estimate and the truth at
time tk, i.e.,

e
(b)
k

: = e(b)(tk) = 1√
n

∥

∥

∥
x̄
(b)
k

− xtrue
k

∥

∥

∥

2
, (115)

e
(a)
k

: = e(a)(tk) = 1√
n

∥

∥

∥
x̄
(a)
k

− xtrue
k

∥

∥

∥

2
, (116)

where n ∈ N denotes the number of variables of the underlying

model and x̄
(b)
k
, x̄

(a)
k

describe the background or analysis ensemble
means. For a time period given, where data assimilation is carried
out at the measurement points t1, . . . , tK , the averaged errors are
denoted by

e(b) = 1
K

K
∑

k=1

e
(b)
k
, (117)

e(a) = 1
K

K
∑

k=1

e
(a)
k
. (118)

In terms of particle filter methods, the development of the
effective ensemble size is an important quantity to examine the
stability of the filter. The effective ensemble size is defined by

Leff =
1

∑L
l=1(w

(a,l)/L)2
(119)

with the relative particle weights in ensemble space w(a,l) of the
LMCPF described in Equation (66) or with the classical particle
filter weights w̃(a,l) of the LAPF defined in Equation (26). In
general, particle filter methods suffer in high-dimensional spaces
from filter degeneracy due to the finite ensemble size (see [6]). In
that case, the effective ensemble size tends to one, which means
that the weights become strongly non-uniform. With respect to
the 40-dimensional Lorenz 1996 model, the effective ensemble
size is computed at each localization point and the average at each
data assimilation cycle is derived. The mean effective ensemble
size over all localization points is denoted by

L̄eff =
1

P

∑

p

Leff(p) (120)

where P describes the number of localization points (P = n for
Lorenz 1996) and Leff is calculated at each localization point using
the respective weights.

5.2. LMCPF Results in Dependence of the
Particle Uncertainty Parameter κ

The results of data assimilation methods vary in dependence
of the model parameters integration time 1t of the dynamical
model, the model error between true and model run and
observation noise σobs. The chaotic behavior of the Lorenz
systems means that small differences in the initial conditions
can lead to significantly different future trajectories. In average,
greater propagation or forecast time intervals result in greater
perturbations of the model run. The nonlinearity of the Lorenz
models causes the propagation of some Gaussian distributed
ensemble to result in non-Gaussian structures even at shorter
lead times.

Figure 5 shows the integration of a Gaussian distributed
ensemble over time with Lorenz 1963 model dynamics. For
1t = 0.3 and 1t = 0.5, the resulting ensemble is clearly non-
Gaussian so that the main assumption of the Kalman filter to
the background distribution does not hold. As a consequence,
we expect improvements of LMCPF over LETKF especially for
longer forecast times.

Moreover, model error means that true states, respectively,
observations are generated by a slightly different dynamical
model than the first guess from the previous analysis ensemble.
For the Lorenz systems, the model error is produced by the
application of different values for the Prandtl number σ (Lorenz
1963) and for the forcing term F (Lorenz 1996). In NWP systems,
the atmospheric model is known to have errors. Hence, it is
important to investigate the application of data assimilation
methods in case of model error. Naturally, we expect the model
run to differ stronger from the true run for greater differences in
the model parameters.

In addition, the observation noise σobs strongly affects the data
assimilation results. As in the case of the model error, this is

no surprise, since the observation is used in data assimilation
to obtain an analysis state. The LMCPF is quite sensitive to

the observation noise because the resampling as well as the

shift moves the ensemble toward the observation. To generate

the observations for experiments with the Lorenz models, the

true trajectory is randomly perturbed at time points, where data

assimilation is performed. If some observation is far from the

truth by chance, an overestimation of the importance of this

observation might lead to worse results of the LMCPF compared
to LETKF or LAPF.

There are six parameters in the LMCPF method to adapt the

method to model and observation error as well as the integration

time. The five parameters ρ0, ρ1, c0, c1 and α are used to control

the spread of the analysis ensemble in the last step, where new

particles are drawn from a Gaussian mixture distribution (see
Section 3.2.3) . But the sixth, the particle uncertainty parameter
κ , respectively, γ defined in Equation (34), is the most important

parameter since the variable affects the spread of the analysis

ensemble as well as the movement of the particles toward the

observation.
In the following, the results for LMCPF compared to LETKF

are shown for different settings of Lorenz 1963 and 1996.
To identify a reasonable particle uncertainty parameter κ , the
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FIGURE 5 | A thousand particles drawn from a Gaussian distribution (red points) are integrated in time with respect to the Lorenz 1963 model dynamics for 1t = 0.15

(blue), 1t = 0.3 (lightblue) and 1t = 0.5 (cyan) time units.

FIGURE 6 | Comparison of background errors of LMCPF and LETKF following Equation (121) for different forecast lengths 1t = 0.15,1t = 0.3 and 1t = 0.5. Positive

values denote a smaller RMSE of truth minus background for the LMCPF method than the LETKF. For each parameter combination, 1, 000 data assimilation steps are

carried out for the Lorenz 1963 model whereas the last 900 steps are used to compute the statistics. The experiments are repeated 10 times with different seeds and

the average error is reported. The true trajectory is generated with σ true = 10, the integration of the ensemble of states is performed with σ = 12 and the observation

noise equals σobs = 0.5. Only the first variable is observed. The ensemble size is set to L = 20 for both methods.
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parameter is varied. In Figure 6, experiments for different
forecast lengths 1t are performed with respect to the Lorenz
1963 model. The observation error standard deviation is chosen
as σobs = 0.5 and only the first variable is observed. The true
trajectory is generated with the Prandtl number σ true = 10, while
the forecast ensemble is integrated with σ = 12 to introduce
model error. For each parameter setting, 1, 000 data assimilation
cycles are carried out with both methods, whereas the average
errors over the last 900 cycles are computed. That means the first
100 steps are not used. Furthermore, each experiment is repeated
ten times with different seeds to generate different random
numbers and the average error is reported. Themean background
errors [see Equations (117) and (118)] of both methods are
compared by

δ =
e
(b)
LETKF − e

(b)
LMCPF

e
(b)
LETKF

· 100. (121)

Positive values (blue arrays) for δ denote better results for
LMCPF than LETKF. Following Figure 5, the background
ensemble is less Gaussian distributed for longer forecast lengths.
Figure 6 illustrates the improvement of LMCPF over LETKF in
particular for 1t = 0.5. In case of 1t = 0.15, the results for
LMCPF are worse than for LETKF. For a longer forecast length,
the RMSE of background minus truth is lower than the RMSE of
LETKF for a wider range of values for κ .

In Figure 7, the results for a range of values of κ are shown
for the 40-dimensional Lorenz 1996 model with respect to
differentmodel errors. Similar to Figure 6, the background errors
of LMCPF and LETKF are compared by Equation (121). One
thousand data assimilation cycles are carried out, whereas the
first 100 steps are considered as spin-up time and are not used in
the computation of the mean errors. Moreover, the experiments
are repeated ten times with different random seeds. To receive
the results displayed in Figure 7, the truth is generated with the
forcing term Ftrue = 8, while the forecast ensemble is derived
with different forcing terms between F = 8 and F = 9.5.
In addition, the observation error standard deviation is set to
σobs = 0.5 and a longer forecast length 1t = 0.5 is applied.
The results indicate, that in most cases there is some particle
uncertainty parameter κ , so that the LMCPF outperforms the
LETKF.

Following Lei and Bickel [60], longer forecast lengths
(1t > 0.4) lead to highly non-Gaussian ensembles for the
40-dimensional Lorenz 1996 model with forcing term F = 8.
To verify this, we integrated a standard Gaussian distributed
ensemble (L = 10, 000) in time for 1t = 0.5 and with
forcing term F = 8. The distance of the resulting distribution
to a Gaussian distribution with the same mean and variance
can be measured by the distance of the skewness and kurtosis
to the characteristic values 0 and 3 for skewness and kurtosis
of a Gaussian distribution. For the integrated ensemble, we
obtain 0.56 as absolute skewness averaged over all N = 40
model variables. The averaged absolute distance of the empirical
kurtosis of the integrated ensemble to the characteristic value 3
of a Gaussian distribution is 0.99. This indicates a non-Gaussian
ensemble.

An increasing value of F up to 9.5 leads to a larger distance
of the background to the true state or the observations which
denotes a larger systematic model bias. Figure 7 illustrates that
for larger model error, the RMSE of LMCPF is lower than for
LETKF for a wider range of values for κ . That means, the
parameter adjustment of the LMCPF is easier for larger model
error. In case of no model error for the forcing term F = 8, the
distance between observations and background is smaller than in
cases with model error. In theory, we suggest that smaller values
for the particle uncertainty parameter κ yield better results in that
case since this leads to less uncertainty in the background. If κ

tends to zero, the LMCPF gets more similar to LAPF. For the
LAPF, we have observed a greater sensitivity to sampling errors.
To this end, experiments for increased ensemble size (L = 100)
were performed which showed better scores of LMCPF than
LETKF in case of no model error and for smaller values of κ .
Finally, the perfect model scenario with small distances between
background and observation is a difficult case for the LMCPF
with small ensemble sizes while this case is less relevant for the
application in real NWP systems. In realistic applications, model
errors occur and the applicable ensemble size is relatively small
compared to the model dimension.

Furthermore, the effective ensemble size depends on the
parameter κ . If κ tends to infinity, the effective ensemble size
tends to the upper boundary L. This can be explained by Figure 2,
which illustrates that the particle weights approach each other
if κ tends to infinity. This means, that all the particles get the
same weight, which results in the effective ensemble size Leff = L.
With respect to the experiments in Figure 7, the mean effective
ensemble size varies for κ > 0.5 between Leff = 8 and Leff =
15. The variabilty of the effective ensemble size for different
model errors is negligible. As remark, further experiments with
different localization schemes and localization radii have shown
that smaller localization radii lead to larger effective ensemble
sizes up to a certain point. To ensure that the ability of the
LMCPF to outperform the LETKF (see Figure 7) do not depend
solely on the special selection on forcing terms Ftrue and F,
additional combinations between 6.5 and 9.5 were tested.

In Figures 6, 7, the results for different integration times
and model errors are shown. Figure 8 illustrates the changes
for different observation standard deviations σobs. On the one
hand, the LMCPF is able to outperform the LETKF for a wider
range of values for κ . On the other hand, there is the tendency
that for larger observation standard deviation smaller values
for κ lead to good results. As the parameter κ adapts the
particle uncertainty, smaller values decrease the uncertainty of
the background ensemble and relatively increase the uncertainty
of the observation. That means the particles are pulled less
strongly in the direction of the observation.

In addition, we compared LMCPF and LETKF in case of
non-Gaussian distributed observations. To this end, observations
are generated with errors following a univariate non-Gaussian
double exponential Laplace distribution [16], which are also
applied in [56], and an equivalent experiment to Figure 7 was
performed. The observation error standard deviation is chosen as
σobs = 0.5 again. There is no significant improvement of LMCPF
compared to LETKF in case of non-Gaussian observations. Since
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FIGURE 7 | Comparison of background errors of LMCPF and LETKF following Equation (121). Positive values denote a smaller RMSE of truth minus background for

the LMCPF method than the LETKF. For each parameter combination, 1, 000 data assimilation steps for the Lorenz 1996 model are carried out whereas the last 900

steps are used to compute the statistics. The experiments are repeated ten times with different seeds and the average error is reported. The true trajectory is

generated with F true = 8, the forecast length is set to 1t = 0.5 and the observation noise equals σobs = 0.5. Every second variable is observed. The ensemble size is

set to L = 20 for both methods.

FIGURE 8 | The background errors of LMCPF and LETKF following Equation (121) are compared for different observation error standard deviations σobs. Positive

values denote a smaller RMSE of truth minus background for the LMCPF method than the LETKF. For each parameter combination, 1, 000 data assimilation steps for

the Lorenz 1996 model are carried out whereas the last 900 steps are used to compute the statistics. The experiments are repeated ten times with different seeds and

the average error is reported. The true trajectory is generated with F true = 8 and the integration of the ensemble of states is performed with F = 8.5. The forecast

length is set to 1t = 0.5. Every second variable is observed. The ensemble size is set to L = 20 for both methods.
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both methods assume Gaussian distributed observation errors
by definition, the results confirmed the expectation, that LMCPF
does not have an advantage over LETKF in case of non-Gaussian
observations. But there is the possibility to adapt the LMCPF in
future to account for non-Gaussian observation error. Similar
to the idea of a Gaussian mixture filter, the observation error
distribution may be approximated by a sum of Gaussians. This
would lead to new particle weights and shift vectors.

5.3. LMCPF With Gaussian Mixture and
Approximate Weights
In the first version of the LMCPF method presented in Walter
et al. [32], the particle weights are approximated by the classical
particle filter weights in ensemble space, which are used in
the LAPF method. This is reasonable if the covariance B of
the Gaussians kernels is small compared to the distance of
observation minus background particles. But this assumption
may not be justified in practice. If the uncertainty parameter κ

tend to zero the assumption is fulfilled and the exact Gaussian
mixture weights tend to the approximate weights (see Figure 2).

In Figure 9, the LMCPF method with exact Gaussian mixture
weights [see Equation (66)] is compared to the LMCPF method
with approximate weights [see Equation (26)] in the case that
every second variable is observed. To compare the methods for
a variety of model parameters, the forecast length is set to 1t =
0.3 for the experiments in the following sections. The results
of LMCPF with exact and approximate weights are comparable
but the overall background and analysis errors are higher for
the version with approximate weights. Moreover, the adaptive
inflation parameters ρ0, ρ1, c0, c1 and α are set to the same values
for both methods and both methods have a similar ensemble
spread averaged over the whole experiment. Furthermore, the
ensemble spread is overestimated for both methods compared to
the background, respectively, analysis error.

In Figure 10, the development of the effective ensemble size
Leff over the last 200 assimilation steps of this experiment is
plotted for the LMCPF with exact and approximate weights as
well as the LAPF method. The effective ensemble size of the
LMCPF with approximate weights is only slightly higher than
for the LAPF method, while the line of LMCPF with exact
weights is significantly higher. Also, the localization radius has
a large effect on the effective ensemble size. Smaller localization
radii rloc lead to larger effective ensemble sizes. Regarding the
results in Figure 10, for the LMCPF method with exact weights,
the localization radius is set to rloc = 4, while for the other
two methods, the radius is chosen as rloc = 2. That means,
for the same localization radius the effective ensemble size of
LMPCF with exact weights would be even larger. Moreover, the
localization radius is an important parameter to achieve stable
results in case of the LAPF method. For the LMCPF method, the
application of the exact Gaussian mixture weights lead to higher
effective ensemble sizes so that the filter performance does not
depend so heavily on the localization radius and optimal results
are obtained for higher localization radii than for the version with
approximate weights. Further experiments for longer forecast
lengths (1t = 0.5 and 1t = 0.8) have also shown that the

effective ensemble size decreases for increasing integration time
for all three particle filter versions. While the effective ensemble
size of the LMCPF with exact weights still take values around
Leff = 10 for an initial ensemble size of L = 20, the variable
decreases to values around Leff = 3 for LAPF and LMCPF with
approximate weights. The increase of the effective ensemble size
shows the improvement of the stability of the LMCPF method
with exact particle weights. In case of a larger effective ensemble
size, more information of the background ensemble is used. If
only few particles are chosen in the stratified resampling step, the
ensemble spread depends more on the adaptive spread control
parameters ρ0, ρ1, c0, c1 and α. In a worst case scenario where
only one particle is chosen, all analysis particles are drawn
from the same Gaussian distribution with inflated covariance
matrix. Small changes in the covariance matrix of the Gaussian
distribution effect the ensemble spread stronger compared to
drawing the analysis particles from Gaussians with different
expectation vectors. Using the exact Gaussian mixture weights,
Kotsuki et al. [39] also detected an improvement of the stability
of the LMCPF method with respect to the inflation parameters
within an intermediate AGCM. Nevertheless, the application

of the analysis covariance matrix B
(a)
ens [see Equation (98)] in

the Gaussian mixture distribution, from which new particles
are drawn in the last step, leads for both LMCPF versions to
more stable results with respect to the spread control parameters
compared to the LAPF method.

5.4. Comparison of LMCPF, LAPF, and
LETKF
In this section, the three localized methods LMCPF, LAPF and
LETKF are compared with respect to the 40-dimensional Lorenz
1996 model.

Figures 11, 12 describe the results for the true forcing term
Ftrue = 8 and F = 9 for the model integration with
integration time 1t = 0.3. Compared to the overall results
in Figure 9 for an experiment with larger model error F =
9.5, the RMSE of background or analysis mean minus truth
for the LMCPF method takes lower values. Furthermore, the
results for the last 200 data assimilation steps of the experiment
in Figure 11 illustrate that the higher errors for the LAPF
method mostly come from high peaks at some points, while
the errors are comparable for most regions. The tuning of the
spread control parameters is essential to obtain good results
for the LAPF. Compared to the LMCPF, the filter is more
sensitive to these parameters. Additionally, background and
analysis errors of the LMCPF method are lower than the errors
of the LETKF and the LAPF methods for the majority of the
shown time steps. The mean errors over the whole period
except a spin-up phase, take lower values even if there are high
peaks at some steps. Some outliers occur for each of the three
methods.

The RMSE development gives an impression for the overall
performance of the filters. In contrast, Figure 12 illustrates the
behavior for individual variables over the full period except a
spin-up phase of 100 data assimilation steps. The difference
between the background (Figure 12A) and analysis (Figure 12B)
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FIGURE 9 | The evolution of the background and analysis errors [see Equations (115) and (116)] for LMCPF with exact and approximate weights is illustrated for the

last 200 data assimilation steps of an experiment over 1, 000 steps. For both methods, the ensemble size is set to L = 20. Every second variable of the

40-dimensional Lorenz 1996 model is observed. The forcing terms are set to F true = 8 and F = 9.5 and the forecast length is set to 1t = 0.3. The observation

standard deviation is chosen as σobs = 0.5 and the observation error covariance matrix as diagonal matrix R = σ 2
obs · Im. The particle uncertainty parameter is set to

κ = 1.1 for the LMCPF with exact weights and to κ = 1.0 for the LMCPF with approximate weights. The background error mean of the last 900 data assimilation

steps of the LMCPF with exact weights equals e(b) ≈ 1.54 and the analysis error mean is approximately e(a) ≈ 0.95. The respective error means for the LMCPF with

approximate weights are given by e(b) ≈ 1.62 and e(a) ≈ 1.06.

FIGURE 10 | The effective ensemble size L̄eff defined in Equation (120) of the LMCPF method with exact and approximate weights as well as the LAPF method is

shown for the last 200 steps of the data assimilation experiment described in Figure 9. The ensemble size is set to L = 20 which is the highest value L̄eff can take on.

The dotted lines denote the mean effective ensemble size over the whole experiment except a spin-up phase (last 900 data assimilation steps).
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FIGURE 11 | The evolution of the background errors and analysis errors [see Equations (115) and (116)] for LMCPF (κ = 1.1), LETKF and LAPF is illustrated for the last

200 steps of an experiment over 1, 000 steps. The dotted lines denote the mean errors over the whole experiment except a spin-up phase (last 900 data assimilation

steps). For all methods, the ensemble size is set to L = 20. Every second variable of the 40-dimensional Lorenz 1996 model is observed. The forcing terms are set to

F true = 8 and F = 9. The forecast length is set to 1t = 0.3. The observation standard deviation is chosen as σobs = 0.5 and the observation error covariance matrix as

diagonal matrix R = σ 2
obs · Im. The background error mean of the last 900 data assimilation steps of the LMCPF equals e(b) ≈ 1.28 and the analysis error mean is

approximately e(a) ≈ 0.77. The respective error means for the LETKF are given by e(b) ≈ 1.38 and e(a) ≈ 0.86, respectively by e(b) ≈ 1.46 and e(a) ≈ 0.97 for the LAPF.

mean and the true trajectory is shown for the LMCPF method.
For the experiment, every second variable of the 40 nodes
of the Lorenz 1996 model is observed. The vertical structure
in Figure 12B indicates a lower distance of analysis mean
and truth for observed variables. Figure 12A shows that the
background errors for observed and unobserved variables are
largely mixed and the vertical structure can only be guessed at
some points. This results from the relatively long integration
time and the large model error induced by the different
model parameter F = 9 in the time integration of the
ensemble.

In this study, we focused on the Lorenz 1996 model
with 40 variables. This setting is widely used for tests of
data assimilation methods and tuning of filter parameters is
possible in a reasonable amount of time. Nevertheless, it is
important to investigate if the particle filter methods still
work for much higher dimensions. To this end, we made
first experiments with respect to the Lorenz 1996 model
with 1, 000 variables. LAPF and LMCPF (as well as LETKF)
run stably with initial ensemble size L = 40 and no
filter divergence occured. Moreover, LAPF and LMCPF with
approximate weights were already tested with respect to the
global ICON model in the data assimilation framework at
DWD.

6. CONCLUSION

Standard algorithms for data assimilation in the application
of NWP in high-dimensional spaces are in general ensemble
methods, where the ensemble describes the sample of an
underlying distribution. The ensemble Kalman filter is an
example for a standard algorithm, which is based on normality
assumptions. However, the application of nonlinear models to a
Gaussian distribution leads to a loss of the normality property in
general. In future, the dynamical models used in NWP will get
even more nonlinear due to higher resolution and more complex
physical schemes, so that this approach might be not optimal
in highly nonlinear situations. Hence, there is a need for fully
nonlinear data assimilation methods, which are applicable in
high dimensional spaces.

This work covers two nonlinear particle filter methods,
which are already implemented and tested in the operational
data assimilation system of the German Weather Service
(DWD). Previous studies of the localized adaptive particle filter
(LAPF; [31]) and the localized mixture coefficients particle filter
(LMCPF; [32]) showed mixed results for the global NWP system
at DWD. The particle filter methods were compared to the
local ensemble transform Kalman filter (LETKF). With this
manuscript, we examine the question if the LMCPF is able to
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FIGURE 12 | (A) shows the difference of background mean and truth for the LMCPF method for all 40 variables for the experiment described in Figure 11. In (B), the

analysis mean minus truth is illustrated for the LMCPF method.

outperform the LETKF, with respect to a standard NWP setup
and standard NWP scores for the dynamical models Lorenz 1963
and Lorenz 1996. The experiments are performed with a revised
version of the LMCPF method. The exact particle weights are
derived in this work. Previously, the weights were approximated
by those of the LAPF. Recently, the revised method is also
presented in Kotsuki et al. [39] and tested for an intermediate
AGCM. The effective ensemble size is increased for the exact
weights, which results in a more stable filter with respect to the
parameters of the LMCPF. In case of higher effective ensemble
sizes, more background information is contained, while the filter
degenerates if the effective ensemble size tends to one. In this
study, we demonstrated that the LMCPF is able to outperform
the LETKF method with respect to the root-mean-square-error
(RMSE) of background/analysis ensemble mean minus truth in
case of model error for both systems. That means, the inital
question, if the LMCPF is capable to outperform the LETKF
within an experimental design reflecting a standard NWP setup
and standard NWP scores, can be answered with yes. The
experiments with Lorenz 1963 show that the longer the forecast
length is chosen, which results in a higher nonlinearity, the
better are the scores of LMCPF compared to LETKF. In that
case, the LMCPF outperforms the LETKF for a wide range of
parameter settings of the LMCPF. Even if the particle uncertainty
parameter κ , which affects the ensemble spread as well as the shift
toward the observation, is not perfectly adjusted, the RMSE of
background ensemble mean minus truth is lower than the error

of LETKF. A similar effect is visible for larger systematic model
error, which is exemplarily shown with respect to the dynamical
system Lorenz 1996. Moreover, further experiments for all of
these localized methods, LMCPF (with exact and approximate
particle weights), LAPF and LETKF, suggest, that the revised
LMCPF is an improvement compared to the previous version of
the LMCPF as well as the LAPF and is able to outperform the
LETKF.

In the application of data assimilation methods in complex
NWP systems, the behavior of the methods is overlaid by a
multitude of other processes. In this work, we present the
individual ingredients of the LMCPF method in one assimilation
step with respect to the Lorenz 1963 model. In case of a bimodal
background distribution, the analysis ensemble of the LMCPF
method builds a more realistic uncertainty estimation than for
the LETKF. Furthermore, the improvement of LMCPF over
LAPF is demonstrated in the case of a large distance between the
particles and the observation, respectively, true state. In contrast
to the LAPF, the analysis ensemble, generated by the LMCPF
method, is pulled stronger toward the observation due to the
additional shift.

All in all, the results suggest that particle filter methods and
the LMCPF in particular represent a serious alternative to the
LETKF in nonlinear environments in the future. As next steps,
we want to test the improved LMCPF method with respect to
the global ICON model as well as the convective-scale ICON-
LAM. Additionally, the application within a higher dimensional
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Lorenz 1996 model (starting from 1, 000 variables) is interesting
to investigate further. Moreover, we plan to focus on further
scores to compare LMCPF to LETKF.
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