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We investigate an ultraweak variational formulation for (parameterized) linear

differential-algebraic equations with respect to the time variable which yields an

optimally stable system. This is used within a Petrov-Galerkin method to derive a

certified detailed discretization which provides an approximate solution in an ultraweak

setting as well as for model reduction with respect to time in the spirit of the Reduced

Basis Method. A computable sharp error bound is derived. Numerical experiments

are presented that show that this method yields a significant reduction and can be

combined with well-known system theoretic methods such as Balanced Truncation to

reduce the size of the DAE.

Keywords: differential-algebraic equations, parametric equations, ultraweak formulations, Petrov-Galerkin
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1. INTRODUCTION

Differential-Algebraic Equations (DAEs) are widely used to model several processes in science,
engineering, medicine, and other fields. Theory and numerical approximation methods have
intensively been studied in the literature, refer to e.g., [1–4], or [5, 6], which are part of a forum
series on DAEs. Quite often, the dimension of DAEs modeling realistic problems is so large that an
efficient numerical solution (in particular in realtime environments or within optimal control) is
impossible. To address this issue, Model Order Reduction (MOR) techniques have been developed
and successfully applied. There is a huge amount of literature, we just mention [7–12].

All methods described in those references address a reduction of the dimension of the system,
whereas the temporal discretization is untouched. This article starts at this point. We have been
working on space-time variational formulations for (parameterized) partial differential equations
(pPDEs) over the last decade. One particular issue has been the stability of the arising discretization
which admits tight error-residual relations and thus builds the backbone for model reduction. It
turns out that an ultraweak formulation is a right tool to achieve this goal. In [13], we have used
this framework for deriving an optimally stable variational formulation of linear time-invariant
systems (LTIs). In this article, we extend the ultraweak framework to (parameterized) DAEs and
show that this can be combined with system theoretic methods such as Balanced Truncation (BT,
[11]) to derive a reduction in the system dimension and time discretization size.

1.1. Differential-Algebraic Equations
Let E,A ∈ R

n×n, n ∈ N, be two matrices (E is typically singular), I = (0,T), T > 0, a time interval,
x0 ∈ R

n some initial value and f : I → R
n a given right-hand side. Then, we are interested in the
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solution x : I → R
n (the state) of the following initial value

problem of a linear DAE with constant coefficients

Eẋ(t)− Ax(t) = f (t), ∀t ∈ I, x(0) = x0.

In order to ensure well-posedness (in an appropriate manner),
we shall always assume that the initial value x0 is consistent with
the right-hand side f , which means that there exist some x̂0 ∈ R

n

such that Ex̂0 − Ax0 = limt→0+ f (t) holds. Finally, we assume
that the matrix pencil {E,−A} is regular (i.e., det(λE−A) 6= 0 for
some λ ∈ R) with index ind{E,−A} = : k ∈ N, [14].1

1.2. Parameterized DAEs (pDAEs)
We are particularly interested in the situation, where one does
not only have to solve the above DAE once but several times
and highly efficient (e.g., in realtime, optimal control, or cold
computing devices) for different data. In order to describe that
situation, we are considering a parameterized DAE (pDAE) as
follows. For some parameter vector µ ∈ P , P ⊂ R

p being a
compact set, we are seeking xµ : I→ R

n such that

E ẋµ(t)− Aµ xµ(t) = fµ(t), ∀t ∈ I, xµ(0) = x0,µ, (1.1)

whereAµ, fµ, and x0,µ are a parameter-dependentmatrix, a right-
hand side and an initial condition, respectively, whereas E is
assumed to be independent of µ, refer to footnote 5. In order to
be able to solve such a pDAE highly efficient formany parameters,
it is quite standard to assume that parameters and variables can
be separated, refer to e.g., [16]. This is done by assuming a so-
called affine decomposition of the data, i.e., E is (for simplicity of
exposition) assumed to be parameter-independent and

Aµ =
QA
∑

q=1
ϑA
q (µ) Ãq,

fµ(t) =
Qf
∑

q=1
ϑ
f
q(µ) f̃q(t),

x0,µ =
Qx
∑

q=1
ϑx
q (µ) x̃0,q.

(1.2)

If such a decomposition is not given, we may produce an affinely
decomposed approximation by means of the (Discrete) Empirical
Interpolation Method [(D)EIM, [17, 18]; refer also to [9] for a
system theoretic MOR for such pDAEs]. For well-posedness, we
assume that the matrix pencil {E,−Aµ} is regular with index
ind{E,−Aµ} = kµ for all µ ∈ P .

1.3. Reduction to Homogeneous Initial
Conditions
Using some standard arguments, eq. (1.1) can be reduced to
homogeneous initial conditions xµ(0) = 0. To this end, construct
some smooth extension of the initial data x̄µ ∈ C1(Ī)n, x̄µ(0) =

1Each regular matrix pencil can be transformed into Weierstrass-Kronecker

canonical form P(λE − A)Q = diag(λId − W, λN − Id) with regular matrices

P,Q ∈ C
n×n, [15]. The index of a regular matrix pencil {E,−A} is then defined

by ind{E,−A} : = ind{N} : = min{k ∈ N :Nk = 0}.

x0,µ. Then, let x̂µ : I → R
n solve eq. (1.1) with fµ replaced by

f̂µ : = fµ − E ˙̄xµ + Aµx̄µ and homogeneous initial condition
x̂µ(0) = 0. Then, xµ : = x̂µ + x̄µ solves the original problem
eq. (1.1). If the pDAE and the extension x̄µ of the initial
conditions possess an affine decomposition (for a decomposable
x̄µ refer to Section 3.2.2), it is readily seen that the modified

right-hand side f̂µ also admits an affine decomposition. Hence,
we can always restrict ourselves to the case of homogeneous
initial conditions xµ(0) = 0, keeping in mind that variable initial
conditions can be realized by different right-hand sides.

1.4. Organization of the Material
The remainder of this paper is organized as follows. In Section
2, we derive an ultraweak variational formulation of (1.1) and
prove its well-posedness. Section 3 is devoted to a corresponding
Petrov-Galerkin discretization and the numerical solution, which
is then used in Section 4 to derive a certified reduced model. In
Section 5, we report the results of our numerical experiments and
end with conclusion and an outlook in Section 6.

2. AN ULTRAWEAK VARIATIONAL
FORMULATION

It is well-known that, for any fixed parameter µ ∈ P , the
problem (1.1) admits a unique classical solution xµ ∈ Ckµ (Ī)n

for consistent initial conditions provided that fµ ∈ Ckµ−1(Ī)n,
e.g., [3, Lemma 2.8.]. This is a severe regularity assumption,
which is one of the reasons why we are interested in a variational
formulation. As we shall see, an ultraweak setting is appropriate
in order to prove well-posedness, in particular stability. It turns
out that this setting is also particularly useful for model reduction
of (1.1) with respect to the time variable in the spirit of the
reduced basis method, refer to Section 4 below.

2.1. An Ultraweak Formulation of pPDEs
In order to describe an ultraweak variational formulation for the
above pDAE, we will review such formulations for parametric
partial differential equations (pPDEs). In particular, we are going
to follow [19] in which well-posed (ultraweak) variational forms
for transport problems have been introduced, refer also to [20–
22]. We will then transfer this framework to pDAEs in Section
2.2.

Let� ⊂ R
d be some open and bounded domain. We consider

a classical2 linear operator Bµ;◦ on� with classical domain

D(Bµ;◦) = {x ∈ C(�) : x|∂� = 0,Bµ;◦x ∈ C(�)}

and aim at solving

Bµ;◦xµ = fµ (pointwise) on�, xµ|∂� = 0. (2.1)

Note that the definition of Bµ;◦ also incorporates essential
homogeneous boundary conditions (in the case of a pDAE
described below this is the initial condition, which is independent
of the parameter). Let {B∗

µ;◦,D(B
∗
µ;◦)} denote the operator, which

2By classical we mean defined in a pointwise manner.
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is adjoint to {Bµ;◦,D(Bµ;◦)}, i.e., B
∗
µ;◦ is defined as the formal

adjoint of Bµ;◦ by (Bµ;◦x, y)L2(�) = (x,B∗
µ;◦y)L2(�) for all

x, y ∈ C∞0 (�) and its domain D(B∗
µ;◦) which includes the

corresponding adjoint essential boundary conditions (so that
the above equation still holds true for all x ∈ D(Bµ;◦), y ∈
D(B∗

µ;◦)). Denoting the range of an operator B by R(B), we have

Bµ;◦ :D(Bµ;◦) → R(Bµ;◦) and B∗
µ;◦

:D(B∗
µ;◦) → R(B∗

µ;◦). The

following assumptions3 turned out to be crucial for ensuring the
well-posedness:

(B1) D(Bµ;◦),D(B
∗
µ;◦),R(B

∗
µ;◦) ⊆ L2(�) with all embeddings

being dense;
(B2) B∗

µ;◦ is injective on D(B∗
µ;◦).

Due to (B2), the injectivity of the adjoint operator, the
following quantity

|||·|||µ : = ‖B∗µ·‖L2(�)

is a norm on D(B∗
µ;◦), where B∗µ is to be understood as

the continuous extension of B∗
µ;◦ onto Yµ, i.e., B

∗
µ :Yµ →

L2(�), where

Yµ : = clos|||·|||µ (D(B
∗
µ;◦)),

(v,w)Yµ : = (B∗µv,B
∗
µw)L2(�),

‖v‖2Yµ : = (v, v)Yµ = |||v|||
2
µ,

is a Hilbert space. Defining the bilinear form

bµ : L2(�)× Yµ → R by bµ(x, yµ) : = (x,B∗µyµ)L2(�),

yields an ultraweak form of (2.1): For f ∈ Y ′µ
4, determine xµ ∈

L2(�) such that

bµ(xµ, yµ) = fµ(yµ) ∀yµ ∈ Yµ. (2.2)

Well-posedness including optimal stability is now ensured:

Lemma 2.1. Problem eq. (2.2) has a unique solution xµ ∈ L2(�)
and is optimally stable, i.e., γµ = βµ = β∗µ = 1, where the
continuity constant is defined as

γµ : = sup
x∈L2(�)

sup
yµ∈Yµ

bµ(x, yµ)

‖x‖L2(�)‖yµ‖Yµ
,

and primal respectively dual inf-sup constants read

βµ : = inf
x∈L2(�)

sup
yµ∈Yµ

bµ(x, yµ)

‖x‖L2(�)‖yµ‖Yµ
,

β∗µ : = inf
yµ∈Yµ

sup
x∈L2(�)

bµ(x, yµ)

‖x‖L2(�)‖yµ‖Yµ
.

Proof: Refer to [19, Proposition 2.1].

3The framework in [19] is slightly more general.
4Y ′µ denotes the dual space of Yµ with respect to the pivot space L2(�).

2.2. An Ultraweak Formulation of pPDAEs
We are now going to apply the framework of Section 2.1 to the
classical form (1.1) of the pDAE. Again, without loss of generality
we restrict ourselves to homogeneous initial conditions xµ(0) =
0, as stated in Section 1.3.

It is immediate that we can generalize ultraweak formulations
for scalar-valued functions in L2(�) as above to systems, i.e.,
L2(�)

n ≡ L2(�;R
n). For pDAEs, we choose L2(I)

n with
the inner product (·, ·)L2 ≡ (·, ·)L2(I)n , whereas (·, ·) denotes
the Euclidean inner product of vectors. The linear operator
{Bµ;◦,D(Bµ;◦)} corresponding to (1.1) reads

Bµ;◦ : = E
d

dt
− Aµ,

D(Bµ;◦) : = {x ∈ C1(I)n ∩ C(Ī)n : x(0) = 0}.

The formal adjoint operator B∗
µ;◦ is easily derived by integration

by parts, i.e.,

(Bµ;◦x, y)L2 = (Eẋ− Aµx, y)L2 = (ẋ,ETy)L2 − (x,AT
µy)L2

= (x(T),ETy(T))− (x(0),ETy(0))− (x,ET ẏ)L2 − (x,AT
µy)L2

= (x,−ET ẏ− AT
µy)L2 = :(x,B∗µ;◦y)L2 ∀x, y ∈ C∞0 (I)n,

which shows that

B∗µ;◦ : = −E
T d

dt
− AT

µ,

D(B∗µ;◦) ≡ C1
E(I)

n
: = {y ∈ C1(I)n ∩ C(Ī)n : y(T) ∈ ker(ET)}.

(2.3)

In fact, (Bµ;◦x, y)L2 = (x,B∗
µ;◦y)L2 for all x ∈ D(Bµ;◦) and

y ∈ D(B∗
µ;◦) since the boundary terms above still vanish due to

x(0) = 0 and y(T) ∈ ker(ET). Moreover, R(Bµ;◦) = Ckµ−1(I)n

and R(B∗
µ;◦) = C(I)n.

Lemma 2.2. We have D(Bµ;◦),D(B
∗
µ;◦),R(B

∗
µ;◦) ⊂ L2(I)

n with

dense embeddings.

Proof: By the definition ofH1
0(I)

n and [23, Cor. 7.24] (forH1(I)n

instead of H1(I) there, which is a trivial extension), we have

C∞0 (I)n ⊂ H1
0(I)

n ⊂ C(Ī)n, hence, C∞0 (I)n = C∞0 (I)n ∩ C(Ī)n.

With that, C∞0 (I)n ⊆ D(Bµ;◦),D(B
∗
µ;◦),R(B

∗
◦) ⊂ L2(I)

n is

easy to see. Since C∞0 (I)n is dense in L2(I)
n, its supersets

D(Bµ;◦),D(B
∗
µ;◦),R(B

∗
µ;◦) are also dense in L2(I)

n.

The above lemma ensures assumption (B1). Next, we consider
(B2).

Lemma 2.3. The adjoint operator {B∗
µ;◦,D(B

∗
µ;◦)} is injective, i.e.,

for yµ, zµ ∈ D(B∗
µ;◦) with B

∗
µ;◦yµ = B∗

µ;◦zµ we have yµ = zµ.

Proof: Setting dµ : = yµ − zµ, we get B
∗
µ;◦dµ = 0 and

−ET ḋµ(t)− AT
µdµ(t) = 0, ∀t ∈ I,

dµ(T) = yµ(T)− zµ(T) ∈ ker(ET).
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Due to regularity of {E,−Aµ} (and, thus, also of {−ET ,−AT
µ}),

there are regular matrices Pµ, Qµ ∈ C
n×n, which allow us to

transform the problem intoWeierstrass-Kronecker normal form,
[2, 3], i.e.,

PµE
TQµ =

(

Idm 0
0 Nµ

)

,

PµA
T
µQµ =

(

Rµ 0
0 Idn−m

)

,

Q−1µ dµ(t) =

(

uµ(t)
vµ(t)

)

,

where Idn ∈ R
n×n is the identity andNµ is a nilpotentmatrix with

nilpotency index kµ. This yields the equivalent representation

u̇µ(t)+ Rµuµ(t) = 0, ∀t ∈ I, (2.4a)

Nµv̇µ(t)+ vµ(t) = 0, ∀t ∈ I, (2.4b)

Qµ

(

uµ(T)
vµ(T)

)

∈ ker(ET). (2.4c)

The ODE (2.4a) has the general solution uµ(t) =

uµ(T) e
−Rµ(T−t). By (2.4c), we get

ETQµ

(

uµ(T)
vµ(T)

)

= 0

= PµE
TQµ

(

uµ(T)
vµ(T)

)

=

(

Idm 0
0 Nµ

) (

uµ(T)
vµ(T)

)

=

(

uµ(T)
Nµvµ(T)

)

,

Thus, uµ(T) = 0 and hence uµ(t) = uµ(T) e
−Rµ(T−t) = 0 for all

t ∈ I.
The initial value problem Nµv̇µ(t) + vµ(t) = qµ(t), t ∈ I,

vµ(T) = vµ,T with some qµ ∈ Ckµ−1(Ī)n−m has the unique

solution vµ(t) =
∑kµ−1

i=0 (−1)iNi
µq

(i)
µ , if the initial value vµ,T

is consistent, refer to e.g., [1]. We apply this for qµ ≡ 0 ∈

Ckµ−1(Ī)n−m. Then, by the solution formula, we get vµ ≡ 0, since
the initial value in eq. (2.4c) is by definition trivially consistent.
This yields dµ ≡ 0, i.e., yµ = zµ.

Hence, we set |||·|||µ : = ‖B∗µ·‖L2 and choose trial and test
spaces as

X : = L2(I)
n, Yµ : = clos|||·|||µ

(

C1
E(I)

n
)

,

bµ(x, y) : = (x,B∗µy)L2 , (2.5)

refer to (2.3) and obtain the following result.

Lemma 2.4. Under the above assumptions, we have for all µ ∈ P

that Yµ ≡ Y, where

Y : = H1
E(I)

n
: = {v ∈ H1(I)n : v(T) ∈ ker(ET)}.

Proof: Clearly C1
E(I)

n ⊂ H1
E(I)

n, so that Yµ ⊆ Y for all µ ∈ P .
Now, let y ∈ Y = H1

E(I)
n, then, by density, there is a sequence

(yℓ)ℓ∈N ⊂ C1
E(I)

n such that ‖yℓ − y‖H1(I)n → 0 as ℓ → 0. Since
P is compact, we have that

|||yℓ − y|||µ = ‖E
T(ẏℓ − ẏ)+ AT

µ(yℓ − y)‖L2

≤ max{‖E‖, ‖Aµ‖} ‖yℓ − y‖H1(I)n → 0

as ℓ→∞. Hence, y ∈ clos|||·|||µ
(

C1
E(I)

n
)

= Yµ, i.e., Y ⊆ Yµ.

The latter result must be properly interpreted. It says that Yµ
and Y coincide as sets. However, the norm |||·|||µ (and thus the
topology) still depends on the parameter. The same holds true
for the dual space Y ′ of Y induced by the L2-inner product and
normed by

|||f |||′µ : = sup
y∈Y

(f , y)L2
|||y|||µ

.

In particular, we have a generalized Cauchy-Schwarz inequality
(f , y)L2 ≤ |||f |||

′
µ |||y|||µ.

Lemma 2.5. Let fµ ∈ Y ′. Then, there exists a unique weak
solution xµ ∈ X of

bµ(xµ, y) = fµ(y), ∀y ∈ Y . (2.6)

If (1.1) admits a classical solution, then it coincides with xµ.
Moreover, γµ = βµ = β

∗
µ = 1 for the constants defined in Lemma

2.1.

Proof: The existence of a unique solution xµ ∈ X (as well as γµ =
βµ = β∗µ = 1) is an immediate consequence of Lemma 2.1. It
only remains to show that xµ satisfying (2.6) is a weak solution to

(1.1). To this end, let f̃µ ∈ C(I)n be given such that there exists a

classical solution x̃µ ∈ C1(Ī)n with Bµ;◦x̃µ(t) = f̃µ(t),∀t ∈ I and

x̃µ(0) = 0. Then, define fµ ∈ Y ′ by fµ(y) : = (f̃µ, y)L2 . We need
to show that the classical solution x̃µ of (1.1) is also the unique
solution of (2.6). First, for y ∈ C1

E(I)
n, integration by parts yields

bµ(x̃µ, y)− fµ(y) = (x̃µ,B
∗
µy)L2− fµ(y) = (Bµ;◦x̃µ− f̃µ, y)L2 = 0.

Second, let y ∈ Y \ C1
E(I)

n, then there is (ỹℓ)ℓ∈N ⊂ C1
E(I)

n

converging to y in Y , i.e., limℓ→∞|||y − ỹℓ|||µ = 0. Then, by
the generalized Cauchy-Schwarz inequality

|bµ(x̃µ, y)− fµ(y)| = |bµ(x̃µ, y)− fµ(y)− bµ(x̃µ, ỹℓ)+ fµ(ỹℓ)|

= |(x̃µ,B
∗
µ(y− ỹℓ))L2 − fµ(y− ỹℓ)|

≤ ‖x̃µ‖L2‖B
∗
µ(y− ỹℓ)‖L2 + |||fµ|||

′
µ |||y− ỹℓ|||µ

=
(

‖x̃µ‖L2 + |||fµ|||
′
µ

)

|||y− ỹℓ|||µ → 0 as ℓ→∞,

so that (2.6) holds for x̃µ.

For the ultraweak pDAE (2.6), we need a right-hand side
fµ ∈ Y ′. However, typically, the right-hand side is given within
the context of (1.1) as a function of time, i.e., gµ : I → R

n. Then,
we simply define fµ ∈ Y ′ by

fµ(y) : = (gµ, y)L2 =

∫

I
(gµ(t), y(t)) dt, y ∈ Y . (2.7)
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3. PETROV-GALERKIN DISCRETIZATION

The next step toward a numerical method for solving an
ultraweak operator equation is to introduce finite-dimensional
trial and test spaces yielding a Petrov-Galerkin discretization.
In this section, we shall first review Petrov-Galerkin methods in
general terms and then detail the specification for pDAEs.

3.1. Petrov-Galerkin Method
In order to determine a numerical approximation, we are going
to construct an appropriate finite-dimensional trial space XN

µ ⊂

X = L2(I)
n and a parameter-independent test space YN ⊂ Y of

finite (but possibly large) dimensionN ∈ N. Then, we are seeking
xNµ ∈ XN

µ such that

bµ(x
N
µ , yN ) = fµ(y

N ), ∀yN ∈ YN , (3.1)

which leads to solving a linear system of equations BN
µ xNµ = fNµ

in R
N .

Remark 3.1. (a) If one would choose a discretization with
dim(YN ) > dim(XN

µ ), one would need to solve a least squares

problem ‖BN
µ xNµ − fNµ ‖

2→ min.

(b) If one defines the trial space according to XN
µ : = B∗µY

N ,
then it is easily seen that the discrete problem eq. (3.1) is
well-posed and optimally conditioned, [20], i.e.,

γN
µ : = sup

x∈XN
µ

sup
y∈YN

bµ(x, y)

‖x‖L2 |||y|||µ
= 1,

βNµ : = inf
x∈XN

µ

sup
y∈YN

bµ(x, y)

‖x‖L2 |||y|||µ
= 1,

β∗,Nµ : = inf
y∈YN

sup
x∈XN

µ

bµ(x, y)

‖x‖L2 |||y|||µ
= 1.

(c) The Xu-Zikatanov lemma [24] ensures that the Petrov-
Galerkin error is comparable with the error of the best
approximation, namely

‖xµ − xNµ ‖L2 ≤
γµ

βNµ
inf

vN ∈XN
µ

‖xµ − vN ‖L2 , (3.2)

so that the Petrov-Galerkin approximation is the best
approximation (i.e., an identity) for γµ = β

N
µ = 1.

The Petrov-Galerkin framework induces a residual-based error
estimation in a straightforward manner. To describe it, let us
recall that the residual is defined for some x̃ ∈ L2(I)

n as

r(x̃) ∈ Y ′, r(x̃)[y] : = fµ(y)− bµ(x̃, y), y ∈ Y .

Then, it is a standard estimate that

‖xµ − xNµ ‖L2≤
1

βµ
sup
y∈Y

bµ(xµ − xNµ , y)

|||y|||µ
=

1

βµ
|||r(xNµ )|||′µ = :1N

µ

(3.3)

and1N
µ is a residual-based error estimator. Note that for βµ = 1

we have an error-residual identity ‖xµ−xNµ ‖L2 = |||r(x
N
µ )|||′µ =

1N
µ .

FIGURE 1 | Piecewise linear temporal discretization (hat functions).

3.2. pPDAE Petrov-Galerkin Discretization
We are now going to specify the above general framework
to pDAEs. This means that we need to introduce a suitable
discretization in time. We fix a constant time step size 1t : =
T/K (i.e., K ∈ N is the number of time intervals) and choose
for simplicity equidistant nodes tk : = k1t, k = 0, ...,K in I.
Denote by σk, k = 0, ...,K piecewise linear splines corresponding
to the nodes tk−1, tk and tk+1, refer to Figure 1. For k ∈ {0,K},
the hat functions are restricted to the interval Ī. For realizing a
discretization of higher order, one could simply use splines of
higher degree.

As in [20], we start by defining the test space and then
construct inf-sup optimal trial spaces. To this end, let d : =
dim(kerET) and assume that we have a basis {v1, . . . , vd} of
kerET at hand5 and form a matrix V : = (v1, ..., vd) ∈ R

n×d

by arranging the vectors as columns of V . Then, we construct
YN ⊂ Y = H1

E(I)
n independent of the parameter and choose

the trial space as XN
µ : = B∗µY

N , which will then guarantee that

βNµ = 1. We suggest a piecewise linear discretization by

YN
: = span

{

eiσk : k = 0, ...,K − 1, i = 1, ..., n
}

⊕ span
{

viσK : i = 1, . . . , d
}

⊂ Y ,

where ei ∈ R
n denotes i-th canonical vector. Then, we set

XN
µ : = B∗µY

N = span
{

−ETeiσ̇k − AT
µeiσk : k = 0, ...,K − 1, i = 1, ..., n

}

⊕ span
{

−AT
µviσK : i = 1, . . . , d

}

⊂ X = L2(I)
n,

with dimensionsN : = dim(XN
µ ) = dim(YN ) = nK + d. Then,

Lemma 2.5 and Remark 3.1 ensure βNµ = βµ = γµ = 1 and thus

‖xµ − xNµ ‖L2 = inf
vN ∈XN

µ

‖xµ − vN ‖L2 = |||r(x
N
µ )|||′µ = 1

N
µ .

(3.4)

3.2.1. The Linear System
To construct the discrete linear system BN

µ xNµ = fNµ we

need bases {ξ1(µ), . . . , ξN (µ)} of XN
µ and {ψ1, . . . ,ψN } of

YN . The stiffness matrix BN
µ ∈ R

N×N can be computed by

[BN
µ ]j,i : = bµ(ξi(µ),ψj) = (ξi(µ),B

∗
µψj)L2 . We recall that XN

µ =

5This is in fact the reason why we restricted ourselves to parameter-independent

matrices E instead of Eµ. We would then need to have a parameter-dependent basis

for kerETµ, which is, of course, possible, but causes a quite heavy notation.
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B∗µY
N , which implies that ξi(µ) = B∗µψi, so that [BN

µ ]j,i =

(B∗µψi,B
∗
µψj)L2 and BN

µ is in fact symmetric positive definite.

The right-hand side fNµ ∈ R
N reads [fNµ ]j : = fµ(ψj). The

discrete solution then reads xNµ : =
∑N

i=1[x
N
µ ]i ξi(µ).

Recalling the finite element functions σk in Figure 1, we define
the inner product matrices for k, ℓ = 0, ...,K by

[K1t]k,ℓ : = (σ̇k, σ̇ℓ)L2(I),

[L1t]k,ℓ : = (σk, σℓ)L2(I),

[O1t]k,ℓ : = (σ̇k, σℓ)L2(I),

and subdivide the matrices 51t ∈ R
(K+1)×(K+1) for 51t ∈

{K1t , L1t ,O1t} according to

51t =





5
1,1
1t 5

1,2
1t

5
2,1
1t 5

2,2
1t



 ,
5

1,1
1t ∈ R

K×K , 5
1,2
1t ∈ R

K×1,

5
2,1
1t ∈ R

1×K , 5
2,2
1t ∈ R.

Then, the stiffness matrix also has a block structure

BN
µ =





B1,1
µ B1,2

µ

B2,1
µ B2,2

µ



 ∈ R
N×N

in form of Kronecker products of matrices, i.e., (with V =

(v1, . . . , vd) ∈ R
n×d as above),

B1,1µ = K1,1
1t ⊗ EET + O1,1

1t ⊗ EAT
µ + (O1,1

1t )
T ⊗ AµE

T + L1,1
1t

⊗ AµA
T
µ ∈ R

nK×nK ,

B1,2µ = O1,2
1t ⊗ EAT

µV + L1,2
1t ⊗ AµA

T
µV ∈ R

nK×d ,

B2,1µ = (O1,2
1t )

T ⊗ VTAµE
T + L2,1

1t ⊗ VTAµA
T
µ ∈ R

d×nK ,

B2,2µ = L2,2
1t ⊗ VTAµA

T
µV ∈ R

d×d .

For the right-hand side, given some function fµ : Ī → R
n, we

obtain a discretization fNµ ∈ R
N in the sense of (2.7) by [fNµ ]j =

∑K
k=0(fµ(tk) σk,ψj)L2 , j = 1, ...,N . This means that we discretize

fµ in time by means of piecewise linears. Collecting the sample

values of fµ in one vector, i.e., f µ,1t : =
(

fµ(t0), . . . , fµ(tK)
)T
∈

R
n(K+1) we get that

fNµ = FT1tf µ,1t where

F1t : =





L1,11t ⊗ Idn L1,21t ⊗ V

L2,11t ⊗ Idn L2,21t ⊗ V



 ∈ R
n(K+1)×N

and Idn ∈ R
n×n again denoting the n-dimensional

identity matrix.
As already noted above, of course, one could use different

discretizations (e.g., higher order or different discretizations for
fµ and the test functions) and we choose the described one just
for simplicity.

Due to the Kronecker product structure, the dimension of
the system grows rapidly even for moderate n and K. The

efficient numerical solution thus requires a solver that takes the
specific Kronecker product structure into account in order to
accommodate the large system dimension. For similar Kronecker
product systems arising from space-time (ultraweak) variational
formulations of heat, transport, and wave equations, such specific
efficient solvers have been introduced in [21, 25]. However, the
solvers in these article are adapted to pPDEs and cannot be used
for such kinds of pDAEs we are considering here. Hence, we
will devote the development of efficient solvers for ultraweak
formulations of pDAEs to future research and refer to Section 6.

3.2.2. Special Case: Fully Linear DAEs
We are going to specify the above general setting to the special
case of DAEs with parameter-independent A ≡ Aµ and linear
right-hand side which we will call in in the following fully linear
DAEs, i.e.,

Eẋµ(t)− Axµ(t) = Du(t)+ gµ2 (t), t ∈ I, xµ(0) = 0,
(3.5)

in which the right-hand side depends on the composite
parameter µ : = (u,µ2) and is given in terms of a matrix
D ∈ R

n×m, a control u : Ī → R
m, m denoting some input

dimension and a function gµ2
: Ī → R

n, which arises from the
reduction to homogeneous initial conditions, refer to Section 1.3.
The initial condition is assumed to be parameterized through gµ2

by µ2 ∈ P2 ⊂ R
p2 , p2 ∈ N. In view of (1.2) and Section 1.3, we

get

gµ2 (t) =

Qx
∑

q=1

ϑx
q (µ2)

(

Ax̄q(t)− E ˙̄xq(t)
)

= :

Qx
∑

q=1

ϑx
q (µ2) zq(t),

where x̄q ∈ C1(Ī)n are smooth extensions of x̃0,q, i.e., x̄q(0) = x̃0,q,
q = 1, ...,Qx.

We view the control and the initial condition (via gµ2 ) as
parameters, i.e., fµ(t) = Dµ1(t) + gµ2 (t), µ = (µ1,µ2), which
means that the parameter set would be infinite-dimensional and
needs to be discretized. Using the same kind of discretization as
above, we can use the samples of the control as a parameter, i.e.,

µ1 : =
(

u(t0), ..., u(tK)
)T
∈ P1 = R

p1 , p1 = m(K + 1),

and similar to the initial condition zq : =
(

zq(t0), ..., zq(tK)
)T
∈

R
n(K+1), q = 1, ...,Qx. Then, we get

fNµ = FT1t(D⊗ IdK+1)µ1 +

Qx
∑

q=1

ϑx
q (µ2) F

T
1tzq,

so that the parameter dimension is p = p1+p2 = m(K+1)+p2,
whichmight be large. The right-hand side fNµ thus also admits an
affine decomposition withQf = p1+Qx = m(K+1)+Qx terms.
However, this number might be an issue concerning efficiency if
K is large, we nevertheless have Qf ≪N ifm≪ n.

Moreover, in the fully linear case, the matrix Aµ ≡ A is
independent of the parameter, which means (among other facts)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 July 2022 | Volume 8 | Article 910786

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Beurer et al. Ultraweak Method for Linear pDAEs

that trial and test spaces are parameter-independent, as sets and
also with respect to their topology. Note that this is the most
common case for system theoretic MOR methods (like BT),
which are often even restricted to this case, [10, 11], with the
exception [9]. Our setting seems more flexible in this regard and
fully linear DAEs are just a special case.

4. MODEL ORDER REDUCTION: THE
REDUCED BASIS METHOD

The Reduced Basis Method (RBM) is a model order reduction
technique that has originally been constructed for parameterized
partial differential equations (pPDEs), refer to e.g., [7, 16,
26]. In an offline training phase, a reduced basis of size
N ≪ N is constructed (typically in a greedy manner, refer to
Algorithm 1 below) from sufficiently detailed approximations
for certain parameter samples (also called truth approximations
or snapshots), which are computed e.g., by a Petrov-Galerkin
method as described above. In particular, N is assumed to
be sufficiently large in order to ensure that xNµ is (at least
numerically) indistinguishable from the exact state xµ, which
explains the name truth. As long as an efficient solver for the
detailed problem is available, we may assume that the snapshots
can be computed inO(N ) complexity.

Given some parameter value µ, the reduced approximation
xN(µ)

6 is then computed by solving a reduced system of
dimensionN. As a result of the affine decomposition (1.2), several
quantities for the reduced system can be precomputed and
stored so that a reduced approximation is determined in O(N3)
operations, independent of N (which is called online efficient).
Moreover, an a posteriori error estimator 1N(µ) guarantees a
certification in terms of an online efficiently computable upper
bound for the error, i.e., ‖xNµ − xN(µ)‖L2 ≤ 1N(µ).

We are going to use this framework for pDAEs of the form
(1.1). Model reduction of (1.1) may be concerned (at least) with
the following quantities

• Size n of the system,
• Dimension K of the temporal discretization,

where we have in mind to solve (1.1) extremely fast for several
values of the parameterµ. As mentioned earlier, the first issue has
extensively been studied in the literature e.g., by system theoretic
methods, in particular for fully linear DAEs (3.5). This can be
done independently from the subsequent reduction with respect
to K (both for parameterized and non-parameterized versions),
so we even might assume that such Model Order Reduction
(MOR) techniques have already been applied in a preprocessing
step. We mention [9] a system theoretic MOR for parameter-
dependent DAEs. Here, we are going to consider the reduction
with respect to time using the RBM based upon a variational
formulation with respect to the time variable.

We restrict ourselves to the reduction of the fully linear case of
(3.5) as it easily shows how the RBM-inspired model reduction

6For all quantities of the reduced system, we write the parameter µ as an argument

in order to clearly distinguish the detailed approximation xNµ from the reduced

approximation xN (µ) for the same parameter.

can be combined with existing system theoretic approaches to
reduce the size of the system (e.g., in a preprocessing step). In the
fully linear case, the matrix Aµ ≡ A and, hence, all operators and
bilinear forms on the left-hand side are parameter-independent.
This implies in addition that the ansatz space XN

µ ≡ XN and
the norm |||·|||µ ≡ |||·||| inducing the topology on the test space
are parameter-independent as well, which of course simplifies
the framework. However, parameter-dependent matrices Aµ can
be treated similar to the RBM for ultraweak formulations of
pPDEs as described e.g., in [20–22]. We further note that the RB
approach also allows the treatment of more general pDAEs and
is not restricted to fully linear systems (3.5), in particular with
respect to the right-hand side.

The idea of the RBM can be described as follows: One
determines sample values

SN : = {µ(1), ...,µ(N)} ⊂ P

of the parameters in an offline training phase by a greedy
procedure described in Algorithm 1 below. Then, for each µ ∈
SN , we determine a sufficiently detailed snapshot xNµ ∈ XN by
the ultraweak Petrov-Galerkin discretization as in Section 3.2 and
obtain a reduced space of dimension N by setting

XN : = span{xNµ : µ ∈ SN} = : span{ζ1, ..., ζN} ⊂ XN .

We also need a reduced test space for the Petrov-Galerkin
method. Recalling that the operator is parameter-independent
here (Bµ ≡ B) and also the trial space XN is independent of
µ, we can easily identify the optimal test space. In fact, for each
snapshot, there exists a unique yNµ ∈ YN such that xNµ = B∗yNµ .
Then, we define

YN : = span{yNµ : µ ∈ SN} = : span{η1, ..., ηN} ⊂ YN .

Then, given a new parameter value µ ∈ P , one determines the
reduced approximation xN(µ) ∈ XN by solving (recall that here
bµ ≡ b).

b(xN(µ), yN) = fµ(yN) for all yN ∈ YN .

If N ≪ N = nK + d, we can compute a reduced
approximation with significantly less effort as compared to the
Petrov-Galerkin (or a time-stepping) method. To determine
the reduced approximation xN(µ), we have to solve a linear
system of the form BNxN(µ) = fN(µ), where the stiffness
matrix is given by [BN]j,i = b(ζi, ηj), i, j = 1, ...,N, recalling
that the bilinear form is parameter-independent. Hence, BN ∈

R
N×N can be computed and stored in the offline phase. For the

right-hand side, we use the affine decomposition (1.2) and get

[fN(µ)]j =
∑Qf

q=1 ϑ
f
g (µ) (f̃q, ηj)L2 . The quantities (f̃q, ηj)L2 can

be precomputed and stored in the offline phase so that f N(µ)
is computed online efficiently in O(QfN) operations. Obtaining
the coefficient vector xN(µ), the reduced approximation results
in xN(µ) =

∑N
i=1[xN(µ)]i ζi. Note that the matrix BN is typically

densely populated so the numerical solution requires in general
O(N3) operations.
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The announced greedy selection of the samples is based
upon the residual error estimate (here identity) 1N

µ in (3.3)
respectively (3.4) for the reduced system described as follows: In
a similar manner as deriving1N

µ in (3.3), we get a residual based
error estimator for the reduced approximation

‖xNµ − xN(µ)‖L2 ≤
1
βN

supy∈YN

b(xNµ −xN (µ),y)

|||y|||

= 1
βN
|||r(xN(µ))|||

′

= :1N(µ),

since the bilinear form and the norm in Y are parameter-
independent here. Hence, the inf-sup constant is parameter-
independent as well, i.e., βNµ ≡ βN and it is unity by Remark
3.1, so that

‖xNµ − xN(µ)‖L2 = |||r(xN(µ))|||
′ = 1N(µ). (4.1)

Its computation can be done in an online efficient manner in
O(N) operations by determining Riesz representations in the
offline phase, refer to [7, 16, 26]. We use this error identity in
the greedy method in Algorithm 1 below.

Algorithm 1| (Weak) Greedy method

input: training sample Ptrain ⊆ P , tolerance ε > 0, max.
dimension Nmax ∈ N

1: choose µ(1) ∈ Ptrain, compute snapshot ζ1 : = xN
µ(1)

and optimal test function η1 with ζ1 = B∗η1
2: Initialize S1 ← {µ

(1)}, X1 : = span{ζ1}, Y1 : = span{η1},
N : = 1

3: while N < Nmax do

4: if max
µ∈Ptrain

1N(µ) ≤ ε then return

5: µ(N+1) ← arg max
µ∈Ptrain

1N(µ)

6: compute snapshot ζN+1 : = xN
µ(N+1) and optimal test

function ηN+1
7: SN+1 ← SN ∪ {µ

(N+1)}, XN+1 : = XN ⊕ span{ζN+1},
YN+1 : = YN ⊕ span{ηN+1}

8: N ← N + 1
9: end while

output: set of chosen parameters SN , reduced spaces XN , YN

5. NUMERICAL EXPERIMENTS

In this section, we report on the results of some of our
numerical experiments. Our main focus is on the numerical
solution of the ultraweak form of the pDAE, the error estimation,
and the quantitative reduction. We solve the arising linear
systems for the Petrov-Galerkin and the reduced system by
MATLAB’s backslash operator, refer also to our remarks in
Section 6 below. The code for producing the subsequent
results is available via https://github.com/mfeuerle/Ultraweak_
PDAE.

5.1. Serial RLC Circuit
We start with a standard problem which (in some cases)
admits a closed formula for the analytical solution. This
allows us to monitor the exact error and comparison with
standard time-stepping methods. Our particular interest is the
approximation property of the ultraweak approach, which is an
L2-approximation.

The serial RLC circuit consists of a resistor with
resistance R, an inductor with inductance L, a capacitor
with capacity C and a voltage source fed by a voltage
curve fVS

: Ī → R. Kirchhoff’s circuit and further
laws from electrical engineering yield a DAE with
the data.

E =









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0









, A =









0 0 L−1 0

C−1 0 0 0
R 0 0 −1
0 1 1 1









, x =









xI
xVC
xVL
xVR









, f =









0
0
0
−fVS









,

whose index is k = 1. The solution x consists of the electric
current xI and the voltages at the capacitor xVC , at the inductor
xVL , and the resistor xVR .

5.1.1. Convergence of the Petrov-Galerkin Scheme
In Figure 2, we compare the exact solution with approximations
generated by a standard time-stepping scheme (using MATLAB’s
fully implicit variable order solver with adaptive step size control
ode15i, [27]) and by our ultraweak formulation from Section 3.2.
We choose two specific examples for fVS , namely a smooth and a
discontinuous one,

f smooth
VS

(t) : = sin
(4π

T
t
)

, f discVS
(t) : = sign

(

cos
(4π

T
t
)

)

.

For the smooth right-hand side (left graph in Figure 2), both
ode15i and the ultraweak method give good results. Concerning
the deviations for the ultraweak approach at the start and end
time, we recall that the ultraweak form yields an approximation
in L2 so pointwise comparisons are not necessarily meaningful.

In the discontinuous case, the existence of a classical solution
cannot be guaranteed by the above arguments. In particular,
there is no closed solution formula. As we see in the right
graph in Figure 2, ode15i stops at the first jump. This is
to be expected, since f discVS

6∈ C0(Ī), so that the solution
lacks sufficient regularity to guarantee convergence of a time-
stepping scheme like ode15i (even though it is an adaptive
variable order method). We could resolve the jumps even better
by choosing more time steps K, while ode15i still fails. We
conclude that the ultraweak method also converges for problems
lacking regularity.

5.1.2. Convergence Rate
Next, we investigate the rate of convergence for the ultraweak
form. To that end, we use f smooth

VS
, since the analytical solution

x∗ is known and we can thus compute the relative error
‖x∗ − xN ‖L2/‖x

∗‖L2 . Using the lowest order discretization as
mentioned above (namely piecewise linear test functions ψj,
which yield discontinuous trial functions B∗ψi), we can only
hope for the first order (with respect to the number of time
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FIGURE 2 | Serial RLC circuit, the exact voltage at the inductor; comparison of time-stepping (ode15i – blue) and ultraweak (red) approximation for smooth fsmooth
VS

(left, including analytical solution) and discontinuous fdiscVS
(right) right-hand side.

FIGURE 3 | Relative error ‖x∗ − xN ‖L2 /‖x
∗‖L2 and relative error estimator

1N /‖x∗‖L2 with respect to the analytical solution x∗ for increasing numbers of

time steps K.

steps K), which we see in Figure 3 and was observed in all
cases we considered. We obtain higher order convergence by
choosing test functions of higher order, provided the solution has
sufficient smoothness.

Moreover, we compare the exact relative error with our
error estimator (refer to Section 3.1). Figure 3 shows a perfect
matching confirming the error-residual identity (3.4) also for the
numerically computed error estimator.

5.2. Time-Dependent Stokes Problem
In order to investigate the quantitative performance of the
model reduction, we consider a problem, which has often been
used as a benchmark, [28–31], namely the time-dependent
Stokes problem on the unit square (0, 1)2, discretized by a
finite volume method on a uniform, staggered grid for the
spatial variables with n unknowns, [31], where we choose
n = 644. The arising homogeneous fully linear DAE
with output function y : I → R takes the form (3.5),

Eẋ(t)− Ax(t) = Du(t)+ g(t), t ∈ I, x(0) = 0, (5.1a)

y(t) = Cx(t), (5.1b)

FIGURE 4 | Maximal greedy training error maxµ∈Ptrain
1N (µ) for different time

resolutions Ku = K ∈ {75, 150, 300} over the reduced dimension N.

where C ∈ R
1×n is an output matrix, D ∈ R

n×1

is the control matrix, and u : I → R is a control,
which serves as a parameter µ ≡ u as described
in Section 3.2.2 above. We use a parameter-
independent initial condition, so that gµ ≡ g and
Qx = 1.

In order to combine system theoretic model reduction
with the RBM from Section 4, we use the system theoretic
model order reduction package [28]. In particular, we use
Balanced Truncation (BT) from [30] during a preprocessing
step to reduce the above system of dimension n to
a system

Ê ˙̂x(t)− Âx̂(t) = D̂u(t)+ ĝ(t), t ∈ I, x̂(0) = 0, (5.2a)

y(t) = Ĉx̂(t), (5.2b)

with Ê, Â ∈ R
n̂×n̂, D̂ ∈ R

n̂×1, Ĉ ∈ R
1×n̂ as well

as x̂, ĝ : Ī → R
n̂ and n̂ ≪ n. We note that the resulting

reduced system typically provides regular matrices Ê, Â. Then,
the reduced system is an LTI system, which is an easier
problem than a DAE and in fact a special case. Hence, our
presented approach is still valid, even though designed for
pDAEs. For an ultraweak formulation of LTI systems, we refer
to [13].
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Remark 5.1. We use the RBM here for deriving a certified
reduced approximation of the state x. If we would want to control
the output y along with a corresponding error estimator 1

y
N ,

it is fairly standard in the theory of RBM to use a primal-
dual approach with a second (dual) reduced basis, e.g., [16, 26].
For simplicity of exposition, we leave this to future study and
compute the output from the state by Ĉx̂(t), respectively Cx(t).

5.2.1. Discretization of the Control Within the RBM
Since we use a variational approach, we are in principle free
to choose any discretization for the control (we only need to
compute inner products with the test basis functions). We tested
piecewise linear discretizations as described in Section 3.2 for
different step sizes T/Ku, where Ku might be different from
K, which we choose for discretizing the state. Doing so, the

parameter reads µ = (u(t0), . . . , u(tKu ))
T ∈ P ≡ R

Ku+1, i.e.,
the parameter dimension is p = Ku + 1, which might be large.
Large parameter dimensions are potentially an issue for the RBM
since the curse of dimension occurs. Hence, we investigate if we
can reduce Ku within the RBM.

In order to answer this question, we apply Algorithm 1 to
the time-dependent Stokes problem (5.1a) (without BT) setting
ε = 0, Nmax = Qf from (1.2) (i.e., Qf = p + 1 for the
fully linear system with parameter-independent initial value)
and Ptrain consisting of 500 random vectors for Ku ≡ K ∈

FIGURE 5 | Max error for control dimensions of size Ku < K.

FIGURE 6 | Maximal RBM relative error decay over the reduced dimension N

for the full system eq. (5.1a) (blue) and the reduced system eq. (5.2a) with

K = 300 (red).

{75, 150, 300}, i.e., N = 48 524, 96 824, 193 424, where d = 224.
For these three cases, we investigate the max greedy training
error, i.e., maxµ∈Ptrain 1N(µ). The results in Figure 4 show an
exponential decay with respect to the dimension N of the
reduced system with slower decay as K grows. This is to be
expected as the discretized control space is much richer for
growing Ku and the reduced model has to be able to represent
this variety. However, in relative terms (i.e., reduced size N
compared with full size K), we see that the compression rates
are almost the same. This shows that the RBM can effectively
reduce the system no matter how strong the influence of
the control on the state is. It is expected that this potential
is even more pronounced if a primal-dual RBM is used for
the output.

Next, we note that for A ≡ Aµ as (5.1a), the reduced
model is always exact for N ≥ Qf , which explains the drop
off of the curves in Figure 4. For fully linear DAEs, a reduced
model with N ≥ Qf = Ku + 2 is always exact. Hence,
if m ≪ n (here m = 1 ≪ 644 = n), we obtain an exact
reduced model of dimension N = Qf = p + Qx =

m(Ku + 1) + 1 ≪ nK + d = :N . Even though this seems
to be attractive for low-dimensional outputs, we stress the
fact that the reduced dimension still depends on the temporal
dimension Ku, which might be large. Hence, a combination
of a possibly small discretization of the control and an RBM
seems necessary.

Let us comment on the error decay of the RBM produced
by the greedy method using the error estimator derived from
the ultraweak formulation of the pDAE. We obtain exponential
decay of the error, which in fact shows the potential of the
RBM. The question whether a given pDAE permits a fast decay
of the greedy RBM error is well-known to be linked to the
decay of the Kolmogorov N-width, [7, 16, 22], which is a
property only of the problem at hand. In other words, if a pDAE
can be reduced with respect to time, the greedy method will
detect this.

The results in Figure 4 use Ku = K. The next question
is how the error behaves for Ku < K. To this end, we
determine the error in the state with respect to the full
resolution, i.e., we compare the state derived from the control
with Ku degrees of freedom with the state of the fully resolved
control. In Figure 5, we display errors for different values
for K. We obtain fast convergence, which again shows the
significant potential for a reduced temporal discretization of
the control.

5.2.2. Combination With BT/RBM Error Decay
Next, we wish to investigate if a combination of a system
theoretic MOR (here BT) and an RBM-like reduction with
respect to time can be combined. To this end, we fix the
temporal resolution (i.e., the number of time steps, here K =
Ku = 300) and determine the RBM error using Algorithm 1

for the full and the BT-reduced system. We use [28] to compute
the BT from [30] and obtain an LTI system of dimension
n̂ = 5.
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The results are shown in Figure 6, where we again show the
maximal training error. As can be seen, the error for the BT-
reduced system is smaller than the original one7, which in fact
indicates that we can combine both methods. We get similar
results for other choices of K. This shows that there is as much
reduction potential in the reduced system eq. (5.2a) as in the
original system eq. (5.1a). In other words, a combination of BT
and RBM shows significant compression potential.

However, applying BT first implies that the error estimator
measures the difference with respect to the BT-reduced model
and not with respect to the original problem, which means that
we somehow lose part of the rigor implied by the fact that our
error estimator coincides with the error. If one wants to preserve
the rigor, it seems that a full pPDE model is required, which
is possible in cases where the pDAE originates from a (known)
discretization of a pPDE.

6. CONCLUSION AND OUTLOOK

In this article, we introduced a well-posed ultraweak formulation
for DAEs and an optimally stable Petrov-Galerkin discretization,
which admits a sharp error bound. The scheme shows the
expected order of convergence depending on the regularity of the
solution and the smoothness of the trial functions. The scheme
also converges in low-regularity cases, where classical standard
time-stepping schemes fail. Moreover, the stability of the Petrov-
Galerkin scheme allows us to choose any temporal discretization
without satisfying other stability criteria like a CFL condition.

7This remains true even after additionally normalizing the training error by the

dimensions of the DAE (n and n̂, respectively) or the dimension of the resulting

linear system (Kn+ d and Kn̂, respectively).

Based upon the ultraweak framework, we introduced a model
order reduction in terms of the Reduced Basis Method with
an error/residual identity. We have obtained fast convergence
and the possibility to combine the RBM for a reduction with
respect to time with system theoretic methods such as Balanced
Truncation to reduce the size of the system.

There are several open issues for future research. We already
mentioned a primal-dual RBM for an efficient reduction of
the output, the generalization to parameter-dependent matrices
Aµ, and more general DAEs (not only fully linear). We also
mentioned that the systemmatrix is a sum of Kronecker products
of high dimension, which calls for specific solvers as in [21]
for the (parameterized) wave equation. Another issue in that
direction is the need for a basis of ker(ET), which might be an
issue for high-dimensional problems.
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