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Over the past few decades, neuroscience studies have elucidated the

structural/anatomical network characteristics in the brain and their associations

with functional networks and the dynamics of neural activity. These studies have

been carried out at multiple spatial-temporal scale levels, including spikes at the neural

microcircuit level, neural activity at the intra-brain regional level, and neural interactions at

the whole-brain network level. One of the structural and functional neural characteristics

widely observed among large spatial-temporal scale ranges is long-tail distribution,

typified as power-low distribution, gamma distribution, and log-normal distribution. In

particular, long-tailed distributions found in excitatory postsynaptic potentials (EPSP)

induce various types of neural dynamics and functions. We reviewed recent studies on

neural dynamics produced by the structural long-tailed characteristics of brain neural

networks. In particular, the spiking neural network with a log-normal EPSP distribution

was first introduced for the essential factors to produce spontaneous activity and

was extended and utilized for studies on the association of neural dynamics with the

network topology depending on EPSP amplitude. Furthermore, the characteristics

of the response to a steady stimulus and its dependence on E/I balance, which are

widely observed under pathological conditions, were described by the spiking neural

networks with EPSP long-tailed distribution. Moreover, this spiking neural network

has been utilized in modeling studies of mutual interactions among local microcircuit

circuits. In future studies, the implementation of more global brain network architectures

in modeling studies might reveal the mechanisms by which brain dynamics and brain

functions emerge from the whole brain network architecture.

Keywords: excitatory postsynaptic potential, log-normal distribution, spiking neural network, stochastic

resonance, synchronization

1. INTRODUCTION

Over the past few decades, neuroscience studies have elucidated the characteristics of the
structural/anatomical networks in the brain and their associations with functional networks and
the dynamics of neural activity (reviewed in [1, 2]). These studies have been proceeded in multiple
spatiotemporal scale levels among spikes at the neural microcircuit level, neural activity at the intra-
brain regional level, and neural interactions at the whole-brain network level [3–9] (reviewed in
[2, 10]).
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One of the structural and functional neural characteristics
widely observed among large spatial-temporal scale ranges is
the long-tail distribution, typified as the power-low distribution,
gamma distribution, and log-normal distribution (reviewed in
[10–12]). In particular, the long-tailed distributions found in
excitatory postsynaptic potentials (EPSP) [13, 14], spine size [3],
and astrocytes [15] are the structural microcircuit level; ones
for the size of links to connect the brain regions called node
degree are the structural whole-brain network level [16, 17]. For
functional neural activity, it was found that the spiking properties
within fast temporal scales (10−3

− 10−1 s), such as inter-spike
intervals [18] and the size of the synchronous spiking population
called neuronal avalanche [12, 19, 20], and long-range temporal
correlations at slow temporal scales (101 − 103 s) [21] obey the
spatio-temporal long-tailed distribution. Recent findings have
shown that these long-tailed characteristics of neural activity
are produced by multiple network organizations composed of
partially independent neural dynamics withinmodular structures
[9]. Furthermore, long-tailed characteristics have been observed
in higher cognitive processes (reviewed in [22]). In particular,
in visual perception tasks, where an ambiguous figure with two
different interpretations is presented, the period of dominant
perception, which involves unilateral stimulus interpretation,
follows a heavy-tailed gamma distribution [23–26].

In addition to the neuroimaging and electrophysiological
approaches, to reveal the association between
structural/anatomical network characteristics and functional
neural characteristics, a modeling approach with high
physiological validity, typified as spiking neural networks
(reviewed in [27, 28]), is highly effective because the
construction of a brain network model with a focus on structural
network characteristics enables comprehensive simulation and
bifurcation analysis to identify the structural causes of functional
neural characteristics [29–33] (reviewed in [28, 34]). The
modeling approach revealed that long-tailed structural network
characteristics and mutual neural interactions in hierarchical
module network structures produce long-tailed neural activity
[29–32], which might support neural functions [35–38].

In this perspective, we summarize the progress of the
modeling approach using spiking neural networks to elucidate
the mechanism of long-tailed neural activity and its association
with structural network characteristics, especially regarding
long-tailed EPSP distribution, over the past decade. First,
modeling studies focusing on synaptic connections and their
topological characteristics at the microcircuit level were
reviewed. Furthermore, we review modeling studies on the
response characteristics of external stimuli and the mutual
interactions between neural modules/populations. This review
discusses the future perspectives of these studies, involving
modeling studies on whole-brain level neural activity in
large-scale spiking neural networks composed of brain regions.

2. SPIKING NEURAL NETWORK AT LOCAL
CORTICAL NETWORK LEVEL

In the microcircuits of the local cortical networks, a log-
normal distribution of EPSPs in synaptic connections was

found; i.e., EPSPs of the large majority of synaptic connections
indicate sub-millivolts (mV), while EPSPs of a small minority of
synaptic connections exhibit approximately 1–10 mV [13, 14].
Teramae et al. showed that this log-normal distribution causes
spontaneous activity [39, 40], which is irregular and has a low
firing rate (. 1.0 Hz) spiking activity and is sustained even in
the absence of an external stimulus [41]. In this network with
the EPSP log-normal distribution, spikes through weak synaptic
connections and spikes through strong synaptic connections
play a role in noise and signal, respectively, in the mechanism
of stochastic resonance theory [41]. An adequate amount of
spikes through small synapses realizes the “up-state” where the
membrane potentials become higher (≈ −60 mV) than the
“down-state” where the membrane potential is located at around
the resting state (≈ −70 mV); in the up-state, even a single
spike from the strong synapse achieves the emergence of the
spike [41]. Therefore, among the major part of neuron pairs
connected by weak synapses, the spikes do not synchronize,
whereas, among the minor part of neuron pairs connected by
strong synapses, the spikes synchronize. These properties are
highly in line with physiological findings [42–44]. In several
decades, many modeling approaches have been developed, such
as an approach focusing on the existence of neurons with a
low threshold [45], topological characteristics of small-worldness
[46], and sparse random-networkness [47]. Among these
studies, as the mechanism to describe the spontaneous activity,
the approach focusing on the log-normal EPSP distribution
exhibits the highest physiological validity (an overview of
related studies on the log-normal EPSP distribution is shown
in Table 1).

The mechanisms that produce the EPSP log-normal
distribution have been investigated using physiological
and modeling approaches (reviewed in [10]). Spike-timing-
dependent plasticity (STDP) [50, 51] results in self-organized
synaptic connections reflecting internal and exogenous spiking
activity [52–54]. The proposed STDP rule is constructed by
the mutual spike interaction between postsynaptic neurons
and presynaptic neurons within several 100 ms [50, 51] and
produces a separated synaptic distribution between significantly
weak and strong synaptic weights [50, 52, 55]. However, the
development of the size of the spine depending on the amplitude
of EPSP [56] follows a longer timescale than that of this STDP
rule [3]; the separated synaptic distribution is not congruent
with the actual log-normal EPSP distribution [13, 14]. To
describe these points, a synaptic weight-dependent STDP rule
with sublinear weight-dependent depression, i.e., the large
long-term depression for strong synapses and relatively small
for long-term enhancement for strong synapses than for weak
synapses is called log-STDP [57]. Along with the achievement
of log-normal distribution, log-STDP realizes stable neural
dynamics [57].

Moreover, the log-normal EPSP distribution produces many
neural activities and functions [31, 35, 37, 48]. In particular,
log-normal EPSPs induce a neural avalanche where the size
of the synchronous spikes obeys a power law as long-tail
characteristics of neural activity [48] (particularly, the theoretical
analysis for the mechanism of producing neural avalanches
by the long-tail distribution was described in Reference [58])
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TABLE 1 | Modeling studies using log-normal excitatory postsynaptic potential (EPSP) distribution.

Phenomenon Brief explanation Hierarchical level

Spontaneous activity The EPSP log-normal distribution causes spontaneous activity,

which is irregular and has a low firing rate (. 1.0 Hz) for spiking activity

and sustains even if absent of an external stimulus [41].

local micro

circuit level

Neural avalanche EPSP log-normal distribution induces the neural avalanche

where synchronous spike sizes obey a power-law such as long-tailed

characteristics of neural activity [48].

local micro

circuit level

Recalling associative memory EPSP log-normal distribution enhances memory capacity in the

spiking neural network with associative memory function [35].

local micro

circuit level

Desensitized steady-state

response to increasing

excitatory ratio

The existence of strong synaptic connections produced by log-normal EPSP

distribution enhances the tendency to decrease the degree of steady-state

response to an increase in the excitatory ratio in the E/I balance [49].

local micro

circuit level

Emergence of slow dynamics

by dual network topology

Dual complex network structure, that is, small-worldness and random networks,

induced deterministic slow temporal neural activity [30].

local micro

circuit level

Emergence of slow dynamics

by inter-lateral connections

The condition where moderate input stimulus and log-normal EPSP distribution

in intramodule synaptic connection leads to the intermittent intermodule-alternative

behavior and its alternation duration follows the gamma distribution

with long-tailed characteristics [32].

inter-lateral

circuit level

and bust spiking patterns to achieve hippocampal memory
consolidation [37]. Nobukawa et al. reported that the complexity
of spontaneous activity produced by log-normal EPSPs, detected
by multifractal analysis, reflects the deterministic process in
the spiking neural network [31]. Hiratani et al. showed that
the EPSP log-normal distribution enhances memory capacity
in a spiking neural network with an associative memory
function [35].

In addition to synaptic amplitude, topological network
characteristics change depending on the distribution of EPSPs
[13, 59]. The major part of weak EPSPs synaptic connections

constructs a random network, while the minor part of strong

EPSPs synaptic connections forms clusters that are joined to
each other, instead of isolated clusters, i.e., the strong EPSPs

synaptic connections construct a small-world network [60].
In our previous study, the emergent temporal patterns of
neural activity produced by this random and small-world dual-

network topology were investigated through a simulation with
a spiking neural network composed of excitatory and inhibitory
neurons [30]. As a result, the clusters connected by strong
synapses exhibit intermittent high-frequency spiking activity,
which induces deterministic slow temporal neural activity (. 5
Hz), whereas, in a single topological random network, the neural
activity drives with a faster temporal scale (mainly frequency
component: & 50 Hz) [30, 31]. In previous findings on local
excitatory-inhibitory neural networks, through the mechanism
of pyramidal-interneuron gamma (PING) [61] and interneuronal
gamma (ING) [62, 63], the fast-spiking activity typified as gamma
band activity becomes dominant. However, our findings of
neural activity in the dual-network topology implied that the
network even at the local microcircuit level can produce slow
temporal-scale neural dynamics [30]. The physiological validity
of these slow temporal-scale dynamics must be verified using an
electrophysiological experimental approach.

3. SPIKING NEURAL NETWORK WITH
EXTERNAL STIMULUS AND
INTERNAL-NEURAL INTERACTIONS

In addition to elucidating the internal-neural activity and
functions induced by the EPSP log-normal distribution at
the local microcircuit level, the response to external stimuli
and the interaction between neural populations in the spiking
neural network with the EPSP log-normal distribution have
been investigated [32, 49]. In particular, the EPSP log-normal
distribution enhances the dependence of the response to external
stimuli on the excitatory and inhibitory (E/I) balance [49]
and produces a long-tailed distribution on mutual interactions
among the activities of neural populations [32].

Sensory cortical neural activity is synchronized with a
periodic stimulus with a specific frequency, which is known
as the auditory steady-state response (ASSR) and steady-
state visually evoked potentials [64–66]. The degree of this
synchronization depends on the input frequency; the degree
becomes remarkably high in gamma band activities, which play a
role in perceptual function [64–66]. Neuroimaging studies using
electroencephalography (EEG) and magnetoencephalography
(MEG) revealed that E/I imbalance leads to an alteration of the
steady-state response (reviewed in [67, 68]). Herein, these studies
were conducted by comparing healthy (or typical development)
subjects with psychiatric disorders, such as schizophrenia [69–
71], bipolar disorder [72–75], and autism spectrum disorder [76–
78], because E/I imbalance is a common neural basis for the
impairment of brain functions widely observed in psychiatric
disorders [79–82]. In modeling studies on E/I balance, although
the influence of inhibitory synaptic amplitude on spatiotemporal
patterns of neural activity has been reported, the characteristics
of steady-state response and the relationship to log-normal EPSP
distribution remain unclear [83–85]. Against this situation, our
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FIGURE 1 | Spiking neural network composed of two neural modules where each module is composed of the excitatory neural population with log-normal EPSP, and

inhibitory neural population as the local cortical network and the two modules are joined by inter-lateral excitatory synaptic connections [32]. In the two coupled neural

modules, under the condition of moderate input stimulus and log-normal EPSP distribution in intermodule synaptic connections, neural behavior with wide frequency

components appears, especially involving a slow frequency component (. 5 Hz). This slow neural behavior is produced from an intermittent intermodule-alternative

behavior where either neural activity becomes larger (called the activated state) than the other one (deactivated state), and its alternation duration follows a gamma

distribution with long-tailed characteristics.

recent study with a spiking neural network with log-normal
EPSP under steady stimulus showed that the existence of strong
synaptic connections produced by log-normal EPSP distribution
enhances the tendency to decrease the degree of steady-state
response by increasing the excitatory ratio in the E/I balance [49].
In the input frequency characteristics, this decreasing tendency
is significant in the gamma band (≈ 60 Hz) in comparison
with other frequency bands [49], which is highly congruent with
physiological findings under conditions of psychiatric disorders
[69–78]. The causes of these response characteristics are that
the autonomous irregular gamma-band activity of the internal
network becomes dominant under the high excitatory ratio
and the existence of strong excitatory synaptic connections in
the EPSP log-normal distribution. Consequently, the response
against external stimuli becomes desensitized, especially against
the one with frequency components around the gamma band
[49]. Although our study showed that the log-normal EPSP
distribution causes a desensitized steady-state response with an
increasing excitatory ratio [49], the log-normal EPSP distribution
might also lead to the physiologically observed dependence

of neural interaction between wide-range brain regions, i.e.,
functional whole-brain networks, on the E/I ratio [86–88]. This
point must be evaluated in future studies.

In addition to the response to external stimuli, regarding
the neural interactions among neural populations with log-
normal EPSP distribution, we constructed a spiking neural
network composed of two neural modules, where each module
is composed of an excitatory neural population with log-
normal EPSP and an inhibitory neural population as the local
cortical network, and two modules are joined by the inter-
lateral excitatory synaptic connections (refer to an overview
of the network architecture in Figure 1) [32]. Each neural
module, where the random network topology was used
for the network topology, exhibits fast neural fluctuations
dominantly with the gamma band frequency component (≈
60 Hz) under isolated conditions [30, 32]. In two coupled
neural modules, under the condition of moderate input
stimulus and log-normal EPSP distribution involving a minor
part of strong synaptic connections in intramodule synaptic
connections, neural behaviors with wide frequency components,
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especially involving a slow frequency component (. 5 Hz),
appear; this temporal behavior exhibits deterministic dynamical
behaviors. Subsequently, this condition leads to an intermittent
intermodule-alternative behavior where either neural activity
becomes larger (activate state) than the other one (deactivate
state) and its alternation duration follow a gamma distribution
with long-tailed characteristics [32]. Alternation behaviors
following the gamma distribution were widely observed in actual
neural activity at several hierarchical levels [10, 23–26].

This alternative behavior is produced by the following
mechanism [32]: First, in the module of the activated state,
the neural activities of intra excitatory and inhibitory neural
populations strongly synchronize, i.e., the intra excitatory-
inhibitory neural interaction produces the activated state. In the
module of the deactivated state, the neural activity is driven by the
activated module (intra excitatory-inhibitory synchronization is
unlocked). Second, although both inhibitory neural activities
between intermodules always synchronize through the inter
excitatory synaptic connections, the large neural fluctuation
due to the effect of intra log-normal EPSP distribution in the
activated module unlocks the intra excitatory and inhibitory
neural activities. Subsequently, by decreasing the input-driven
inhibitory neural activity in the deactivate module, the deactivate
state transits to the activated state. Previous studies using the
neural network model showed that autonomous irregular neural
activity typified as internal chaotic activity is essential to produce
such alternation behavior [29, 89]. Under conditions without
autonomous neural activity with large variability, either neural
modulation becomes activated, and the other is suppressed;
consequently, the alternation does not appear [90]. In previous
studies on the chaotic neural activity for the emergence of this
alternation, internal neural parameters typified as decay factors
and parameters for neural connections between intramodule
excitatory and inhibitory neural populations were focused on
Nagao et al. [89], Kanamaru and Sekine [91], and Kanamaru [29].
Our approach focused on structural long-tailed characteristics
to produce long-tailed characteristics for neural activity [32]. To
verify the physiological validity of our approach in describing the
long-tail characteristics of neural activity, future neuroimaging
and electrophysiological studies are required. Even in the absence
of external stimuli, the neural activity among regions of the brain
and whole-brain functional networks exhibit large fluctuations,
that is, high variability of resting-state neural activity [92–94],
the dynamical transition of neural activity [95], and dynamic
functional connectivity [96]. In addition to the autonomous

state transition in two neural modules with a log-normal EPSP
[32], the large variability of intermodule neural activity might
cause autonomous whole-brain network dynamics. In future
studies, modeling of large-scale whole-brain networks must
be conducted.

4. CONCLUSION

We reviewed recent studies on neural dynamics produced
by the structural long-tailed characteristics of brain neural
networks. In particular, the spiking neural network with a log-
normal EPSP distribution was first introduced by Teramae
et al. for the essential factors to produce spontaneous activity
[41] and was extended and used for studies on the association
of neural dynamics with the network topology depending on
EPSP amplitude [32]. Furthermore, the characteristics of the
response to a steady stimulus and its dependence on the
E/I balance, which are widely observed under pathological
conditions, were described by the spiking neural networks with
an EPSP long-tailed distribution [49]. Moreover, this spiking
neural network has been utilized in modeling studies of mutual
interactions among local microcircuit circuits [32]. In future
studies, by implementing other network architectures such as
global network centrality and small-worldness [1, 2], revealing
the mechanisms by which brain dynamics and brain functions
emerge from the whole-brain network architectures will be
further progressed.
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