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Data assimilation is a Bayesian inference process that obtains an enhanced

understanding of a physical system of interest by fusing information from an inexact

physics-based model, and from noisy sparse observations of reality. The multifidelity

ensemble Kalman filter (MFEnKF) recently developed by the authors combines a full-order

physical model and a hierarchy of reduced order surrogatemodels in order to increase the

computational efficiency of data assimilation. The standardMFEnKF uses linear couplings

between models, and is statistically optimal in case of Gaussian probability densities.

This work extends the MFEnKF into to make use of a broader class of surrogate model

such as those based on machine learning methods such as autoencoders non-linear

couplings in between the model hierarchies. We identify the right-invertibility property

for autoencoders as being a key predictor of success in the forecasting power of

autoencoder-based reduced order models. We propose a methodology that allows us to

construct reduced order surrogatemodels that aremore accurate than the ones obtained

via conventional linear methods. Numerical experiments with the canonical Lorenz’96

model illustrate that nonlinear surrogates perform better than linear projection-based

ones in the context of multifidelity ensemble Kalman filtering. We additionality show a

large-scale proof-of-concept result with the quasi-geostrophic equations, showing the

competitiveness of the method with a traditional reduced order model-based MFEnKF.

Keywords: Bayesian inference, control variates, data assimilation, multifidelity ensemble Kalman filter, reduced

order modeling, machine learning, surrogate models frontiers

1. INTRODUCTION

Data assimilation [1, 2] is a Bayesian inference process that fuses information obtained from an
inexact physics-based model, and from noisy sparse observations of reality, in order to enhance our
understanding of a physical process of interest. The reliance on physics-based models distinguishes
data assimilation from traditional machine learning methodologies, which aim to learn the
quantities of interest through purely data-based approaches. From the perspective of machine
learning, data assimilation is a learning problem where the quantity of interest is constrained
by prior physical assumptions, as captured by the model, and nudged toward the optimum
solution by small amounts of data from imperfect observations. Therefore, data assimilation
can be considered a form of physics-constrained machine learning [3, 4]. This work improves
data assimilation methodologies by combining a mathematically rigorous data assimilation
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approach and a data rigorous machine learning algorithm
through powerful techniques in multilevel inference [5, 6].

The ensemble Kalman filter [7–9] (EnKF) is a family of
computational methods that tackle the data assimilation problem
using Gaussian assumptions, and a Monte Carlo approach where
the underlying probability densities are represented by ensemble
of model state realizations. The ensemble size, i.e., the number of
physics-based model runs, is typically the main factor that limits
the efficiency of EnKF. For increasing the quality of the results
when ensembles are small, heuristics correction methods such
as covariance shrinkage [10–12] and localization [13–15] have
been developed. As some form of heuristic correction is required
for operation implementations of the ensemble Kalman filter,
reducing the need for such heuristic corrections in operational
implementations is an important and active area of research.

The dominant cost in operational implementations of EnKF
is the large number of expensive high fidelity physics-based
model runs, which we refer to as “full order models” (FOMs).
A natural approach to increase efficiency is to endow the data
assimilation algorithms with the ability to use inexpensive, but
less accurate, model runs [16, 17], which we refer to as “reduced
order models” (ROMs). ROMs are constructed to capture the
most important aspects of the dynamics of the FOM, at a
fraction of the computational cost; typically they use a much
smaller number of variables than the corresponding FOM. The
idea of leveraging model hierarchies in numerical algorithms
for uncertainty quantification [18] and inference [19–22] is fast
gaining traction in both the data assimilation and machine
learning communities. Here we focus on two particular types of
ROMs: a proper orthogonal decomposition (POD) based ROM,
corresponding to a linear projection of the FOM dynamics onto
a small linear subspace [23], and a ROM based on autoencoders
[24], corresponding to a non-linear projection of the dynamics
onto a small dimensional manifold.

The multifidelity ensemble Kalman filter (MFEnKF)
developed by the authors [25, 26] combines the ensemble
Kalman filter with the idea of surrogate modeling. The MFEnKF
optimally combines the information obtained from both the full-
order and reduced order surrogate model runs with information
begotten from the observations. By posing the data assimilation
problem in terms of a mathematically rigorous variance
reduction technique—the linear control variate framework—
MFEnKF is able to provide robust guarantees about the accuracy
of the inference results.

While numerical weather prediction is the dominant driver of
innovation in data assimilation literature [27], other applications
can benefit from our multifidelity approach such as mechanical
engineering [28–30] and air quality modeling [31–33].

The novel elements of this work are: (i) identifying a useful
property of autoencoders, namely right invertibility, that
aides in the construction of reduced order models, and (ii)
deriving a theory for an extension to the MFEnKF through
non-linear interpolation and projection techniques; we call
the resulting approach nonlinear MFEnKF (NL-MFEnKF).
The right-invertibility property ensures the consistency of the
reduced state representation through successive applications
of the projection and interpolation operators. Our proposed

NL-MFEnKF technique shows an advantage on certain regimes
of a difficult-to-reduce problem, the Lorenz’96 equations,
and shows promise on a large-scale fluids problem, the
quasi-geostrophic equations.

This paper is organized as follows. Section 2 discusses the
data assimilation problem, provides background on control
variates, the EnKF, and the MFEnKF, as well as ROMs and
autoencoders. Section 3 introduces NL-MFEnKF, the non-linear
extension to the MFEnKF. Section 4 presents the Lorenz’96
and quasi-geostrophic models and their corresponding POD-
ROMs. Section 5 introduces the physics-informed autoencoder
and practical methods of how to train them and pick optimal
hyperparameters. Section 6 provides the results of numerical
experiments. Concluding remarks are made in Section 7.

2. BACKGROUND

Sequential data assimilation propagates imperfect knowledge
about some physical quantity of interest through an imperfect
model of a time-evolving physical system, typically with chaotic
dynamics [34].Without an additional influx of information about
reality, our knowledge about the systems rapidly degrades, in
the sense of representing the real system less and less accurately.
Data assimilation uses noisy external information to enhance our
knowledge about the system at hand.

Formally, consider a physical system of interest whose true
state at time ti is X

t
i . The time evolution of the physical system

is approximated by the dynamical model

Xi =Mti−1 ,ti (Xi−1)+4i, (1)

where Xi is a random variable whose distribution describes our
knowledge of the state of a physical process at time index i, and
4i is a random variable describing the modeling error. In this
paper we assume a perfect model (4i ≡ 0), as the discussion of
model error in multifidelity methods is significantly outside the
scope of this paper.

Additional independent information about the system is
obtained through imperfect physical measurements of the
observable aspects Yi of the truth Xt

i , i.e., through noisy
observations

Yi = H(Xt
i )+ ηi, ηi ∼ N(0,6ηi ,ηi ), (2)

where the “observation operator” H maps the model space onto
the observation space (i.e., selects the observable aspects of
the state).

Our aim is to combine the two sources of information in a
Bayesian framework:

π(Xi | Yi) ∝ π(Yi | Xi)π(Xi), (3)

where the density π(Xi) represents all our prior knowledge,
π(Yi | Xi) represents the likelihood of the observations given said
knowledge, and π(Xi | Yi) represents our posterior knowledge.

In the remainder of the paper we use the following notation.
Let W and V be random variables. The exact mean of W is
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denoted by µW , and the exact covariance between W and V
by 6W,V . EW denotes an ensemble of samples of W, and µ̃W

and 6̃W,V are the empirical ensemble mean of W and empirical
ensemble covariance ofW and V , respectively.

2.1. Linear Control Variates
Bayesian inference requires that all available information is
used in order to obtain correct results [35]. Variance reduction
techniques [36] are methods that provide estimates of some
quantity of interest with lower variability. From a Bayesian
perspective they represent a reintroduction of information
that was previously ignored. The linear control variate (LCV)
approach [37] is a variance reduction method that aims to
incorporate the new information in an optimal linear sense.

LCV works with two vector spaces, a principal space X and
a control space U, and several random variables, as follows.
The principal variate X is a X-valued random variable, and the
control variate Û is a highly correlatedU-valued random variable.
The ancillary variate U is a U-valued random variable, which
is uncorrelated with the preceding two variables, but shares the
same mean as Û, meaning µU = µÛ . The linear control variate
framework builds a new X-valued random variable Z, called the
total variate:

Z = X − S(Û − U), (4)

where the linear “gain” operator S is used to minimize the
variance in Z by utilizing the information about the distributions
of the constituent variates X, Û and U.

In this workX andU are finite dimensional vector spaces. The
dimension of X is taken to be n. The dimension of U we denote
by r when it is the reduced order model state space. When U is
the observation space, its dimension is denoted bym.

The following lemma is a slight generalization of [[37],
Appendix].

LEMMA 1 (Optimal gain). The optimal gain S that minimizes the
trace of the covariance of Z (4) is:

S = 6X,Û(6Û,Û +6U,U)
−1. (5)

PROOF: Observe that,

d tr(6Z,Z)

dS
= 2S(6Û,Û +6U,U)− 26X,Û ,

d2 tr(6Z,Z)

dS2
= 2(6Û,Û +6U,U)⊗ I > 0,

(6)

meaning that the problem of finding the optimal gain is convex,
and the minimum is unique and is defined by setting the first
order optimality condition to zero,

2S(6Û,Û +6U,U)− 26X,Û = 0, (7)

to which the solution is given by (5) as required.

We first discuss the case where the principal and control
variates are related by linear projection and interpolation
operators,

Û = 2X, X ≈ X̃ = 8 Û, (8)

where 2 is the projection operator, 8 is the interpolation
operator, and X̃ is the reconstruction of X.

We reproduce below the useful result [25, Theorem 3.1].

THEOREM 1. Under the assumptions that Û and U have equal
covariances, and that the principal variate residual is uncorrelated
with the control variate, the optimal gain of (4) is half the
interpolation operator:

6Û,Û = 6U,U and 6(X−8Û),Û = 0 ⇒ S =
1

2
8. (9)

Under the assumptions of Theorem 1 the control variate
structure (4) is:

Z = X −
1

2
8 (Û − U). (10)

REMARK 1. Note that Theorem 1 does not require that any
random variables are Gaussian. The above linear operator S
remains optimal even for non-Gaussian random variables.

2.2. Linear Control Variates With Non-linear
Transformations
While working with linear transformations is elegant, most
practical applications require reducing the variance of a non-
linear transformation of a random variable. We now generalize
the control variate framework to address this case.

Following [36], assume that our transformed principal variate
is of the form h(X), where h is some arbitrary smooth non-linear
operator:

h :X→ h(X), (11)

We also assume that the transformed control variate and the
transformed ancillary variate are of the form g(Û) and g(U),
respectively, where g is also some arbitrary smooth non-linear
operator:

g :U→ g(U), (12)

We define the total variate Zh in the spaceH such that h(X) ⊂ H

by:

Zh = h(X)− S
(
g(Û)− g(U)

)
, (13)

with the optimal linear gain given by Lemma 1:

S = 6h(X),g(Û)

(
6g(Û),g(Û) +6g(U),g(U)

)−1
. (14)

THEOREM 2. If Û and U independently and identically
distributed, and share the same mean and covariance, the control
variate structure (13) holds, and the optimal linear gain is:

S =
1

2
6h(X),g(Û)6

−1
g(Û),g(Û)

. (15)

PROOF: As Û and U are independently and identically
distributed, they share the same mean and covariance under
non-linear transformation,

µg(Û) = µg(U), and 6g(Û),g(Û) = 6g(U),g(U). (16)
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In this case g(Û)− g(U) is unbiased (mean zero), and the control
variate framework (14) can be applied. Thus, the optimal gain is
given by (15) as required.

We now consider the case where the transformations of the
principal variate and control variates represent approximately the
same information,

h(X) ≈ g(Û), (17)

and exist in the same spaceH.
We now provide a slight generalization of Theorem 1 under

non-linear transformation assumptions.

THEOREM 3. If the assumption of Theorem 2 hold, and the
transformed principal variate residual is uncorrelated with the
transformed control variate,

6(h(X)−g(Û)),g(Û)
assumed
= 0, (18)

then the optimal gain is

S =
1

2
I, (19)

where I is the identity operator.

PROOF: By simple manipulation of (15), we obtain:

S =
1

2
6h(X),g(Û)6

−1
g(Û),g(Û)

,

=
1

2
6(h(X)−g(Û)+g(Û)),g(Û)6

−1
g(Û),g(Û)

,

=
1

2
6(h(X)−g(Û)),g(Û)6

−1
g(Û),g(Û)

+
1

2
6g(Û),g(Û)6

−1
g(Û),g(Û)

,

=
1

2
I.

2.3. The Ensemble Kalman Filter
The EnKF is a statistical approximation to the optimal
control variate structure (4), where the underlying probability
density functions are represented by empirical measures using
ensembles, i.e., a finite number of realizations of the random
variables. The linear control variate framework allows to combine
multiple ensembles into one that better represents the desired
quantity of interest.

Let EXb
i
∈ R

n×NX be an ensemble of NX realizations

of the n-dimensional principal variate, which represents our
prior uncertainty in the model state at time index i from (1).
Likewise, let EHi(X

b
i )
= Hi(EXb

i
) ∈ R

m×NX be an ensemble

of NX realizations of the m-dimensional control observation
state variate, which represents the same model realizations cast
into observation space. Let EYi ∈ R

m×NX be an ensemble of
NX “perturbed observations,” which is a statistical correction
required in the ensemble Kalman filter [9].

REMARK 2 (EnKF Perturbed Observations). Each ensemble
member of the perturbed observations is sampled from a Gaussian
distribution with mean the measured value, and the known
observation covariance from (2):

[EYi ]:,e ∼ N(µYi ,6ηi ,ηi ). (20)

The prior ensemble at time step i is obtained by propagating the
posterior ensemble at time i− 1 through the model equations,

EXb
i
=Mti−1 ,ti

(
EXa

i−1

)
, (21)

where the slight abuse of notation indicates an independent
model propagation of each ensemble member. Application of the
Kalman filter formula constructs an ensemble EXa

i
describing the

posterior uncertainty:

EXa
i
= EXb

i
− K̃i

(
EHi(X

b
i )
− EYi

)
, (22)

where the statistical Kalman gain is an ensemble-based
approximation to the exact gain in Lemma 1:

K̃i = 6̃Xb
i ,Hi(X

b
i )

(
6̃Hi(X

b
i ),Hi(X

b
i )
+6ηi ,ηi

)−1
. (23)

REMARK 3 (Inflation). Inflation is a probabilistic correction
necessary to account for the Kalman gain being correlated to the
ensemble [38]. In inflation the ensemble anomalies (deviations
from the statistical mean) are multiplied by a constant α > 1,
thereby increasing the covariance of the distribution described by
the ensemble:

EXb
i+1
← µ̃Xb

i+1
+ α

(
EXb

i+1
− µ̃Xb

i+1

)
. (24)

2.4. The Multifidelity Ensemble Kalman
Filter
In this section, we present the standard Multifidelity Ensemble
Kalman Filter (MFEnKF) with linear assumptions on the
model, projection, and observation operators, and Gaussian
assumptions on all probability distributions.

The MFEnKF [25] merges the information from a hierarchy
of models and the corresponding observations into a coherent
representation of the uncertain model state. To propagate this
representation forward in time during the forecast phase, it is
necessary that the models are decoupled, but implicitly preserve
some underlying structure of the error information.Wemake use
of the linear control variate structure to combine this information
in an optimal manner.

Without loss of generality we discuss here a bi-fidelity
approach, where one full-order model is coupled to a lower-
fidelity reduced-order model. A telescopic extension to multiple
fidelities is provided at the end of the section. Instead of having
access to onemodelM, assume that we have access to a hierarchy
of models. In the bi-fidelity case, the principal space model
(FOM) is denoted by MX and the control space model (ROM)
is denoted byMU .

We now consider the total variate

Zb
i = Xb

i −
1

2
8 (Ûb

i − Ub
i ), (25)

that describes the prior total information from a model that
evolves in principal space (Xb

i ) and a model that evolves in

ancillary space (Ûb
i and Ub

i ).
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Assume that our prior total variate is represented by the
three ensembles EXb

i
∈ R

n×NX consisting of NX realizations of

the n-dimensional principal model state variate, EÛb
i
∈ R

r×NX

consisting of NX realizations of the r-dimensional control model
state variate, and EUb

i
∈ R

r×NU consisting of NU realizations

of the r-dimensional ancillary model state variate. Each of
these ensembles has a corresponding ensemble ofm-dimensional
control observation space realizations.

MFEnKF performs sequential data assimilation using the
above constituent ensembles, without having to explicitly
calculate the ensemble of the total variates. TheMFEnKF forecast
step propagates the three ensembles form the previous step:

EXb
i
=M

X
ti−1 ,ti

(EXa
i−1

),

EÛb
i
=M

U
ti−1 ,ti

(EÛa
i−1

),

EUb
i
=M

U
ti−1 ,ti

(EUa
i−1

).

(26)

Two observation operators HX
i and HU

i cast the principal
model and control model spaces, respectively, into the control
observation space. In this paper we assume that he principal
model space observation operator is the canonical observation
operator (2):

H
X
i (Xi) : = Hi(Xi), (27)

and that the control model space observation operator is
the canonical observation operator (2) applied to the linear
interpolated reconstruction (42) of a variable in control model
space:

H
U
i (Ui) : = Hi(8Ui). (28)

Additionally, we define an (approximate) observation operator
for the total model variate :

H
Z
i (Zi) : = H

X
i (Xi)−

1

2

(
H

U
i (Ûi)−H

U
i (Ui)

)
, (29)

which, under the linearity assumptions onHX
i of Theorem 3 and

the underlying Gaussian assumptions on Ûi and Ui of Theorem
2, begets that HZ

i = HX
i . Even without the linearity assumption

the definition (29) is operationally useful.
The MFEnKF analysis updates each constituent ensemble as

follows:

EXa
i
= EXb

i
− K̃i

(
E
H

X
i (X

b
i )
− EYX

i

)
,

EÛa
i
= EÛb

i
−2K̃i

(
(E

H
U
i (Û

b
i )
− EYX

i

)
,

EUa
i
= EUb

i
−2K̃i

(
(E

H
U
i (U

b
i )
− EYU

i

)
,

(30)

with the heuristic correction to the means

µ̃Xa
i
← µ̃Zai

, µ̃Ûa
i
← 2µ̃Zai

, µ̃Ua
i
← 2µ̃Zai

, (31)

applied in order to fulfill the unbiasedness requirement of the
control variate structure:

µ̃Zai
= µ̃Zbi

− K̃i

(
µ̃
H

X
i (Z

b
i )
− µYi

)
. (32)

The Kalman gain and the covariances are defined by the semi–
linearization:

K̃i = 6̃Zbi ,H
Z
i (Z

b
i )

(
6̃
H

Z
i (Z

b
i ),H

Z
i (Z

b
i )
+6ηi ,ηi

)−1
(33)

6̃
Zbi ,H

Z
i (Z

b
i )
= 6̃

Xb
i ,H

X
i (X

b
i )
+

1

4
6̃
8Ûb

i ,H
U
i (Û

b
i )
+

1

4
6̃
8Ub

i ,H
U
i (U

b
i )

−
1

2
6̃

Xb
i ,H

U
i (Û

b
i )
−

1

2
6̃
8Ûb

i ,H
X
i (X

b
i )
,

(34)

6̃
H

Z
i (Z

b
i ),H

Z
i (Z

b
i )
= 6̃

H
X
i (X

b
i ),Hi(X

b
i )
+

1

4
6̃
H

U
i (Û

b
i ),H

U
i (Û

b
i )
+

1

4
6̃
H

U
i (U

b
i ),H

U
i (U

b
i )

−
1

2
6̃
H

X
i (X

b
i ),H

U
i (Û

b
i )
−

1

2
6̃
H

U
i (Û

b
i ),H

X
i (X

b
i )
.

(35)

In order to ensure that the control variate Û remains highly
correlated to the principal variate X, at the end of each analysis
step we replace the analysis control variate ensemble with the
corresponding projection of the principal variate ensemble:

EÛa
i
← 2EXa

i
. (36)

Some important properties of MFEnKF are:

• MFEnKF makes use of surrogate models to reduce the
uncertainty in the full state.
• MFEnKF does not explicitly construct the total variates,

and instead performs the assimilation on the constituent
ensembles.
• Under Gaussian and linear assumptions, the sample mean of

the MFEnKF is an unbiased estimate of the truth.

REMARK 4 (MFEnKF Perturbed observations). There is no
unique way to perform perturbed observations (remark 2) in the
MFEnKF. We will present one way in this paper. As Theorem
2 requires both the control and ancillary variates to share the
same covariance, we utilize here the ‘control space uncertainty
consistency’ approach. The perturbed observations ensembles in
(30) is defined by:

[EYX
i
]:,e ∼ N(µYi ,6ηi ,ηi ), (37)

[EYU
i
]:,e ∼ N(µYi , s6ηi ,ηi ), (38)

where the scaling factor is s = 1. See [25, Section 4.2] for a more
detailed discussion about perturbed observations.

REMARK 5 (MFEnKF Inflation). Similarly to the EnKF (see
Remark 3), the MFEnKF also requires inflation in order to account
for the statistical Kalman gain being correlated to its constituent
ensembles. For a bi-fidelity MFEnKF, two inflation factors are
required: αX which acts on the anomalies of the principal and
control variates (as they must remain highly correlated) and αU
which acts on the ensemble anomalies of the ancillary variate:

EXb
i+1
← µ̃Xb

i+1
+ αX

(
EXb

i+1
− µ̃Xb

i+1

)
,

EÛb
i+1
← µ̃Ûb

i+1
+ αX

(
EÛb

i+1
− µ̃Ûb

i+1

)
,

EUb
i+1
← µ̃Ub

i+1
+ αU

(
EUb

i+1
− µ̃Ub

i+1

)
.

(39)
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REMARK 6 (Deterministic EnKF flavors). Many deterministic
flavors of the EnKF [2] are extendable to the MFEnKF. The
DEnKF [39] in particular is trivially extendanble to the non-
linear multifidelity approach identified in this work. It has been the
authors’ experience, however that the perturbed observation flavor
of the EnKF is more robust in the multifidelity setting. The authors’
suspect that this is the case precisely because of its stochastic nature,
leading it to better account for model error-based inaccuracies in
the surrogate models. Accounting for this type of model error is
outside the scope of this work.

REMARK 7 (Cost of the MFEnKF). It is known from [25] that,
given a full order model with cost CX with NX ensemble members
and a reduced order model with cost CU and NU ensemble
members, then the MFEnKF is more effective than a normal EnKF
with N ensemble members whenever,

CU ≤
CX(N − NX)

NX + NU
, (40)

meaning that the optimal cost of the reduced order model is highly
dependent on the desired full order ensemble size.

2.5. Autoencoders
We now generalize from the linear interpolation and projection
assumed previously (8), and consider a class of non-linear
projection and interpolation operators.

An autoencoder [24] is an artificial neural network consisting
of two smooth components, an encoder θ and a decoder φ, such
that given a variable X in the principal space, the variable

Û = θ(X), (41)

resides in the control space of the encoder. Conversely the
reconstruction,

X ≈ X̃ = φ(Û), (42)

is an approximation to X in the principal space, and which
in some optimal sense approximately recovers the information
embedded in X. While the relative dimension n of the principal
space is relatively high, the arbitrary structure of an artificial
neural networks allows the autoencoder to learn the optimal
r-dimensional (small) representation of the data.

2.6. Non-linear Projection-Based Reduced
Order Models
The important information of many dynamical systems can
be expressed with significantly fewer dimensions than the
discretization dimension n [40]. For many infinite dimensional
equations it is possible to construct a finite-dimensional inertial
manifold that represents the dynamics of the system (including
the global attractor). The Hausdorff dimension of the global
attractor of some dynamical system is a useful lower bound
for the minimal representation of the dynamics, though a
representation of just the attractor is likely not sufficient to
fully capture all the “useful” aspects of the data. For data-
based reduced order models an important aspect is the intrinsic

dimension [41] of the data. The authors are not aware of any
formal statements relating the dimension of an inertial manifold
and the intrinsic dimension of some finite discretization of the
dynamics. We assume that reduced dimension r is sufficient to
represent either the dynamics or the data, or both, and allows to
build a “useful” surrogate model.

We will now discuss the construction of reduced order
models for problems posed as ordinary differential equations.
The following derivations are similar to those found in [42], but
assume vector spaces and no re-centering.

Just like in the control variate framework in Section 2.1, the
full order model resides in the principal space X ⊂ R

n and the
reduced order model is defined in the space U ⊂ R

r , which is
related to X through the smooth non-linear projection (41).

Given an initial value problem in X:

dX

dt
= f (X), X(t0) = X0, t ∈ [t0, tf ], (43)

and the projection operator (41), the induced reduced order
model initial value problem in U is defined by simple
differentiation of U = θ(X), by dynamics in the space U,

dU

dt
= θ ′(X)f (X), X(t0) = X0, t ∈ [t0, tf ]. (44)

As is common, the full order trajectory is not available during
integration, as there is no bijection from X to U, thus an
approximation using the interpolation operator (42) that fully
resides in U is used instead:

dU

dt
= θ ′(φ(U))f (φ(U)), U(t0) = θ(X0), t ∈ [t0, tf ]. (45)

Note that this is not the only way to obtain a reduced order
model by using arbitrary projection and interpolation operators.
It is however the simplest extension of the POD-based ROM
framework.

REMARK 8 (Linear ROM). Common methods for finding
projection and interpolation operators make a linear assumption
(methods such as POD), thus, in the linear case (8) the reduced
order model (45) takes the form

dU

dt
= 2f (8U), U(t0) = 2X0, t ∈ [t0, tf ]. (46)

3. NON-LINEAR PROJECTION-BASED
MFENKF

We extend MFEnKF to work with non-linear projection and
interpolation operators. The new algorithm is named NL-
MFEnKF. Since existing theoretical extensions of the linear
control variate framework to the non-linear case [43] are not
completely satisfactory, violating the assumption of an unbiased
estimate of the total variate, we resort to several heuristic
assumptions to construct this algorithm. Heuristic approaches
that work well in practice are widely used in data assimilation
literature [2].
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The main idea is to replace the optimal control variate
structure for linear projection and interpolation operators (10)
with one that works with their non-linear counterparts (13):

Zb
i = Xb

i −
1

2

(
φ(Ûb

i )− φ(U
b
i )

)
. (47)

We assume that Û and U are independently and identically
distributed, such that they obey the assumptions made in
Theorem 2 and in Theorem 3 for the optimal gain.

Similar to MFEnKF (28), the control model space observation
operator is the application of the canonical observation operator
(2) to the reconstruction

H
U
i (Ui) : = Hi(φ(Ui)), (48)

with the other observation operators Equations (27, 29) defined
as in the MFEnKF.

REMARK 9. It is of independent interest to explore control model
space observation operators that are not of the form (48). For
example, if the interpolation operator φ is created through an
autoencoder, the control model space observation operator HU

could similarly be a different decoder of the same latent space.

The MFEnKF equations (30) are replaced by their non-linear
counterparts in a manner similar to what is done with non-linear
observation operators,

EXa
i
= EXb

i
− K̃i

(
E
H

X
i (X

b
i )
− EYX

i

)
,

EÛa
i
= EÛb

i
− K̃

θ
i

(
E
H

U
i (Û

b
i )
− EYX

i

)
,

EUa
i
= EUb

i
− K̃

θ
i

(
E
H

U
i (U

b
i )
− EYU

i

)
,

(49)

where, as opposed to (30), there are now two Kalman gains,
defined by:

K̃ i = 6̃Zbi ,H
Z
i (Z

b
i )

(
6̃
H

Z
i (Z

b
i ),H

Z
i (Z

b
i )
+6ηi ,ηi

)−1
, (50)

K̃
θ
i = 6̃θ(Zbi ),H

Z
i (Z

b
i )

(
6̃
H

Z
i (Z

b
i ),H

Z
i (Z

b
i )
+6ηi ,ηi

)−1
. (51)

Here we take a heuristic approach and use semi-linear
approximations of the covariances, similar to (34) and (35). The
perturbed observations are defined like in MFEnKF (Remark 4).

Figure 1 provides a visual diagram of both the forecast and
analysis steps of the NL-MFEnKF algorithm.

REMARK 10 (Localization for the NL-MFEnKF). In operational
data assimilation workflows, localization [2] is an important

heuristic for the viability of the family of ensemble Kalman
filter algorithms. While it is trivial to apply many B-localization
techniques to the full-space Kalman gain (50), it is not readily

apparent how one may attempt to do so for the reduced-space
Kalman gain (51). Convolutional autoencoders [24] might provide
an avenue for such a method, as they attempt to preserve some

of the underlying spatial structure of the full space in the reduced

space. An alternative is the use of R-localization, though, in the
authors’ view, there is a non-trivial amount of work to be done in
order to formulate such a method.

3.1. NL-MFEnKF Heuristic Corrections
For linear operators the projection of the mean is the mean
of the projection. This is however not true for general non-
linear operators. Thus, in order to correct the means like in the
MFEnKF (31), additional assumptions have to be made.

The empirical mean of the total analysis variate (47) [similar
to (32)] is

µ̃Zai
= µ̃Xa

i
−

1

2

(
µ̃φ(Ûa

i )
− µ̃φ(Ua

i )

)
. (52)

We use it to find the optimal mean adjustments in reduced space.
Specifically, we set the mean of the analysis principal variate to be
the mean of the analysis total variate (52),

µ̃Xa
i
← µ̃Zai

, (53)

enforce the recorrelation of the principal and control variates (36)
via

EÛa
i
← θ(EXa

i
), (54)

and define the control variate mean adjustment as a consequence
of the above as,

µ̃Ûa
i
← µ̃θ(Xa

i )
. (55)

Unlike the linear control variate framework of the MFEnKF
(25), the non-linear framework of the NL-MFEnKF (47) does
not induce a unique way to impose unbiasedness on the
control-space variates. There are multiple possible non-linear
formulations to the MFEnKF, and multiple possible heuristic
corrections of the mean the ancillary variate. Here we discuss
three approaches based on:

1. control space unbiased mean adjustment,
2. principal space unbiased mean adjustment, and
3. Kalman approximate mean adjustment,

each stemming from a different assumption on the relationship
between the ancillary variate and the other variates.

3.1.1. Control Space Unbiased Mean Adjustment
The assumption that the control variate Ûa

i and the ancillary
variate Ua

i are unbiased in the control space implies that they
share the samemean. The mean adjustment of Ûa in (55) directly
defines the mean adjustment of the ancillary variate:

µ̃Ua
i
← µ̃Ûa

i
. (56)

The authors will choose this method of correction in the
numerical experiments for both its properties and ease
of implementation.

3.1.2. Principal Space Unbiased Mean Adjustment
If instead we assume that the control variate φ(Ûi) and the
ancillary variate φ(Ui) are unbiased in the principal space
(meaning that they have the same mean), then the mean of the
total variate Zi (47) equals the mean of the principal variate Xi, a
desirable property.
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FIGURE 1 | A visual diagram of the NL-MFEnKF algorithm. The random variables are represented by an ensemble of realizations, and the directional acyclic graph

provides an explicit (infinite) causal graph.

Finding a mean adjustment for Ua
i in the control space such

that the unbiasedness is satisfied in the principal space is a
non-trivial problem. Explicitly, we seek a vector ν such that:

µ̃φ(Ûa
i )
= µ̃φ(Ua

i −µ̃Ua
i
+ν), (57)

resulting in the correction,

EUa
i
← EUa

i
− µ̃Ua

i
+ ν. (58)

The solution to (57) requires the solution of an expensive
nonlinear equation. Note that (57) is equivalent to (56) under the
assumptions of Theorem 2, in the limit of large ensemble size.

3.1.3. Kalman Approximate Mean Adjustment
Instead of assuming that the control and ancillary variates are
unbiased, we can consider directly the mean of the control-space
total variate:

µ̃θ(Zai ) = µ̃θ(X
a
i )
−

1

2

(
µ̃Ûa

i
− µ̃Ua

i

)
, (59)

defined with the mean values in NL-MFEnKF formulas (49). The
following adjustment to the mean of the ancillary variate:

µ̃Ua
i
← µ̃θ(Zai ), (60)

is not unbiased with respect to the control variate in any space,
but provides a heuristic approximation of the total variate mean
in control space, and does not affect the principal variate mean.

3.2. Telescopic Extension
As in [[25], Section 4.5] one can telescopically extend the bi-
fidelity NL-MFEnKF algorithm to a hierarchy of L + 1 models
of different fidelities. Assume that the nonlinear operator φℓ
interpolates from the space of fidelity ℓ to the space of fidelity
ℓ − 1, where φ1 interpolates to the principal space. A telescopic
extension of (47) is

Z = X −

L∑

ℓ=1

2−ℓ
(
φ(Ûℓ)− φ(Uℓ)

)
, (61)

where the projection operator at each fidelity is defined as,

φℓ = φ1 ◦ · · · ◦ φℓ, (62)

projecting from the space of fidelity ℓ to the principal space. The
telescopic extension of the NL-MFEnKF is not analyzed further
in this work.

4. DYNAMICAL MODELS AND THE
CORRESPONDING POD-ROMS

For numerical experiments we use two dynamical systems: the
Lorenz’96 model [44] and the Quasi-Geostrophic equations
(QGE) [45–48].

For each of these models we construct two surrogates that
approximate their dynamics. The first type of surrogate is a
principal orthogonal decomposition-based quadratic reduced
order model (POD-ROM), which is the classical approach to
building the ROM. The second surrogate is an autoencoder
neural network-based reduced order model (NN-ROM).
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We will use the Lorenz’96 equations to test the methodology
and derive useful intuition about the hyperparameters. For the
POD-ROM and NN-ROMs for the Lorenz’96 equations we
construct reduced order models (ROMs) for reduced dimension
sizes of r = 7, 14, 21, 28, and 35.

We will use the Quasi-geostrophic equations to illustrate that
our methodology can be applied in an operational setting. For
both the POD-ROM and NN-ROMs we will build ROMs of a
single reduced dimension size, r = 25.

The Lorenz’96, QGE, and corresponding the POD-ROM
models are implemented in the ODE-test-problems suite [49, 50].

4.1. Lorenz’96
The Lorenz’96 model [44] can be conjured from the PDE [1, 51],

dy

dt
= −yyx − y+ F, (63)

where the forcing parameter is set to F = 8. In the semi-discrete
version y ∈ R

n, and the nonlinear term is approximated by a
numerically unstable finite difference approximation,

[
yyx

]
k
=

(̂
I y

)
k
·
(
D̂ y

)
k
=

(
[y]k−1

)
·
(
[y]k−2 − [y]k+1

)
, (64)

where Î is a (linear) shift operator, and the linear operator D̂
is a first order approximation to the first spatial derivative. The
canonical n = 40 variable discretization with cyclic boundary
conditions is used. The classical fourth order Runge-Kutta
method is used to discretize the time dimension.

For the given discrete formulation of the Lorenz’96 system,
14 represents the number of non-negative Lyapunov exponents,
28 represents the rounded-up Kaplan-Yorke dimension of 27.1,
and 35 represents an approximation of the intrinsic dimension
of the system [calculated by the method provided by [52]]. To
the authors’ knowledge, the inertial manifold of the system, if
it exists, is not known. The relatively high ratio between the
intrinsic dimension of the system and the spatial dimension
of the system makes constructing a reduced order model
particularly challenging.

4.1.1. Data for Constructing Reduced-Order Models
The data to construct the reduced order models is taken to be
10, 000 state snapshots from a representative model run. The
snapshots are spaced 36 time units apart, equivalent to 6 months
in model time. The first 5, 000 snapshots provide the training
data, and the next 5, 000 are taken as testing data in order to test
the extrapolation power of the surrogate models.

4.1.2. Proper Orthogonal Decomposition ROM for

Lorenz’96
Using the method of snapshots [53], we construct optimal linear
operators, 8T = 2 ∈ R

r×n, such that the projection captures
the dominant orthogonal modes of the system dynamics. The
reduced order model approximation with linear projection and
interpolation operators (46) is quadratic [similar to [54, 55]]

du

dt
= a+ Bu+ uTCu, (65)

where the corresponding vector a, matrix B, and 3-tensor C are
defined by:

a = F21n, (66a)

B = −28, (66b)

[C]jkℓ = −
(̂
I8:,j

)T (
D̂8:,k

)
8:,ℓ. (66c)

4.2. Quasi-Geostrophic Equations
We will utilize the quasi-geostrophic equations (QGE) [45–48]
as a proof-of-concept to showcase the proposed methodology
in a more realistic setting. We follow the formulation used
in [25, 55, 56],

ωt + J(ψ ,ω)− Ro−1ψx = Re−11ω + Ro−1F,

J(ψ ,ω) ≡ ψyωx − ψxωy, ω = −1ψ ,
(67)

where ω represents the vorticity, ψ is the corresponding
streamfunction, Ro is the Rossby number, Re is the Reynolds
number, and J represents the quadratic Jacobian term.

4.2.1. Data for Constructing Reduced-Order Models
For the QGE, we collect 10, 000 state snapshot points spaced
30 days apart, equivalent to about 0.327 time units in our
discretization. As we wish to simulate a realistic online scenario,
all data will be used for surrogate model training. The validation
of the surrogates will be done through their practical use in the
MFEnKF and NL-MFEnKF assimilation frameworks.

4.2.2. Proper Orthogonal Decomposition ROM for

QGE
By again utilizing the method of snapshots on the vorticity,
we obtain the optimal linear operators 8ω ∈ R

n×r 2ω ∈

R
r×n (orthogonal in some inner product space) that capture

the dominant linear dynamics in the vorticity space. The linear
operators corresponding to the streamfunction are then obtained
by solving the Poisson equation

2ω = −12ψ , (68)

with 8ψ being defined in a similar fashion, from which a
quadratic ROM (65) is constructed as in [25]. In [25], it was
shown that a reduced dimension of r = 25 is considered medium
accuracy for the QGE, therefore this is the choice that we will use
in numerical experiments.

5. THEORY-GUIDED
AUTOENCODER-BASED ROMS

We now discuss building the neural network-based reduced
order model (NN-ROM). Given the principal space variable X,
consider an encoder θ that computes its projection U onto
the control space (41), and a decoder φ that computes the
reconstruction X̃ (42).

Canonical autoencoders simply aim to minimize the
reconstruction error:

X ≈ X̃, (69)
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which attempts to capture the dominant modes of the intrinsic
manifold of the data. We identify a property of other reduced
order modeling techniques which aims to preserve the physical
consistency of the dynamics.

Recall the approximate dynamics in the reduced space (45)
which provides an approximation to the reduced dynamics (44):

dU

dt
= θ ′(X) f (X) ≈ θ ′(X̃) f (X̃) = θ ′(φ(U)) f (φ(U)). (70)

We derive a condition that creates a between the two tendencies
in the right hand side of (70).

THEOREM 4. Assume the encoding of the reconstruction is the
encoding of the full representation,

θ(X̃) = θ(X), (71)

which we call the right-inverse property. Then the
approximation (70) is bounded by,

∥∥θ ′(X̃)
∥∥ ∥∥φ′(U) θ ′(X) f (X)− f (φ(U))

∥∥ . (72)

PROOF: We have U = θ(X), X̃ = φ(U) = φ(θ(X)). By the
right-inverse-property (71),

U = θ(φ(θ(X))).

Differentiating with respect to time,

dU

dt
= θ ′(X̃)φ′(U) θ ′(X) f (X),

and approximating with (45) similar to in (70),

θ ′(X̃)φ′(U) θ ′(X) f (X) ≈ θ ′(X̃) f (φ(U)), (73)

then the term θ ′(X̃) now appears on both sides of the equation,
and the error can be expressed as,

∥∥θ ′(X̃)
[
φ′(U) θ ′(X) f (X)− f (φ(U))

]∥∥ ≤
∥∥θ ′(X̃)

∥∥ ∥∥φ′(U) θ ′(X) f (X)− f (φ(U))
∥∥ ,
(74)

as required.

REMARK 11. The condition (72) is exact is difficult to enforce,
as it would require the evaluation of the function f many times,
which may be an intractable endeavor for large models. It is of
independent interest to attempt and enforce this condition, or
provide error bounds for certain flavors of models.

For POD (Section 4.1.2), the right-inverse property (71) is
automatically preserved by construction and the linearity of the
methods, as

28 = Ir , (75)

by the orthogonality of2 and8. Therefore,

282X = 2X, ∀X ∈ R
n. (76)

For non-linear operators, the authors have not explicitly
seen this property preserved, however, as the MFEnKF requires
sequential applications of projections and interpolations, the
authors believe that for the use-case outlined in this paper, the
property is especially important.

It is of interest that the right invertibility property is implied
by the mere fact that we are looking at preserving non-linear
dynamics with the auto-encoder, but is otherwise agnostic to the
type of physical system that we are attempting to reduce.

REMARK 12. Note that unlike the POD-ROM whose linear
structure induces a purely r-dimensional initial value problem, the
NN-ROM (45) still involves n-dimensional function evaluations.
In a practical method it would be necessary to reduce the internal
dimension of the ROM, however that is significantly outside the
scope of this paper.

5.1. Theory-Guided Autoencoder-Based
ROM for Lorenz’96
We seek to construct a neural network MNN that is a surrogate
ROM for the FOM MX . We impose that the induced dynamics
(45) makes accurate predictions, by not only capturing the
intrinsic manifold of the data, but also attempting to capture the
inertial manifold of the system. Explicitly, we wish to ensure that
the surrogate approximation error in full space,

M
X(X) ≈ φ(MNN(θ(X))) (77)

is minimized. We explicitly test the error in full space and not
the reduced space, as the full space error is more relevant to the
practitioner and for practical application of our methodology.

In this sense (45) would represent an approximation of
the dynamics along a submanifold of the inertial manifold. In
practice we compute (77) over a short trajectory in the full space
started from a certain initial value, and a short trajectory in the
latent space started form the projected initial value.

We will however not explicitly enforce (77) in the cost
function, as that may be intractable for larger systems. We will
instead only enforce the right-inverse property (71) by posing it
as a weak constraint of the system.

Combining the canonical autoencoder reconstruction error
term (69), and the right-inverse property (71), we arrive at the
following loss function for each snapshot:

ℓj(Xj) =
1

n

∥∥Xj − φ(θ(Xj))
∥∥2
2
+
λ

r

∥∥θ(Xj)− θ(φ(θ(Xj)))
∥∥2
2
,

(78)
where the hyper-parameter λ represents the inverse relative
weight of the mismatch of the right inverse property.

The full loss function, combining the cost functions for all T
training snapshots:

L(X) =

T∑

j=1

ℓj(Xj), (79)

can be minimized through typical stochastic
optimization methods.
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FIGURE 2 | Results for an autoencoder-based ROM of dimension r = 28 approximating the Lorenz’96 FOM. The figure illustrates the mean error for the three error

types that we observe: reconstruction error (80), the right invertibility error (81), and the propagation error (82), on both the training and testing data sets.

For testing we will look at two errors from the cost function,
the reconstruction error,

1

T

T∑

j=1

1

n

∥∥Xj − φ(θ(Xj))
∥∥2
2
, (80)

which corresponds to the error in (69), and the right-invertibility
error,

1

T

T∑

j=1

1

r

∥∥θ(Xj)− θ(φ(θ(Xj)))
∥∥2
2

(81)

corresponds to the error in (71).
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Aside from the two errors above, for testing, we additionally
observe the propagation error,

1
T

∑T
j=1

1
n

∥∥∥MX
tJ ,(tJ+K1t)

(XJ)− φ(M
NN
tJ ,(tJ+K1t)

(θ(XJ)))
∥∥∥
2

2
,

J = {1, 2, . . . ,T},
(82)

which attempts to quantify the mismatch in (77) computed along
K steps.

Similar to the POD model, we construct r-dimensional NN-
based surrogate ROMs. To this end, we use one hidden layer
networks with the element-wise tanh activation function for the
encoder (41) and decoder (42):

θ(X) = Wθ
2 tanh(Wθ

1X + bθ1)+ bθ2 ,

Wθ
1 ∈ R

h×n,Wθ
2 ∈ R

r×h, bθ1 ∈ R
h, bθ2 ∈ R

r ,

(83)

φ(U) = W
φ
2 tanh(W

φ
1 U + b

φ
1 )+ b

φ
2 ,

W
φ
1 ∈ R

h×r ,W
φ
2 ∈ R

n×h, b
φ
1 ∈ R

h, b
φ
2 ∈ R

n,

(84)

where h is the hidden layer dimension, equal for both the encoder
and decoder.

The corresponding linearization of the encoder is:

θ ′(X) =Wθ
2 diag

[
1− tanh(Wθ

1X + bθ1)
◦2

]
Wθ

1 , (85)

where (·)◦2 represents element-wise exponentiation, is required
for the reduced order dynamics (45).

There are two hyper-parameters of interest, the hidden layer
dimension, h, and the right-inverse weak-constraint parameter λ.

We consider the following hidden layer dimensions, h =
50, 100, 150, 200, 250, and 300. Additionally we consider the
following values for right-inverse weak-constraint weights λ =
0, 1, 102, 104. We fix the propagation error parameter to K =
4, which corresponds to 24 h in model time, and observe all
three errors (80), (81), and (82) on both the training and testing
data sets.

We employ the ADAM [57] optimization procedure to train
the NN and to produce the various ROMs. Gradients of the loss
function are computed through automatic differentiation.

Figure 2 shows results from a representative set of models
corresponding to different choices of the λ hyperparameter and
the ROM dimension r = 28. As can be seen, the value of λ =
104 is too strict of a parameter, thus the cost function ignores
all errors other than the right-invertibility constraint, while all
other values of λ are produce viable models. The inclusion of the
right-invertibility constraint not only improves the propagation
error, but also makes the produced models less dependent on the
hidden layer dimension h on the test data reconstruction.

We consider the “best” model to be the one that which
minimizes the propagation error (82) over the two parameters for
each ROM dimension size. Table 1 shows the optimal parameter
choices corresponding to each ROM dimension. The “best”
models are chosen for the numerical experiments. Aside from
the case r = 7, the optimal right-inverse constraint parameter
is λ = 102.

TABLE 1 | A table of the optimal autoencoder parameters for the Lorenz ’96

NN-ROM for different ROM dimensions r.

r h λ

7 50 0

14 50 102

21 100 102

28 200 102

35 200 102

Here h is the hidden layer dimension, and λ the right-invertibility constraint weight

parameter.

5.2. Theory-Guided Autoencoder-Based
ROM for QGE
For a more realistic test case, we construct an autoencoder-based
ROM for the QGE. The hyperparameters are chosen based on
the information obtained using the Lorenz’96 model, rather than
through exhaustive (and computationally-intensive) testing.

As in (83), we construct the encoder and decoder using

θ(X) = Wθ
2 σ (W

θ
1X + bθ1)+ bθ2 ,

Wθ
1 ∈ R

h×n,Wθ
2 ∈ R

r×h, bθ1 ∈ R
h, bθ2 ∈ R

r ,

(86)

φ(U) = C
(
W
φ
2 σ (W

φ
1 U + b

φ
1 )+ b

φ
2

)
,

W
φ
1 ∈ R

h×r ,W
φ
2 ∈ R

n×h, b
φ
1 ∈ R

h, b
φ
2 ∈ R

n,

(87)

where σ is an approximation to the Gaussian error linear
unit [58],

σ (z) =
z

1+ e−1.702z
, (88)

with all operations computed element-wise, and h is the hidden
dimension size. The extra constant term C in (87) is a 2D-
convolution corresponding to the stencil,

1

16




3
3 4 3
3


 (89)

that aims to ensure that the resulting reconstruction does not
have sharp discontinuities.

The choice of the activation function in (88) corresponds to
a more realistic choice in state-of-the-art neural networks, and
helps with choosing a smaller hidden dimension size.

Similar to Section 4.2.2, we make the choice that the reduced
dimension size is r = 25. Informed by the Lorenz’96 NN-ROM,
we take the hidden layer dimension h = 125, a medium value in
between h = 100 and h = 150. We again use the hyperparameter
value λ = 102.

6. NUMERICAL EXPERIMENTS

The numerical experiments with the Lorenz’96 model compare
the following four methodologies:

1. Standard EnKF with the Lorenz’96 full order model;
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2. MFEnKF with the POD surrogate model, an approach named
MFEnKF(POD);

3. NL-MFEnKF with the autoencoder surrogate model, named
NL-MFEnKF(NN); and

4. MFEnKF with the autoencoder surrogate model, named
MFEnKF(NN).

Since MFEnKF does not support non-linear projections and
interpolations, in MFEnKF(NN) the ensembles are interpolated
into the principal space, and assimilated under the assumption
that2 = 8 = I.

For sequential data assimilation experiments we observe all
40 variables of the Lorenz’96 system, with an observation error
covariance of 6ηi ,ηi = I. Observations are performed every
0.05 time units corresponding to 6 h in model time. We run 20
independent realizations (independent ensemble initializations)
for 1, 100 time steps, but discard the first 100 steps for spinup.

The numerical experiments with the Quasi-geostrophic
equations focus only on sequential data assimilation. We
compare the following methodologies:

1. Standard EnKF with the QGE full order model;
2. MFEnKF with the POD surrogate model, an approach named

MFEnKF(POD); and
3. NL-MFEnKF with the autoencoder surrogate model, named

NL-MFEnKF(NN).

We observe 150 equally spaced variables directly, with an
observation error covariance of 6ηi ,ηi = I. Observations are
performed every 0.0109 time units corresponding to 1 day in
model time. We run 5 independent realizations (independent
ensemble initializations) for 350 time steps, but discard the first
50 steps for spinup.

In order to measure the accuracy of some quantity of interest
with respect to the truth, we utilize the spatio-temporal root
mean square error (RMSE):

RMSE(X,Xt) =

√√√√ 1

Nn

N∑

i=1

n∑

k=1

(
[Xi]k −

[
Xt
i

]
k

)2
, (90)

throughout the rest of this section. Note here that the number of
steps in a given experiment N is not necessarily the number of
snapshot data point T.

6.1. Accuracy of ROM Models for Lorenz’96
Our first experiment is concerned with the preservation of energy
by different ROMs, and seeks to compare the accuracy of NN-
ROM against that of POD-ROM. For the Lorenz’96 model, we
use the following equation [59] to model the spatio-temporal
kinetic energy,

KE =

T∑

i=1

n∑

k=1

(
[yi]k

)2
, (91)

where T is the number of temporal snapshots of either the
training or testing data. Table 2 shows the relative kinetic
energies of the POD-ROM and the NN-ROM reconstructed
solutions (42) (the energies of the reconstructed ROM solutions

TABLE 2 | Relative kinetic energies preserved by the reconstructions of the

POD-ROM and the NN-ROM solutions of the Lorenz’96 system on both the

training and testing data.

r
POD-ROM NN-ROM

Training Testing Training Testing

7 0.52552 0.52351 0.67115 0.67358

14 0.70200 0.69696 0.78783 0.78590

21 0.82222 0.81983 0.91187 0.91292

28 0.90161 0.90051 0.96760 0.96913

35 0.96251 0.96142 0.99095 0.98845

Various reduced-order model dimensions r are considered.

are divided by the kinetic energy of the full order solution) for
both the training and testing data.

The results lead to several observations. First, the NN-ROM
always preserves more energy than the POD-ROM. We have
achieved our goal to build an NN-ROM that is more accurate
than the POD-ROM. Second, the NN-ROMs with dimensions
r = 21 and r = 28 preserve as much energy as the POD-ROMs
with dimension r = 28 and r = 35, respectively. Intuitively
this tells us that they should be just as accurate. Third, all the
models preserve almost as much energy on the training as on the
testing data, meaning that the models are representative over all
possible trajectories.

6.2. Impact of ROM Dimension for
Lorenz’96
The second set of experiments seeks to learn how the
ROM dimension affects the analysis accuracy for the various
multifidelity data assimilation algorithms.

We take the principal ensemble size to be NX = 32, and the
surrogate ensemble sizes equal to NU = r − 3, in order to always
work in the undersampled regime. All multifidelity algorithms
(Sections 3, 2.4) are run with inflation factors αX = 1.05 and
αU = 1.01. The traditional EnKF using the full ordermodel is run
with an ensemble size ofN = NX and an inflation factor α = 1.06
to ensure stability. The inflation factors were chosen by careful
hand-tuning to give a fair shot to all algorithms and models.

The results are shown in Figure 3. For the “interesting”
dimensions r = 28, and r = 35, the NL-MFEnKF(NN)
performs significantly better than the MFEnKF(POD). For a
severely underrepresented ROM dimension of r = 7, r = 14, and
r = 21 the MFEnKF(POD) outperforms the NL-MFEnKF(NN).
The authors believe that this is due to the fact that a non-linear
ROM size of less that r = 28 dimensions (the rounded-up
Kaplan-Yorke dimension) is not sufficient to represent the full
order dynamics without looking at additional constraints.

Of note is that, excluding the case of r = 35, the
MFEnKF(NN) based on the standard MFEnKF method in the
principal space is the least accurate among all algorithms,
indicating that the non-linear method presented in this paper is
truly needed for models involving non-linear model reduction.

We note that for r = 35, the suspected intrinsic dimension of
the data, the NL-MFEnKF(NN) outperforms the EnKF, both in
terms of RMSE and variability within runs. This is additionally
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FIGURE 3 | Lorenz’96 analysis RMSE vs. ROM dimension (r) for three multifidelity data assimilation algorithms and the classical EnKF. Ensemble sizes are NX = 32

and NU = r − 3. Error bars show two standard deviations. The inflation factor for the surrogate ROMs is fixed at αU = 1.01, the inflation of α = 1.07 is used for the

EnKF, and αX = 1.05 is used for all other algorithms.

strengthened by the results of the MFEnKF(NN) assimilated in
the principal space, as it implies that there is little-to-no loss of
information in the projection into the control space.

We believe that these are very promising results, as they
imply that simply capturing the Kaplan-Yorke dimension and
properly accounting for the non-linearity of the system could
potentially bring in surrogates defined by non-linear operators
to data assimilation research.

6.3. Ensemble Size and Inflation for
Lorenz’96
Our second to last set of experiments focuses on the particular
ROM dimension r = 28, as we believe that it is representative
of an operationally viable dimension reduction, covering the
dimensionality of the global attractor, and experimentally it is
the sweet spot where the NL-MFEnKF(NN) beats all others
except EnKF.

For each of the four algorithms we vary the principal ensemble
sizeNX = N, and the principal inflation factor αX = α. As before,
we set the control ensemble size to NU = r − 3 = 25 and the
control-space inflation factor to αU = 1.01.

Figure 4 shows the spatio-temporal RMSE for various choices
of ensemble sizes and inflation factors. The results show
compelling evidence that NL-MFEnKF(NN) is competitive when
compared to MFEnKF(POD); the two methods have similar
stability properties for a wide range of principal ensemble sizeNX

and principal inflation αX , but NL-MFEnKF(NN) yields smaller
analysis errors for almost all scenarios for which the twomethods
are stable.

For a few points with low values of principal inflation αX ,
the NL-MFEnKF(NN) is not as stable as the MFEnKF(POD).
This could be due to either an instability in the NN-ROM

itself, in the NL-MFEnKF itself, or in the projection and
interpolation operators.

An interesting observation is that the MFEnKF(NN), which
is assimilated naively in the principal space, becomes less stable
for larger ensemble sizes NX . One possible explanation for this
is that the ensemble mean estimates become more accurate, thus
the bias between the ancillary and control variates is amplified in
(4), and more error is introduced from the surrogate model. This
is in contrast to most other ensemble based methods, including
all others in this paper, whose error is lowered by increasing
ensemble size.

6.4. Ensemble Size and Inflation for QGE
Our last set of experiments focuses on the quasi-geostrophic
equations.We use the POD-ROMdeveloped in Section 4.2.2, and
the NN-ROM discussed in Section 5.2.

As before, for each of the three algorithms we vary the
principal ensemble size NX = N and principal inflation αX = α.
In order to better visualize the results, we fix the control ensemble
size to NU = 12, and the control inflation factor to αU = 1.05.

Figure 5 shows the spatio-temporal RMSE for various choices
of ensemble sizes and inflation factors. The results provide
evidence for the validity of the NL-MFEnKF approach for large-
scale data assimilation problems.

For similar values of inflation and ensemble size, the MFEnKF
with a POD surrogate is comparable to the NL-MFEnKF
with an autoencoder-based surrogate. Both multilevel filters
significantly outperform the standard EnKF. The authors believe
that these results show convincingly that the NL-MFEnKF
formulation is valid for surrogates based on non-linear projection
and interpolation.
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FIGURE 4 | Lorenz’96 analysis RMSE for four data assimilation algorithms and various values of the principal ensemble size NX and inflation factor αX . The surrogate

ROM size is fixed to r = 28 with ensemble size of NU = 25 and inflation of αU = 1.01. The (top left) represents the MFEnKF with a POD-ROM surrogate, the (top

right) represents the NL-MFEnKF with a NN-ROM, the (bottom left) represents the MFEnKF with a NN-ROM surrogate assimilated in the principal space, and the

(bottom right) represents the classical EnKF.

7. CONCLUSIONS

The multifidelity ensemble Kalman filter (MFEnKF)
uses a linear control variate framework to increase the
computational efficiency of data assimilation; the state
of the FOM is the principal variate, and a hierarchy of
linear projection ROMs provide the control variates. In this
work, the linear control variate framework is generalized
to incorporate control variates built using non-linear
projection and interpolation operators implemented using
autoencoders. The approach, named NL-MFEnKF, enables
the use of a much more general class of surrogate models
than MFEnKF.

We identify the right-invertibility property of autoencoders
as an important feature to support the construction of non-
linear reduced order models. This property has previously not
been preserved by autoencoders. We propose a methodology for
building ROMs based on autoencoders that weakly preserves this
property, and show that enforcing this property enhances the
prediction accuracy over the standard approach.

We use these elements to construct NL-MFEnKF that extends
the multifidelity ensemble Kalman filter framework to work
with nonlinear surrogate models. The results obtained in this
paper indicate that reduced order models based on non-linear
projections that fully capture the intrinsic dimension of the data
provide excellent surrogates for use in multifidelity sequential
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FIGURE 5 | QGE analysis RMSE for four data assimilation algorithms and various values of the principal ensemble size NX and inflation factor αX . The surrogate ROM

size is fixed to r = 25 with ensemble size of NU = 12 and inflation of αU = 1.05. The (top left) represents the MFEnKF with a POD-ROM surrogate, the (top right)

represents the NL-MFEnKF with a NN-ROM, and the (bottom) represents the classical EnKF.

data assimilation. Moreover, nonlinear generalizations of the
control variate framework result in small approximation errors,
and thus the assimilation can be carried out efficiently in the
space of a nonlinear reduced model.

Our Numerical experiments with both small scale (Lorenz
’96) and medium scale (QGE) models show that the non-
linear multifidelity approach has clear advantages over the linear
multifilidety approach when the reduced order models are
defined by non-linear couplings, and over the standard EnKF for
similar high-fidelity ensemble sizes.

From the point of view of machine learning, the major
limitations are the constructions of projection and interpolation
operators, that do not account for the spatial features of the

models, and the model propagation, which does not attempt
to utilize state-of-the-art methods such as recurrent neural
network models.

From the point of view of data assimilation, there are
three limiting factors for the applicability of our method to
operational workflows. The first is the use of the perturbed
observations ensemble Kalman filter, the second is the
absence of localization in our framework, and the third
is the absence of model error both for the full-order and
surrogate models.

One potential avenue of future research would be into
adaptive inflation techniques for multifidelity data assimilation
algorithms similar in vein to [60].
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Future work addressing all the problems and research
avenues above would lead to the successful application of
the NL-MFENKF to operational problems such as numerical
weather prediction.
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