
ORIGINAL RESEARCH
published: 16 June 2022

doi: 10.3389/fams.2022.899247

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 June 2022 | Volume 8 | Article 899247

Edited by:

Appanah Rao Appadu,

Nelson Mandela University,

South Africa

Reviewed by:

Ashish Awasthi,

NITc, India

Farai Julius Mhlanga,

University of Limpopo, South Africa

*Correspondence:

Iman M. Attia

imanattiathesis1972@gmail.com

orcid.org/0000-0002-7333-9713

Specialty section:

This article was submitted to

Mathematical Biology,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 18 March 2022

Accepted: 12 April 2022

Published: 16 June 2022

Citation:

Attia IM (2022) Log-Linear Model and

Multistate Model to Assess the Rate of

Fibrosis in Patients With NAFLD.

Front. Appl. Math. Stat. 8:899247.

doi: 10.3389/fams.2022.899247

Log-Linear Model and Multistate
Model to Assess the Rate of Fibrosis
in Patients With NAFLD
Iman M. Attia*

Department of Mathematical Statistics, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, Egypt

In this paper, the deleterious effects of obesity, type II diabetes, and insulin resistance,

systolic and diastolic hypertension on the rate of progression of fibrosis in patients with

non-alcoholic fatty liver disease (NAFLD) are illustrated using a new approach utilizing

the Poisson regression to model the transition rate matrix. The observed counts in the

transition count matrix are used as the response variables and the covariates are the risk

factors for fatty liver. Then, the estimated counts from running the Poisson regression are

used to estimate the transition rates using the continuous-time Markov chains (CTMCs)

followed by exponentiation of the estimated rate matrix to obtain the transition probability

matrix at specific time points. A depicted, hypothetical, observational, prospective

longitudinal study of 150 participants followed up every year for a total of 29 years

recording their demographic characteristics and their timeline follow-up is demonstrated.

The findings revealed that insulin resistance expressed by HOMA2-IR had the most

deleterious effects among other factors on increasing the rate of fibrosis progression

from state 1 to state 2, from state 2 to state 3, and from state 3 to state 4. The higher the

level of HOMA2-IR is, the more rapid the rate of progression is. This analysis helps the

health policymakers andmedical insurancemanagers to allocate the financial and human

resources for investigating and treating high-risk patients with NAFLD. In addition, this

analysis can be used by pharmaceutical companies to conduct longitudinal studies to

assess the effectiveness of the newly emerging anti-fibrotic drugs.

Keywords: log-linear model, multistate model, non-alcoholic fatty liver disease, NAFLD, Poisson regression,

continuous-time Markov chains, longitudinal studies, HOMA2-IR

INTRODUCTION

Continuous-time Markov chains (CTMCs) are valuable mathematical and statistical tools. They
are of great potential to evaluate the disease progression over time. NAFLD is an increasingly
worldwide epidemic, paralleling the rise in the incidence of obesity and type II diabetes which are
approaching a pandemic level. This emerging health problem is mainly due to sedentary life styles
and western eating habits of ingesting high-fat and cholesterol diets. The pathological milestone
for NAFLD is insulin resistance and hyperinsulinemia. This hyperinsulinemia will eventually result
in type II diabetes with adverse complications like vascular diseases and fatty liver disease. On the
other hand, NAFLD can cause type II diabetes, as the prevalence of diabetes in NAFLD ranges
between 18 and 45%. Moreover, the prevalence of NAFLD in type II diabetic patients ranges
between 49 and 75% [1].
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Non-alcoholic fatty liver disease can be modeled using the
simplest form for health, disease, and deathmodel. It is composed
of four states. One state is for susceptible individuals with
risk factors like type II diabetes, dyslipidemia, obesity, and
hypertension. The second state is the NAFLD phenotypes. The
other two competing states for death are: one for liver-related
mortality as a complication of NAFLD and the other state is the
death causes unrelated to liver disease [2]. This model is shown
in Figure 1.

In addition, NAFLD can be modeled in more elaborate
expanded form which includes nine states [3]. The first eight
states are the states of disease progression over time and the ninth
state is the death state [2], as illustrated in Figure 2.

Moreover, fibrogenesis is a dynamic process that goes back
and forth among the early stages of the expanded model. Stages
of fibrous tissue formation are early seen in NAFLD process.
Fibrosis progresses if the risk factors for its formation are
not eliminated. Fibrosis is an ominous sign for loss of liver
functions. When the fibrous tissue develops, a subset of the
early states is used to relate these risk factors to the rates.
Definition of each state is shown in Figure 3 [4, 5]. F0 indicates
that there is no fibrous tissue. F1 means that fibrous tissue is

Abbreviations: CC, compensated cirrhosis (stage 4); CTMC, continuous-time
Markov chains; DCC, de-compensated cirrhosis (stage 5); EM, extramortality
(stage 9); HCC, hepatocellular carcinoma (stage 8); LT, liver transplant (stage 6);
NAFLD, non-alcoholic fatty liver disease; NAFL-NO FB, non-alcoholic fatty liver
with no fibrosis (stage 1); NASH, non-alcoholic steatohepatitis; NASH-NO FB,
non-alcoholic steatohepatitis with no fibrosis (stage 2); NASH-FB, non-alcoholic
steatohepatitis with fibrosis (stage 3); PLT, post-liver transplant (stage 7); T2DM,
type 2 diabetes mellitus.

FIGURE 1 | General model structure [2].

deposited due to non-alcoholic steatohepatitis (NASH) and not
due to any other causes of liver disease; all other stages (F2
and F3) are maintained and are progressing over time by the
presence of NASH till the liver cirrhosis (F4). If this NASH is
well-treated by controlling the risk factors that induce it, the
fibrous tissue formation and deposition will regress as shown in
the Figure 3.

Kalbfleisch and Lawless [6] related the instantaneous rate of
transitions from state i to state j to covariates, by regression
modeling of the Q transition rate matrix using log-linear model
for the Markov rates.

The previous studies, as will be later mentioned in the
discussion, mainly included the evaluation of 2 paired biopsies,
initial and second biopsies, then grouping the patients according
to the findings into stable, regressors, slow progressors, and rapid
progressors without precise estimation of specific transition rates
among states and without proper estimation of the predictive
value of each variable on these specific rates. The rate of fibrosis
progression was estimated by dividing the difference in fibrosis
stage between biopsies by the time interval (in years), and this
was performed to account for the time differences between
the biopsies [7]. Additionally, either univariate or multivariate
linear regression was used to relate the risk factors with the rate
of progression. As will be later mentioned in the discussion,
some studies utilized multivariate logistic regression instead of
linear regression.

This depicted study differs from the previous studies in
many aspects. First, it proposes recording multiple repeated
observations over time. Second, it suggests running Poisson
regression to relate the transition rates among states with the risk

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 June 2022 | Volume 8 | Article 899247

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Attia Log-Linear and Multistate Models in NAFLD Patients

FIGURE 2 | Disease model structure [2]. NAFL-NO FB, non-alcoholic fatty liver with no fibrosis (stage 1); NASH-NO FB, non-alcoholic steatohepatitis with no fibrosis

(stage 2); NASH-FB, non-alcoholic steatohepatitis with fibrosis (stage 3); CC, compensated cirrhosis (stage 4); DCC, de-compensated cirrhosis (stage 5); LT, liver

transplant (stage 6); PLT, post-liver transplant (stage 7); HCC, hepatocellular carcinoma (stage 8); EM, extramortality (stage 9).

FIGURE 3 | NAFLD with the evolving fibrosis stages [4]. F0, no fibrosis (stage 0); NASH-FB-1, non-alcoholic steatohepatitis with mild fibrosis (stage 1); NASH -FB-2,

NASH with moderate fibrosis (stage 2); NASH -FB-3, NASH with advanced or severe fibrosis (stage 3); CC, compensated cirrhosis (stage 4) which is the more severe

or advanced form of fibrosis.

factors. Third, it recommends using continuous-time Markov
chains to obtain the transition probabilities and predict the
expected counts of patients in each state at a specific time
point in the future. The counts of each transition can be
modeled as a function of some explanatory variables reflecting
the characteristics of the patients. The Poisson regression model
specifies that each response yi is drawn from a Poisson population
with parameter λi, related to the covariates. The primary
equation of the model is

P
(

Y = yi|Xi

)

=
exp (−λi)×λ

yi
i

yi!
.

The most common formulation for the λi is the log-linear model:

ln λi = X
′

iβ = b0 + b1xi1 + b2xi2 + b3xi3 + . . . .+ bkxim.

where β is the k × 1 parameter vector, m is the number of
predictors, and Xs are the predictors.

The expected number of events per period is given by:

E
[

yi
∣

∣Xi

]

= var
[

yi
∣

∣Xi

]

= λi = exp
(

X
′

iβ

)

.

The observed counts in the transition counts matrix are used
as response variables. The covariates are the risk factors for
the fatty liver, where the participants are subjected to the same
follow-up periods. Then, the estimated counts obtained from
running the Poisson regression are used as input to estimate
the transition probability matrix using the CTMC. The author
clarifies this procedure using a hypothetical example in the form
of an observational prospective longitudinal study.

Attia [8] used the same data in previous work. Still, in
this article, the author discusses the issue of multicollinearity,
the equidispersion Poisson of response variables in the
presence of excess zeros, and more comparisons between this
work and previous works. Finally, the author highlights the
benefit of such analysis to pharmacoeconomic evaluation and
healthcare economics.

MATERIALS AND METHODS

Patients
A total of one hundred fifty participants were followed up every
year for 29 years, and during each visit, the characteristics
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TABLE 1 | Summary of transition counts among the states.

Counts Transition

0→ 1

Transition

1→ 2

Transition

2→ 3

Transition

3→ 4

Transition

1→ 0

Transition

2→ 1

Transition

3→ 2

Transition

2→ 0

Transition

3→ 1

0 63 96 121 128 121 127 130 138 139

1 58 43 23 22 24 17 17 11 9

2 25 9 4 3 5 3 1 2

3 4 2 2 2 1

TABLE 2 | Observed transition counts of the patients over the 29 years.

State 0 State 1 State 2 State 3 State 4 total

State 0 1,909 120 15 6 0 2,050

State 1 36 1,116 67 28 0 1,247

State 2 13 30 703 37 0 783

State 3 11 14 23 50 22 120

State 4 0 0 0 0 0 0

4,200

of the participants were recorded like sex (0 = female, 1 =

male), age, body mass index (BMI), low-density lipoprotein
(LDL)-chol, homeostatic model assessment-insulin resistance
(HOMA2-IR), and systolic blood and diastolic blood pressure.
For each participant, the recorded value is the mean of the
follow-up measurements. The age is the median value. The
participants were followed up till the end of the study or having
liver cirrhosis (F4).

Statistical Analysis
The relationship between the response variable (counts of
transitions) and the predictors was non-linear as shown by
Lowess smoother. Restricted cubic spline was used to obtain a
suitable functional form of the predictors to fit a Poisson model
using STATA 14. The CTMCs were used to obtain transition
probability matrix and transition rate matrix. p-Value of <0.05
was considered statistically significant; all tests were two-sided
tests (refer to Appendix A).

RESULTS

Summary of the transition counts among the states is shown
in Table 1. The observed counts of the participants over the 29
years of follow-up are demonstrated in Table 2. The distribution
of these counts was Poisson (mean = variance). The dispersion
indices for the nine response variables ranged between 0.82 and
1.34. In Appendix B, more figures illustrate the dispersion of
these response variables. They were also correlated with high
statistical significance (p-value= 0.000) as shown in Table 3.

Initial observed rates are as follows:

λ01 =
120

2050
= 0.059, λ12 =

67

1247
= 0.0537,

λ23 =
37

783
= 0.047 , λ34 =

22

120
= 0.183

µ10 =
36

1247
= 0.0288, µ21 =

30

783
= 0.0383,

µ32 =
23

120
= 0.191, µ20 =

13

783
= 0.016,

µ31 =
14

120
= 0.116

Although the response counts showed excess zeros, they fitted
Poisson distribution and the zero inflated Poisson model. Their
mean and variance were approximately equal as evident by
their dispersion indices. So, Poisson regression was conducted
for each transition count. Most statistical software packages
conduct Poisson regression or generalized linear model utilizing
log-link function with only one response variable. Thus, using
STATA14, Poisson regression was conducted with one response
variable. The response variable could not be used as a matrix to
conduct the regression as multivariate regression with multiple
response variables.

The application of Lowess smoother showed the non-
linear relationship between the predictors and the response
variables as shown in Figure 4. In Supplementary Materials,
more figures illustrating these relationships between the different
predictors and response variables are clearly shown (refer to also
Appendix B).

The continuous predictors (age, BMI, HOMA2-IR, LDL-chol,
and systolic and diastolic blood pressure) were highly correlated
with a correlation coefficient of 0.99 and a condition number
for data matrix (X’X) of 453.57. The condition number for
the data matrix (X’X) constructed from the transformed
variables used in the analysis (HOMAsp1, HOMAsp2,
LDLsp2, sysPS2, diasPS2) was 54.89. These transformed
variables were also highly correlated. However, the condition
number did not exceed 100. Thus, this multicollinearity
can be considered non-harmful, and it will not affect the
analysis [9].

The observed counts were the response variables used
to fit the Poisson regression model. For each transition
count, the model that represented the most explainable
covariates with their estimated beta coefficients and the
corresponding incidence rate ratios were illustrated in
Appendix B. The transitions were subdivided into progressive
transitions and regressive transitions. The main important
result is that HOMA2-IR is positively correlated with all
progressive transitions and is inversely related to the regressive
transitions, with control of other variables, as shown in
Tables 4, 5.
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TABLE 3 | Correlation between the different response variables.

F0→ F1 F1→ F2 F2→ F3 F3→ F4 F1→ F0 F2→ F1 F3→ F2 F2→ F0 F3→ F1

F0→ F1 1 0.794

(0.000)

0.794

(0.000)

0.70

(0.000)

0.798

(0.000)

0.719

(0.000)

0.693

(0.000)

0.559

(0.000)

0.548

(0.000)

F1→ F2 0.798

(0.000)

1 0.785

(0.000)

0.709

(0.000)

0.76

(0.000)

0.762

(0.000)

0.719

(0.000)

0.728

(0.000)

0.711

(0.000)

F2→ F3 0.794

(0.000)

0.785

(0.000)

1 0.82

(0.000)

0.99

(0.000)

0.928

(0.000)

0.868

(0.000)

0.768

(0.000)

0.791

(0.000)

F3→ F4 0.709

(0.000)

0.709

(0.000)

0.82

(0.000)

1 0.813

(0.000)

0.898

(0.000)

0.897

(0.000)

0.687

(0.000)

0.643

(0.000)

F1→ F0 0.798

(0.000)

0.76

(0.000)

0.99

(0.000)

0.813

(0.000)

1 0.911

(0.000)

0.867

(0.000)

0.753

(0.000)

0.778

(0.000)

F2→ F1 0.719

(0.000)

0.765

(0.000)

0.928

(0.000)

0.898

(0.000)

0.911

(0.000)

1 0.921

(0.000)

0.824

(0.000)

0.81

(0.000)

F3→ F2 0.693

(0.000)

0.719

(0.000)

0.868

(0.000)

0.897

(0.000)

0.867

(0.000)

0.921

(0.000)

1 0.798

(0.000)

0.796

(0.000)

F2→ F0 0.559

(0.000)

0.728

(0.000)

0.768

(0.000)

0.687

(0.000)

0.753

(0.000)

0.824

(0.000)

0.798

(0.000)

1 0.935

(0.000)

F3→ F1 0.548

(0.000)

0.711

(0.000)

0.791

(0.000)

0.643

(0.000)

0.778

(0.000)

0.81

(0.000)

0.796

(0.000)

0.935

(0.000)

1

In each cell, the Pearson correlation coefficient, for transitions among the different states, is shown with the significant p-value below this coefficient between the brackets.

FIGURE 4 | Lowess smoother showing the non-linear relationship between the transition counts from F0 to F1 and the HOMA2-IR levels.

Progressive Transitions With Rates
λ01, λ12, λ23, λ34
Persons with high insulin resistance (elevated HOMA2-IR) had
60 times the rate of transition from F0 to F1 compared to persons
with normal level of HOMA2-IR (persons with normal insulin
sensitivity), also the rate increased to 240 times for the rate of
transition from F1 to F2, increased to 480 times for the rate of
transition from F2 to F3, and increased tomore than 50,000 times

for the rate of transition from F3 to F4. Statistically speaking,
the expected increase in log count of transition from F0 to F1
for one-unit increase in transformed HOMA is 4.096, which is
highly statistically significant (p = 0.000). The expected increase
in log count of transition from F1 to F2 for one-unit increase
in transformed HOMA is 5.486, which is highly statistically
significant (p = 0.000). The expected increase in log count of
transition from F2 to F3 for one-unit increase in transformed
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TABLE 4 | Parameters for each transition.

LDLsp2 HOMAsp1 SysSP2 LDLsp2# HOMAsp1 LDLsp2# SysSP2 HOMAsp1# SysSP2

Transition from F0 to F1

b̂ co.(P) 0.523 (0.032) 4.096 (0.000) −0.628 (0.070) −0.179 (0.011) 0.003 (0.000) 0.151 (0.122)

CI for b̂ co (0.046, 1.000) (3.452, 4.740) (−1.308, 0.052) (−0.317, −0.041) (0.002, 0.003) (−0.040, 0.342)

IRR 1.687 60.097 0.534 0.836 1.003 1.163

CI for IRR (1.047, 2.718) (31.569, 114.4) (0.270, 1.054) (0.728, 0.960) (1.002, 1.003) (0.960, 1.408)

Transition from F1 to F2

b̂ co.(P) 0.311 (0.432) 5.486 (0.000) −0.314 (0.564) −0.105 (0.367) 0.079 (0.616)

CI for b̂ co (−0.465, 1.086) (4.366, 6.606) (−1.383, 0.754) (−0.332, 0.123) (−0.231, 0.389)

IRR 1.364 241.179 0.730 0.901 1.083

CI for IRR (0.628, 2.962) (78.690, 739.192) (0.251, 2.126) (0.717, 1.131) (0.794, 1.476)

Transition from F2 to F3

b̂ co.(P) −1.480 (0.031) 6.174 (0.046) 2.497 (0.010) 0.390 (0.042) −0.001 (0.687) −0.655 (0.017)

CI for b̂ co (−2.823, −0.137) (0.112, 12.237) (0.602, 4.391) (0.014, 0.766) (−0.005, 0.004) (−1.191, −0.118)

IRR 0.228 480.318 12.143 1.477 0.999 0.520

CI for IRR (0.059, 0.872) (1.118, 2.06e+5) (1.826, 80.754) (1.014, 2.151) (0.995, 1.004) (0.304, 0.889)

Transition from F3 to F4

b̂ co.(P) 0.452 (0.000) 10.866 (0.000) 0.073 (0.141) −0.166 (0.000)

CI for b̂ co (0.345, 0.559) (8.119, 13.613) (−0.024, 0.171) (−0.201, −0.131)

IRR 1.571 52375.984 1.076 0.847

CI for IRR (1.412, 1.748) (3,357.9, 8.17e+5) (0.976, 1.187) (0.818, 0.877)

B co. (p), the estimated B coefficient with p-value in the brackets; CI for B co., confidence interval for the estimated B coefficient; IRR, incidence rate ratio; CI for IRR stands for

confidence interval for IRR; LDLsp2, the transformed LDL variable using restricted cubic spline method; HOMAsp1, the transformed HOMA2-IR variable using restricted cubic spline

method; sysSp2, the transformed systolic blood pressure variable using restricted cubic spline method; LDLsp2 # HOMAsp1, interaction between the 2 variables.

HOMA is 6.174, which is not highly statistically significant (p =
0.046). The expected increase in log count of transition from F3 to
F4 for one-unit increase in transformed HOMA is 10.866, which
is highly statistically significant (p= 0.000).

Regressive Transitions With Rates
µ10, µ21, µ32, µ20, µ31
Persons with high insulin resistance (elevated HOMA2-IR) had
0.011 times the rate of transition from F1 to F0 compared to
persons with normal level of HOMA2-IR (persons with normal
insulin sensitivity), also the rate decreased to 0.037 times for
the rate of transition from F2 to F1, decreased to 0.005 times
for the rate of transition from F3 to F2, decreased to 0.066
times for the rate of transition from F2 to F0, and decreased to
0.084 times for the rate of transition from F3 to F1. Statistically
speaking, the expected decrease in log count of transition from
F1 to F0 for one-unit increase in transformed HOMA is 4.489,
which is not statistically significant (p = 0.13). The expected
decrease in log count of transition from F2 to F1 for one-unit
increase in transformed HOMA is 3.288, which is not statistically
significant (p = 0.242). The expected decrease in log count of
transition from F3 to F2 for one-unit increase in transformed
HOMA is 5.214, which is not statistically significant (p = 0.103).
The expected decrease in log count of transition from F2 to F0
for one-unit increase in transformed HOMA is 2.713, which is
highly statistically significant (p = 0.000). The expected decrease
in log count of transition from F3 to F1 for one-unit increase

in transformed HOMA is 2.476, which is highly statistically
significant (p= 0.000).

Validation and Residual Analysis
Poisson model fitted the data. When comparing the full
model to the null model, there was a marked decrease in
the deviance goodness of fit. Also, the akaike information
criteria (AIC) and bayesian information criteria (BIC) were
less than their values in the null model, indicating the full
model improvement. In addition, there was an increase in the
pseudo-R2, indicating the ability of the model to predict the
outcome better than the null model. The output results of the
null model for each of the transition counts are shown in
Tables 6, 7.

The observed rates were approximately equal to the estimated
rates after running the Poisson model as shown in Table 8.

Analysis of residuals especially Pearson residuals, for all
transitions, revealed that they were not normally distributed.
The Q-Q plot for these residuals did not exhibit normality.
The Pearson dispersion statistics for each count was less than
one supporting no evidence of overdispersion of the fitted
model despite the apparent excess zeros (Appendix B, Table
21). Generalized Poisson regression did not fit the data. In
Appendix C, more figures of these residuals are presented [10,
11].

This observational study aims to obtain preliminary
and explanatory ideas about the effects of each risk factor
on the different transition counts among the states. This
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TABLE 5 | Parameters for each transition.

LDLsp2 HOMAsp2 SysSP2 LDLsp2# HOMAsp2 LDLsp2# SysSP2 HOMAsp2# SysSP2

Transition from F1 to F0

B co.(P) −0.454 (0.063) −4.489 (0.130) 1.340 (0.000) 0.290 (0.002) −0.010 (0.005) −0.286 (0.048)

CI for B co (−0.932, 0.024) (−10.294, 1.316) (0.729, 1.951) (0.102, 0.478) (−0.017, – 0.003) (−0.571, −0.002)

IRR 0.635 0.011 3.820 1.337 0.990 0.751

CI for IRR (0.394, 1.024) (0.000, 3.730) (2.074, 7.034) (1.108, 1.612) (0.983, 0.997) (0.565, 0.998)

Transition from F2 to F1

B co.(P) −0.128 (0.499) −3.288 (0.242) 0.913 (0.000) 0.152 (0.022) −0.010 (0.003) −0.114 (0.317)

CI for B co (−0.499, 0.243) (−8.800, 2.224) (0.519, 1.307) (0.022, 0.282) (−0.017, −0.003) (−0.338, 0.109)

IRR 0.880 0.037 2.492 1.164 0.990 0.892

CI for IRR (0.607, 1.275) (0.000, 9.244) (1.681, 3.694) (1.022, 1.326) (0.983, 0.997) (0.713, 1.116)

Transition from F3 to F2

B co.(P) 0.302 (0.154) −5.214 (0.103) 0.422 (0.142) 0.002 (0.984) −0.012 (0.006) 0.132 (0.375)

CI for B co (−0.113, 0.716) (−11.478, 1.05) (−0.142, 0.987) (−0.198, 0.202) (−0.02, −0.003) (−0.16, 0.425)

IRR 1.352 0.005 1.526 1.002 0.998 1.142

CI for IRR (0.893, 2.047) (0.000, 2.859) (0.868, 2.683) (0.821, 1.223) (0.98, 0.997) (0.852, 1.529)

LDLsp2 HOMAsp2 SysSP2 DiasSP2

Transition from F2 to F0

B co.(P) 0.076 (0.335) −2.713 (0.000) −0.123 (0.010) 0.358 (0.001)

CI for B co (−0.079, 0.231) (−4.102, −1.324) (−0.216, −0.030) (0.143, 0.573)

IRR 1.079 0.066 0.884 1.430

CI for IRR (0.924, 1.260) (0.017, 0.266) (0.806, 0.970) (1.154, 1.773)

Transition from F3 to F1

B co.(P) 0.145 (0.038) −2.476 (0.000) −0.129 (0.004) 0.276 (0.003)

CI for B co (0.008, 0.282) (−3.769, −1.183) (−0.216, −0.042) (0.093, 0.459)

IRR 1.156 0.084 0.879 1.318

CI for IRR (1.008, 1.326) (0.023, 0.306) (0.805, 0.959) (1.098, 1.582)

B co. (p), the estimated B coefficient with p-value in the brackets; CI for B co., confidence interval for the estimated B coefficient; IRR, incidence rate ratio; CI for IRR stands for

confidence interval for IRR; LDLsp2, the transformed LDL variable using restricted cubic spline method; HOMAsp2, the transformed HOMA2-IR variable using restricted cubic spline

method; sysSp2, the transformed systolic blood pressure variable using restricted cubic spline method; DiasSp2, the transformed diastolic blood pressure variable using restricted

cubic spline method; LDLsp2 # HOMAsp1, the interaction between the 2 variables.

Poisson regression is not aiming for future prediction
of counts. Although the residuals are not normally
distributed, such analysis can give fair provisional ideas
about the effects of the risk factors. The Poisson model
gives unbiased estimates for the regression coefficients,
but these coefficients’ statistical significance should be
cautiously taken.

CTMCs Utilize the Estimated Counts From
Log-Linear Model to Obtain the Transition
Probability Matrix
For each of the transitions from state (i) to state (j), where λij
denotes the counts of transition from state (i) to state (j), and after
running the Poisson model, the linear predictor ln λij = X

′

nB
for each participant (n) is exponentiated, E

[

yn
∣

∣Xn

]

= λij =

exp
(

X
′

nB
)

, to obtain the expected counts of transition that this

participant had accomplished during this 29 years. Then, the

result is rounded to the appropriate integer and summed to get
all counts for this transition and then compared to the observed
counts accomplished by all participants.

The ni+ is the total marginal transition counts out of this state,
which is assumed to be constant. The estimated counts from
running the Poisson model will be substituted in the transition
count table. Because the marginal counts are assumed to be the
same and when using the initial rates calculated as θ0 =

nij
ni+

where the nij is the transition counts from state i to state j, the
Q matrix can be estimated. (Hint: the numerators below are the
estimated counts obtained from running the Poisson regression).

Q̂ =












−λ01

µ10

µ20

0
0

λ01

− (λ12 + µ10)

µ21

µ31

0

0
λ12

− ( λ23 + µ21 + µ20)

µ32

0

0
0
λ23

− ( λ34 + µ32 + µ31)

0

0
0
0
λ34

0
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TABLE 6 | Comparison between null and full model as regards the progressive transitions.

Cons. Co. C.I. of CO. Log pseu. like Pseudo R2 Deviance GOF Pearson GOF AIC BIC

Transition F0 to F1

Null model −0.223 (−0.385, −0.061) −171.273 0.000 149.236 122.5 344.55 347.56

P = 0.007 P = 0.4792 P = 0.944

Full model −9.510 (−10.930, −8.089) −110.43 0.355 27.55 24.458 234.86 255.94

P = 0.000 P = 1 P = 1

Transition F1 to F2

Null model −0.806 (−1.046, −0.566) −130.82 0.000 146.133 150.16 263.64 266.65

P = 0.00 P = 0.551 P = 0.458

Full model −14.884 (−17.555,−12.213) −67.887 0.481 20.27 18.12 147.77 165.84

P = 0.000 P = 1 P = 1

Transition F2 to F3

Null model −1.4 (−1.767,−1.032) −95.146 0.000 127.853 194.08 192.29 195.3

P = 0.000 P = 0.894 P = 0.007

Full model −20.866 (−35.160, −6.572) −37.87 0.6020 13.29 12.42 89.73 110.81

P = 0.004 P = 1 P = 1

Transition F3 to F4

Null model −1.92 (−2.307,−1.532) −64.23 0.000 84.46 128 130.46 133.47

P = 0.00 P = 1 P = 0.89

Full model −34.034 (−41.608, −26.459) −26.97 0.58 9.94 8.96 63.94 78.99

P = 0.000 P = 1 P = 1

TABLE 7 | Comparison between null and full model as regards the regressive transitions.

Cons. Co. C.I. of CO. Log pseu. like. Pseudo R2 Deviance GOF Pearson GOF AIC BIC

Transition F1 to F0

Null model −1.427 (−1.795, −1.059) −93.039 0.000 124.25 189 188.08 191.08

P = 0.000 P = 0.931 P = 0.015

Full model −5.916 (−6.912, −4.921) −38.14 0.59 14.46 13.55 90.29 111.36

P = 0.000 P = 1 P = 1

Transition F2 to F1

Null model −1.609 (−2.024, −1.195) −83.54 0.000 117.021 200 169.08 172.09

P = 0.000 P = 0.975 P = 0.003

Full model −7.666 (−8.875, −6.457) −29.96 0.64 9.86 8.97 73.92 94.99

P = 0.000 P = 1 P = 1

Transition F3 to F2

Null model −1.875 (−2.307, −1.444) −68.208 0.000 94.574 166.13 138.42 141.43

P = 0.000 P = 0.999 P = 0.16

Full model −7.363 (−8.855, −5.871) −26.37 0.61 10.89 9.77 66.74 87.81

P = 0.000 P = 1 P = 1

Transition F2 to F0

Null model −2.446 (−3.009, −1.882) −45.487 0.000 66.3 160. 92.97 95.98

P = 0.000 P = 1 P = 0.253

Full model −7.034 (−8.015, −6.053) −15.63 0.656 6.65 7.36 41.26 56.31

P = 0.000 P = 1 P = 1

Transition F3 to F1

Null model −2.446 (−3.048, −1.843) −46.18 0.000 69.133 183.15 94.36 97.37

P = 0.000 P = 1 P = 0.029

Full model −7.584 (−8.934, −6.235) −14.18 0.693 5.14 6.09 38.36 53.42

P = 0.000 P = 1 P = 1

Cons.Co, constant coefficient; C.I. of CO., confidence interval of constant; Log pseu.like., Log pseudolikelihood.
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TABLE 8 | The comparison between observed and estimated response rate after fitting Poisson model.

Comparison between observed and

estimated progressive counts

Comparison between observed and

estimated regressive counts

Observed

response count

Estimated mean

response count

Observed

response count

Estimated mean

response count

0→ 1 Mean 0.8 0.8 1→ 0 Mean 0.24 0.24

Variance 0.658 0.619 Variance 0.305 0.314

1→ 2 Mean 0.45 0.45 2→ 1 Mean 0.2 0.2

Variance 0.45 0.45 Variance 0.268 0.284

2→ 3 Mean 0.25 0.25 3→ 2 Mean 0.15 0.15

Variance 0.32 0.318 Variance 0.171 0.173

3→ 4 Mean 0.15 0.15 2→ 0 Mean 0.09 0.09

Variance 0.126 0.126 Variance 0.093 0.101

3→ 1 Mean 0.09 0.09

Variance 0.106 0.11

where

λ01 =
120

2050
= 0.059, λ12 =

64

1247
= 0.051,

λ23 =
35

783
= 0.045 , λ34 =

20

120
= 0.167

µ10 =
36

1247
= 0.029, µ21 =

26

783
= 0.033,

µ32 =
19

120
= 0.158, µ20 =

12

783
= 0.015,

µ31 =
13

120
= 0.108

The probability matrix at any specific time point in the future can
be obtained by exponentiation of this matrix because the chain
is homogenous continuous-time Markov chains with constant
rates over time. This result can also be obtained by solving the
forward Kolmogorov differential equations, which will yield the
same result as the exponentiation of the estimated Qmatrix (refer
to Appendix D).

The transition probability matrix is obtained by
exponentiation of this estimated Q̂matrix after 1 year:

P (t = 1) = exp
(

Q̂t
)

=













P00
P10
P20
P30
0

P01
P11
P21
P31
0

P02
P12
P22
P32
0

P03
P13
P23
P33
0

P04
P14
P24
P34
P44













=













0.944
0.027
0.014
0.002
0

0.055
0.925
0.033
0.086
0

0.001
0.047
0.915
0.125
0

0
0.001
0.035
0.651
0

0
0.0001
0.003
0.136
1













Goodness of Fit for the Multistate Markov
Model
To calculate goodness of fit for multistate model used in this
example, it is like the procedure used in contingency table:

TABLE 9 | The expected transition counts after one year of the follow-up.

State 0 State 1 State 2 State 3 State 4

State 0 1934.175 112.955 2.87 0 0

State 1 34.168 1153.101 58.484 1.122 0.125

State 2 11.275 25.604 716.367 27.248 2.506

State 3 0.276 10.356 14.94 78.144 16.284

State 4 0 0 0 0 0

Step 1: H0 = future state does not depend on the current state
H1 = future state depends on the current state

Step 2: After obtaining the estimated Q matrix, the probability
matrix is calculated in time interval equals one because the
participants’ follow-up period was done every year.

pij (△t = 1) = exp
(

Q̂×△t
)

=













P00
P10
P20
P30
0

P01
P11
P21
P31
0

P02
P12
P22
P32
0

P03
P13
P23
P33
0

P04
P14
P24
P34
P44













=













0.9435
0.0274
0.0144
0.0023

0

0.0551
0.9247
0.0327
0.0863

0

0.0014
0.0469
0.9149
0.1245

0

0
0.0009
0.0348
0.6512

0

0
0.0001
0.0032
0.1357

1













Step 3: Calculate the expected counts in this interval.

Eij = ni+ Pij (t).

n1+ = 2050, n2+ = 1247, n3+ = 783, n4+ = 120

Multiplying each row in the probability matrix with the
corresponding total marginal counts in the observed transition
counts table in the same interval yields the expected counts as
shown in Table 9.
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Step 4: The observed counts, Oij, are shown in Table 2. The
expected counts, Eij, are obtained from the previous step and
are shown in Table 9. Then, apply the Pearson statistic formula
which yields a value of 1,140.097 with high statistical significance

(p = 0.000). Apply
∑5

i=1

∑5
j=1

(Oij−Eij)
2

Eij
= 1140.097 ∼

χ2
(5−1)(5−1)(.05).

So, from the above results, the null hypothesis is rejected
while the alternative hypothesis is accepted and the multistate
Markov model fits the data, that is to mean, the future state
depends on the current state with the estimated transition rates
and probability matrices as obtained.

Health Economics
This transition probability matrix can predict the count of
patients in each state at specific time point, for example, if a
cohort of 6,000 patients with the following number in each state
is

[

3000 1800 1020 180 0
]

, after 1 year the predicted counts
will be

[

2895 1879 1044 154 28
]

. This count can be achieved
by multiplying the initial count distribution of the patients with
the transition probability calculated at the required specific time

point, pij (t) = exp
(

Q̂t
)

E
[

uj (t) |uj (0)
]

=

5
∑

j=1,i=1

uj (0)Pij (t) i, j = 1, .., 5

Let u (0) be the size of patients in a specific state at specific time
t = 0. The initial size of patients is U (0) = uj (0), as there are
4 transient states (F0 to F3) and 1 absorbing state (F4), where
uj (0) is the initial size or the number of patients in state j at time
t = 0 given that u5 (0) = 0, i.e., initial size of patients in state 5
(absorbing state) is zero at initial time point= 0. As the transition
or the movement of the patients among states is independent,
at the end of the whole time interval (0, t), there will be uj (t)
patients in the transient states at time t, and there will also be
u5 (t)patients in state 5 (F4= liver cirrhosis) at time t.

In addition, the state probability distribution π (t) , which is
the probability distribution for each state at a specific time point
given the initial probability distribution π (0), can be estimated
by applying the following formula:

π (t) = π (0)P (t ) .

In this example, the cohort of 6,000 patients has
initial probability distribution of

[

0.5 0.3 0.17 0.03 0
]

,
after 1 year, the state probability distribution will be
[

0.4825 0.3131 0.174 0.0257 0.0046
]

.
Pharmaco-economic evaluation can be assessed in three

categories: the cost-benefit analysis, the cost-effectiveness
analysis, and the cost-utility analysis. The evaluation utilizes the
predicted number of patients in each state estimated every year,
the state probability distribution predicted every year, the costs
of investigations and treatments, and the quality adjusted life
years for the patients [12, 13].

This approach differs from the one used by Rustgi et al.
[14] who depends on calculating the cost-effectiveness analysis

by following a cohort of patients, all starting at the same
initial state till death. While in the approach proposed in this
article, sampling the population and estimating the transition
probability matrix to predict the counts in the future, any cohort
of patients can be followed up utilizing the information gained
from sampling the high-risk population.

DISCUSSION

The following discussion elucidates the agreements and
comparisons between the findings in this study with the findings
in the previous one high-lightening the effects of various factors
on progression rate of fibrosis in NAFLD patients.

Hui et al. [15] conducted a study on 17 patients who had
previous liver biopsy showing evidence of steatosis with or
without the presence of necroinflammation and fibrosis. Those
patients underwent second liver biopsies with a median of 6 years
apart (range: 3.8–8 years). More than half of them developed
progressive fibrosis compared to the initial biopsy; because that
these patients suffered from steatohepatitis, although there was
no significant correlation between the degree of steatohepatitis
and the degree of fibrosis between the two biopsies. However,
the correlation was significant between the initial stage of
fibrosis and the fibrosis grade in the second biopsy. Also,
the clinical and laboratory parameters were not statistically
significant between the recorded values during the first and
the second biopsies. The changes in these parameters also
showed no significant correlation with changes in the scores of
steatosis, necroinflammation, or fibrosis. There was a negative
correlation, although non-significant, between the change in
the score of fibrosis and each of the changes: in the BMI,
plasma total cholesterol levels, plasma triglyceride levels, and
glycosylated hemoglobin. During the follow-up, two patients
developed type II diabetes and one developed hypertension but
without progression of fibrosis, their initial biopsy revealed F0,
and the second one was also F0. Another patient developed type
II diabetes with evolution of the fibrosis from F0 to F2, and
another 2 patients developed hypertension with advancement of
fibrosis from F0 to F1.

Fassio et al. [16] conducted a study on 22 patients who
had liver biopsy with evidence of NASH and found that 31.8%
(7 patients = P group, progressors) had progression of liver
fibrosis over a median follow-up of 4.7 years. The other group
was 68.2% (15 patients = NP group, non-progressors) and did
not progress over a median follow-up of 4.3 years. The rate
of progression in the entire population was estimated as 0.059
fibrosis units per year (mean difference in fibrosis score divided
by mean interval in years between the first and second biopsies
= 0.32/5.34 = 0.059), the rate of progression in the P group
was 1.85/6.59 = 0.28. There was no statistical difference as
regards the clinical, biochemical, grade of steatosis, and grade of
inflammation between the two groups except for the presence of
obesity and higher BMI (progressor was more obese with higher
BMI than the non-progressor) whether this was performed
during the initial liver biopsy or the final liver biopsy.Within each
group, the gradients between the final and basal results were not

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 June 2022 | Volume 8 | Article 899247

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Attia Log-Linear and Multistate Models in NAFLD Patients

statistically significant as regards the clinical, biochemical, grade
of steatosis, and grade of inflammation between the two groups
including the BMI.

Adams et al. [7] conducted a study on 103 patients who
had performed two liver biopsies with mean follow-up period
of 3.2 ± 3 years (range = 0.7–21) between the first and the
second biopsies. A total of 38 patients were progressors, 35
patients were stable, and 30 patients were regressors. No clinical
or biochemical variables were statistically different among the
progressors, stable, and regressors. The rate of fibrosis change
varied from −2.05 to 1.7 stages/year and calculated as stated
in the introduction. Using univariate regression model, the
presence of diabetes, AST/ALT ratio, steatosis grades, and fibrosis
stage were the only significant variables. By multivariate linear
regression analysis and adjusting for age and BMI, only the
presence of diabetes and earlier fibrosis stage were significantly
associated with a higher rate of fibrosis progression. He also
found no significant correlation between rate of progression
and HOMA.

There are many studies performed by Ekstedt et al. [17], Teli
et al. [18], Pais et al. [19], Argo et al. [20], Evans et al. [21],
Hamaguchi et al. [22], and Wong et al. [23]. The reader can refer
to them (refer to Appendix E).

The findings of the present study demonstrate that HOMA2-
IR has a positive and a statistically significant effect on
progression of fibrosis among the different states. Running
multivariate Poisson regression reveals that the main players for
progression are the HOMA2-IR, LDL-chol, and systolic blood
pressure explaining about 35–60% of variability in the rates of
progression. However, HOMA2-IR has a negative effect that is
not statistically significant on the rate of remission or regression
from F1 to F0, from F2 to F1, and from F3 to F2, but it is
statistically significant on the rate of remission from F2 to F0
and from F3 to F1. Poisson regression model explained that the
same factors and their interactions were responsible for about 60–
70% of variability in the rates of remission among the states. The
high HOMA2-IR levels significantly decrease the effects of high
LDL levels on the progression rate from F0 to F1 and from F3
to F4. Thus, this interaction can be a protective mechanism to
slow down the progression rate of fibrosis. The low HOMA2-
IR levels significantly increase the effect of low LDL levels on
the remission rate from F1 to F0 and from F2 to F1. Thus,
this interaction can be a protective mechanism to accelerate the
remission rate of fibrosis. The rate of fibrosis decreases with the
help of rigorous control of the blood level of insulin, glucose,
cholesterol, and blood pressure. The high levels of systolic blood
pressure significantly decrease the effect of low LDL levels on
the remission rate of fibrosis from F1 to F0, from F2 to F1, and
from F3 to F2. Thus, controlling the most harmful factors like
hyperinsulinemia and hypercholestrolemia, even in the absence
of strict control of hypertension, can still benefit repressing
the fibrogenesis. Lifestyle modification, in the form of physical
exercise and a low caloric diet, and controlling the risk factors
greatly impact arresting the process of fibrogenensis.

The newly emerging anti-fibrotic drugs will also help
physicians treat fibrogenesis. In the FLINT study conducted
on 283 non-cirrhotic patients taking obeticholic acid (OCA),

25mg daily; the improvement in the histology detected by
NAFLD activity score (NAS) was two points or more with no
deterioration of fibrosis, and 35% of patients taking OCA had a
decrement in fibrosis score by at least one stage in comparison
with 19%in the placebo arm. REGENERATE study (still in
progress, with the estimated primary completion date is on
September 2025 as shown on clinicaltrials.gov official site) will
evaluate safety and efficacy of obeticholic acid (OCA) in NASH
patients with fibrosis who are randomized to a daily dose of
25mg, 10mg, and placebo, with endpoints like amelioration of
fibrosis by at least one stage and decaying of NASH with no
deterioration of fibrosis. At 18 month of randomization, liver
biopsy revealed statistically significant histological amelioration
of fibrosis and decaying of NASH with no deterioration in
fibrosis for both 10 and 25mg doses. In the GOLDEN study,
conducted on 274 NASH patients, 120mg elafibranor taken daily
for 52 weeks induced decaying of moderate to severe NASH
in a meaningfully higher percentage of patients than placebo;
these patients also showed lowering in fibrosis stage compared
to non-resolving NASH patients. The RESOLVE-IT trial (last
update was on 30 November 2020, as shown on clinicaltrials.gov
official site, but the study is still in progress according to Guirguis
et al. [24]) emerged in May 2020 had shown that 19.2% of
patients, on 120mg daily elafibranor, had NASH decay without
deterioration of fibrosis compared to 14.7% in the placebo group,
which was not statistically significant. Furthermore, 24.5% of
patients had shown fibrosis amelioration of more than one stage
compared to 22.4% in the placebo group, which was also not
statistically significant. In CENTAUR trial, conducted over 289
patients taking cenicriviroc (CVC), 150mg daily and placebo for
52 weeks, no comparative betterment in NAS between NASH
group and placebo was seen; however, there was one stage or
more amelioration of fibrosis with no deterioration of NASH
in the group taking the CVC compared to placebo group. The
AURORA trial (primary completion dates were October 2021
according to clinicaltrials.gov site while the completion date
will be October 2028 according to Guirguis et al. [24]) will
evaluate long-term safety and efficacy of 150mg daily CVC
for the treatment of fibrosis in NASH adult at 2 phases: the
first has endpoint of at least one stage amelioration of fibrosis
without deterioration of NASH at month 12, and phase 2 has
endpoint that is cirrhosis, liver-related outcome as HCC, and all
causes of mortality. In a small, open-label, randomized phase
II trial including 72 biopsy-proven NASH patients (NAS ≥ 5
and stage 2–3 liver fibrosis) receiving 18mg daily selonsertib for
24 weeks, there was a significant improvement in liver disease
activity, fibrosis, stiffness, liver fat content, and progression to
cirrhosis [25].

FLINT, GOLDEN, and CENTAUR are phase IIb placebo-
controlled randomized control trials (RCTs), whereas
REGENERATE, RESOLVE-IT, and AURORA are randomized,
placebo-controlled, double-blinded, multicenter phase III trials.

The distribution of the counts was Poisson distribution (mean
= variance); that is to mean, these counts were equidispersed.
However, all the counts showed excess zeros except for the
transition from F0 to F1 where the zeros constituted 42% of
the total count of this transition. Tlhaloganyang and Sakia
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found that the equidispersed counts data with excessive zeros
can be modeled with Poisson regression, the best model to
represent the data. Also, the AIC scores obtained by them
after running Poisson regression, on their tested data whether
simulated or real, were less than the AIC scores after running
ZIP on the same datasets [26]. In this article, the predictors were
normally distributed, and applying the restricted cubic spline
transformation was used to better specify the functional form
of these predictors. The raw predictors and the transformed
predictors were highly correlated. But the condition number
obtained from the transformed predictors is below 100, which is
not harmful for the analysis as shown in the Results. Vatcheva
et al. [27] highlighted the fact that the majority of researchers
do not mention the multicollinearity diagnostics when running
the regression models, discussed the causes and effects of this
lack, and proposed some remedies to treat multicollinearity
such as: principal component analysis, partial least squares
regression, and ridge regression analysis. Akram et al. [28]
used principal component ridge type estimator for the inverse
Gaussian regression model. Many investigators such as, Liu [29],
Kibria and Lukman [30], and Lukman et al. [31] had proposed
different techniques to manage the multicollinearity problem
between the predictors when running regression models. Some
of them, who developed methods for Poisson regression, are
Månsson and Shukur [32], Månsson et al. [33], Lukman et al.
[34], Lukman et al. [35], and Qasim et al. [36]. In this paper, none
of thesemethods were used as the Poissonmodel wasmainly used
to give preliminary vision about the effects of the high-risk factors
on the transition counts. Also, it was not used for prediction, and
the condition number was<100. Once the estimated counts were
obtained, they were fed to the CTMC to estimate the transition
rate matrix and transition probability matrix at any specified time
point. Thus, physicians can follow a cohort of any patients in
various states and obtain their state probability distribution at
different time points.

The strength of this study is the conduction of multiple
frequent repeated observations over a long period of follow-up on
a large number of high-risk participants for developing NAFLD
and performing a liver biopsy during each visit. Although this
may be realistically infeasible during each visit, non-invasive
techniques [37, 38] can substitute the invasive liver biopsy. The
advantage of techniques like MRI and machine learning [39],
to assess the liver texture and correlate these findings with the
histological findings in liver biopsy, can overcome this weakness.
Liver biopsy can also be reserved in situations where non-
invasive tests are inconclusive. These non-invasive tests decrease
the number of liver biopsies each patient may encounter. The
proposed follow-up period is too long to wait for the obtained
results, which can be overcome by using adaptive clinical trials.
The weakness of the study is the presence of dependency among
the response variables which was not treated by the statistical
analysis used in this study. A copula modeling discrete random
vectors like the counts in this study can be used in future analysis.
However, a copula of discrete vectors is not fully identifiable
and thus causes serious inconsistencies [40], especially when
modeling nine variables like the variables used in this study.

CONCLUSION

In the present study, running Poisson regression model is
used to obtain the expected counts of transition among states.
These counts are used as input into the homogenous CTMC.
Using this CTMC, the transition rate matrix is estimated, and
thus, the probability of progression of participants from specific
state to another one at specific time point can be estimated
by exponentiation of this rate matrix. This probability matrix
at any specific time point multiplied by the initial probability
distribution of a cohort of patients can be used to predict the
number of the participants in each state later on at different
time points. This predicted number of participants helps health
policymakers and insurance managers allocate the human and
financial resources to investigate and treat the high-risk patients
for developing NAFLD. The Poisson regression model relates
these high-risk covariates to the transition rates among states.
Also, this approach can be used in the clinical trials to assess
the effectiveness of the newly emerging anti-fibrotic drugs. The
epidemiologists can utilize this methodology to estimate the
effect of risk factors on the incidence rates of progression
and remission among the different states of liver fibrosis due
to NAFLD.

This hypothetical study is coded by stata-14 and is published
in code ocean site with the following URL: https://codeocean.
com/capsule/4752445/tree/v3.

The code to estimate the Q transition rate matrix for the
observed transition counts using continuous-timeMarkov chains
is published in the code Ocean site with following URL: https://
codeocean.com/capsule/6377472/tree/v2.

The code for solving the forward Kolmogorov equations
using the estimated Q rate matrix is published in the code
Ocean site with following URL: https://codeocean.com/capsule/
7258626/tree/v1.

The dataset is present on IEEE Data Port site with the
following URL: https://ieee-dataport.org/documents/fibrosis-
nfld#files, with the following doi: 10.21227/dr5j-gs46.

REGENERATE study URL: https://clinicaltrials.gov/ct2/
show/NCT02548351.

RESOLVET-IT study URL: https://clinicaltrials.gov/ct2/show/
NCT02704403.

A medical appendix briefly clarifies the stages of
fibrosis due to NAFLD. See also the presentation (in the
Supplementary Materials).
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