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This study aims to identify the best model of low birth weight by applying and comparing

several methods based on the quantile regression method’s modification. The birth

weight data is violated with linear model assumptions; thus, quantile approaches are

used. The quantile regression is adjusted by combining it with the Bayesian approach

since the Bayesian method can produce the best model in small size samples. Three

kinds of the modified quantile regression methods considered here are the Bayesian

quantile regression, the Bayesian Lasso quantile regression, and the Bayesian Adaptive

Lasso quantile regression. This article implements the skewed Laplace distribution as the

likelihood function in Bayesian analysis. The cross-sectional study collected the primary

data of 150 birth weights inWest Sumatera, Indonesia. This study indicated that Bayesian

Adaptive Lasso quantile regression performed well compared to the other two methods

based on a smaller absolute bias and a shorter Bayesian credible interval based on the

simulation study. This study also found that the best model of birth weight is significantly

affected by maternal education, the number of pregnancy problems, and parity.

Keywords: low birth weight, Bayesian quantile regression, Bayesian Lasso quantile regression, Bayesian Adaptive

Lasso quantile regression, quantile regression

1. INTRODUCTION

Birth weight is considered a significant predictor of later life’s physical, psychological, and
behavioral outcomes. Infants with low birth weight (LBW) (less than 2,500 g) tend to experience a
delay in their development and face a greater risk of early childhood mortality than normal-weight
infants [1–4]. Investigating the causes of low birth weight has become necessary and has come
under intense global scrutiny.

There are several LBW determinants. One of the most relevant determinants is the maternal
education level [5]. In developed countries, mothers with unfavorable socioeconomic status and
low education levels face greater vulnerability to having LBW children [6]. Conversely, the use of
prenatal health care and health technologies in the preconception, prenatal, and perinatal periods
have led to an increase in the proportion of LBW, especially in the more affluent social strata, with
greater access to such procedures. Additionally, late pregnancies also add to the number of LBW
proportion. Recent observational studies have shown an increase in LBW in more privileged social
groups and regions with higher economic growth [7]. Gestational weight gain (GWG) is also an
important determinant of pregnancy and LBW. Low GWG has been linked to a higher incidence
of preterm delivery and LBW [8].
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Identifying the determinants of LBW, a specific part of a
distribution, with various birth weight values inside data, cannot
use ordinary least square (OLS). OLS techniques are focused
on the average relationship between a set of regressors and
outcome variables based on the conditional mean function only.
Meanwhile, this study focuses on describing some relationships
from a different perspective concerning conditional distribution.
The quantile regression method provides that capability [9–
12]. The quantile regression has gained increasing popularity
due to its two primary features. First, it offers more valuable
information on the predictors’ effects on different response
variable quantifications than the regular mean regression.
Second, it is relatively insensitive to heteroscedasticity, outliers,
or other anomalies of latent responses, and thus, the quantile
regression can accommodate non-normal errors commonly
encountered in many practical applications [13–15]. Those two
strengths resulted in a rapid expansion of the quantile regression
application over recent years, particularly in social sciences,
public health, medicine, and econometrics.

Yanuar et al. [7] wrote that quantile regression needs more
than 250 size samples to produce a better model. They then
suggested implementing the Bayesian approach for constructing
the model with a small to moderate size sample. Bayesian
techniques for variable selection in quantile regression have
received considerable attention in recent literature because
Bayesian methods are often more competitive for small or
moderate data sets with a low signal-to-noise ratio [16–18]. Li
et al. [19] gave a generic treatment to a set of regularization
approaches, including Lasso, group Lasso, and net elastic
penalties. Alhamzawi and Yu [9, 20], Ji et al. [21], and Chen
et al. [22] extended stochastic search variable selection (SSVS)
methods in mean regression to quantile regression. Benoit et al.
[23] proposed the Bayesian hierarchical model for variable
selection and estimation in the context of binary quantile
regression. Oh et al. [10] proposed an alternative Bayesian
variable selection method in quantile regression using the
Savage–Dickey density ratio. Many studies on theoretical aspects
of quantile regression were also discussed by Muharisa et al.
[24] and Yanuar et al. [25]. Muharisa et al. [24] provided the
capability of the Bayesian quantile method in handling non-
normal problems; meanwhile, Yanuar et al. [25] considered the
simulation study to describe the capability of the quantile method
in handling a heteroscedastic problem.

This study focuses on constructing the best model of
LBW by comparing the performance of modification to the
quantile regression method, i.e., Bayesian quantile regression
(BQR), Bayesian Lasso quantile regression (BLQR), and Bayesian
Adaptive Lasso quantile regression (BALQR). The primary data
set of birth weight in West Sumatera was used in this study.
The algorithm’s acceptability for implementing all three methods
is also tested by a simulation study with three conditions for
error considered. The rest of the article is organized as follows.
In Section 2, we provide information on the data used for
this study. Section 3 presents a description of the Bayesian
quantile regression and Bayesian quantile regression with Lasso
and Adaptive Lasso. Section 4 contains the results of this study,
consisting of a simulation study to examine the performance of

TABLE 1 | The bias and width of 95% Bayes credible interval for heteroscedastic

normal, ei ∼ (1+ x1)N(0, 1)*.

Quantile τ Method β̂1 β̂2 β̂3

Absolute Width Width Width

Bias 95% of Absolute 95% of Absolute 95% of

Bayes Bias Bayes Bias Bayes

CI CI CI

0.25 BQR 0.014 0.283 0.037 0.253 0.094 0.338

BLQR 0.013 0.285 0.034 0.260 0.082 0.341

BALQR 0.010 0.273 0.032 0.270 0.091 0.333

0.50 BQR 0.013 0.282 0.036 0.257 0.093 0.335

BLQR 0.013 0.288 0.034 0.259 0.087 0.341

BALQR 0.010 0.277 0.032 0.258 0.089 0.332

0.75 BQR 0.013 0.280 0.036 0.257 0.095 0.333

BLQR 0.012 0.289 0.034 0.258 0.087 0.340

BALQR 0.010 0.277 0.032 0.258 0.089 0.332

0.95 BQR 0.014 0.286 0.041 0.269 0.089 0.333

BLQR 0.014 0.283 0.038 0.254 0.087 0.334

BALQR 0.010 0.274 0.034 0.262 0.091 0.332

*The smallest values are written in boldface.

TABLE 2 | The bias and width of 95% Bayes credible interval for autocorrelated

error, ei ∼ sin(seq(0.1π , 18.3π , 0.1π )+ Zi ) with Z ∼ (0, 0.1)*.

Quantile τ Method β̂1 β̂2 β̂3

Absolute Width Width Width

Bias 95% of Absolute 95% of Absolute 95% of

Bayes Bias Bayes Bias Bayes

CI CI CI

0.25 BQR 0.126 0.287 0.012 0.300 0.122 0.286

BLQR 0.121 0.296 0.013 0.298 0.125 0.271

BALQR 0.120 0.282 0.006 0.306 0.125 0.288

0.50 BQR 0.127 0.289 0.015 0.297 0.123 0.284

BLQR 0.122 0.300 0.014 0.296 0.123 0.269

BALQR 0.120 0.283 0.005 0.306 0.122 0.287

0.75 BQR 0.127 0.289 0.017 0.297 0.123 0.280

BLQR 0.122 0.302 0.014 0.293 0.125 0.268

BALQR 0.119 0.284 0.005 0.307 0.122 0.285

0.95 BQR 0.139 0.289 0.064 0.302 0.124 0.285

BLQR 0.135 0.297 0.066 0.301 0.126 0.270

BALQR 0.134 0.282 0.061 0.290 0.129 0.274

*The smallest values are written in boldface.

the proposed methods and modeling of LBW in West Sumatera,
Indonesia. Finally, brief conclusions are given in Section 5.

2. METHODOLOGY

Statistical analysis used in this study is a modification to
quantile regression since the size sample is moderate, with
150 observations. Three kinds of the modified quantile
regressionmethods are considered, namely, the Bayesian quantile
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TABLE 3 | The bias and width of 95% Bayes credible interval for non-normal, ei ∼ 0.1t1 + 0.9t3*.

Quantile Method β̂1 β̂2 β̂3

τ Absolute Width of Absolute Width of Absolute Width of

Bias 95% Bias 95% Bias 95%

Bayes CI Bayes CI Bayes CI

0.25 BQR 0.241 0.845 0.129 0.949 0.074 0.785

BLQR 0.246 0.867 0.104 0.945 0.080 0.753

BALQR 0.232 0.831 0.094 0.964 0.101 0.773

0.50 BQR 0.243 0.846 0.130 0.958 0.070 0.783

BLQR 0.246 0.844 0.111 0.942 0.086 0.754

BALQR 0.232 0.836 0.097 0.953 0.095 0.780

0.75 BQR 0.245 0.846 0.130 0.961 0.070 0.783

BLQR 0.249 0.838 0.107 0.940 0.082 0.754

BALQR 0.232 0.834 0.097 0.943 0.097 0.782

0.95 BQR 0.240 0.851 0.134 0.950 0.072 0.785

BLQR 0.245 0.850 0.110 0.938 0.084 0.751

BALQR 0.232 0.846 0.093 0.940 0.098 0.777

*The smallest values are written in boldface.

regression, the Bayesian Lasso quantile regression, and the
Bayesian Adaptive Lasso quantile regression.

2.1. Bayesian Quantile Regression
Suppose that y = (y1, y2, . . . , yn)

′
is a response variable for

subjects i = 1, 2, . . . , n, and that x = (x1, x2, . . . , xp)
′
is covariate.

For 0 < τ < 1, let Qyi(τ |xi) denote the τ -th quantile regression
function of yi with associated p dimensional vector of covariates
xi. The quantile regression function is expressed in the form of
Qyi(τ |xi) = xTi β , for i = 1, 2, . . . , n, where β is a p × 1 vector
of coefficients for indicator variables that depend on τ . Then, a
linear quantile regression model can be expressed as

yi = xTi β + ei, i = 1, 2, ..., n. (1)

Here, ei is the error term whose distribution is restricted so much
that τ -th quantile is equal to zero. Then, quantile regression
estimation for β is obtained by minimizing

min
∑

i

ρτ (yi − xTi β), (2)

where ρτ (u) is the check function defined by

ρτ (u) = u(τ − I(u < 0)). (3)

Here, I(.) is an indicator function that takes the value of unity
when I(.) is true and zero otherwise and here u = yi − xTi β .
However, this indicator function is not differentiable at zero,
and explicit solutions tominimization problems are unobtainable
[26, 27]. In quantile regression methods, linear programming is
often implemented for parameter estimation.

Yu and Moyeed [27] found that minimizing the expression
(2) is equivalent to maximizing a likelihood function formed

by combining the independently distributed asymmetric
Laplace error distribution. The asymmetric Laplace distribution
is employed in likelihood distribution in order to make
Bayesian estimation more natural and effective [27, 28], since
this distribution is a possible parametric link between the
minimization problem in Equation (2) and maximum likelihood
theory. Therefore, a random variable εi is said to be distributed
as a skewed Laplace distribution with density [29].

fτ (ei) = δτ (1− τ ) exp(−δρτ (ei)), (4)

where δ is a scale parameter. It is also known that the mean
and variance of the asymmetric Laplace distribution are given
respectively by

E(ei) =
1− 2τ

τ (1− τ )
and Var(ei) =

1− 2τ + 2τ 2

τ 2(1− τ )2
. (5)

One property of the asymmetric Laplace distribution is
this distribution can be represented with various mixture
representations. The Gibbs sampling algorithm is then utilized
for Bayesian analysis of the quantile regression model based
on a skewed Laplace distribution’s theoretical derivation. The
mixture of the exponential and normal distribution of the skewed
Laplace distribution allows efficient Gibbs sampling [29–31].
More specifically let

e = θz + ξφ
√

z/δ, (6)

where

θ = 1− 2τ

τ (1− τ )
and φ2 = 2

τ (1− τ )
. (7)
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FIGURE 1 | Convergence diagnostics of parameter β̂1 for heteroscedasticity error when τ = 0.25 using Bayesian Adaptive Lasso quantile regression: (A) Trace plot,

(B) density plot, and (C) autocorrelation plot.

Equation (1) and (6) lead to

yi = xTi βτ + θzi + ξiφ
√

zi/δ, i = 1, 2, ..., n. (8)

The random variables zi and ξi are mutually independent.
Variable zi is exponentially distributed with a mean of 1/δ.
Variable ξi is a standard normal distribution. Thus, the
conditional distribution of yi given zi is normally distributed with
a mean xTi β+θzi and variance φ2zi. Then the quantile regression
model here is represented as a normal regression model. This
representation provides an easy way to construct a Gibbs sampler
and save time in sampling the regression coefficients.

2.2. Bayesian Quantile Regression With
Lasso and Adaptive Lasso
One crucial problem in building a quantile regression model
is the selection of predictors. The prediction accuracy is often
improved by choosing an appropriate subset of predictors.
It is often desired to identify a smaller subset of predictors
from a large set of predictors to obtain better interpretation
in practice. There have been active studies on the sparse
representation of linear regression. Li et al. [19] showed that

the least absolute shrinkage and selection operator (Lasso)
technique could simultaneously perform variable selection and
parameter estimation. The Lasso estimate, which is also known
as an L1-regularized least squares estimate, involves the sum
of the coefficients’ absolute values as the penalty. This L1-
regularized has the advantage of simultaneously controlling
the fitted coefficients’ variance and performing the automatic
variable selection. The Lasso estimates are defined as Alhamzawi
and Yu [9, 20] and Zou [32].

minβ

n
∑

i=1

ρτ (yi − xTi β)+ λ ‖ β ‖, (9)

where λ > 0 is a regularized parameter that controls the degree
of penalization. The second term in the expression (9) is an
L1-regularized term, which could be interpreted as a Bayesian
posterior mode estimate under independent Laplace priors
for the coefficients. As a nonnegative regularization parameter
λ increases, the Lasso estimates continuously the shrinks
quantile regression coefficient toward zero. The appropriate prior
distribution for βk ∈ β(k = 1, ..., p) is Laplace distribution,
defined as follows
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FIGURE 2 | Convergence diagnostics of parameter β̂1 for autocorrelated error when τ = 0.25 using Bayesian Adaptive Lasso quantile regression: (A) Trace plot, (B)

density plot, and (C) autocorrelation plot.

p(βk | δ, λ) = δλ

2
exp(−δλ | βk |). (10)

Here, it is assumed that the residuals εi have a skewed Laplace
distribution as represented in Equation (4). Then, we employed
the Bayesian Adaptive LASSO quantile regression (BALQR) to
estimate the unknown parameter model. The penalty function in
(9) can be made “adaptive” by choosing different shrinkages for
different coefficients:

minβ

∑n
i=1 ρτ (yi − xTi β)+

∑p

k=1
λk | βk |,

where λk > 0 is the tuning parameter for the kth coefficient. Here,
the new proposed Laplace prior for βk is formed by

p(βk | δ, λk) =
δ1/2

2λk
exp

(

−δ1/2 | βk |
λk

)

. (11)

This equation can be represented as a scale mixture of normal
with an exponential mixing density [29, 33, 34].

a

2
e−a|t| =

∫ ∞

0

1√
2πs

exp

(

− t2

2s

)

a2

2
exp

(−a2

2
s

)

ds, a > 0.

(12)

Let ak = δ1/2

λk
. The prior distribution for βk is expressed in

the form

p(βk | δ, λk) =
δ1/2

2λk
exp

(

−δ1/2 | βk |
λk

)

= ak

2
exp(−ak | βk |)

=
∞
∫

0

1√
2πsk

exp

(

−
β2
k

2sk

)

a2
k

2
exp

(

−a2
k

2
sk

)

dsk,

or in the form

p(βk | δ, λ2k) =
∞
∫

0

1√
2πsk

exp

(

−
β2
k

2sk

)

δ

2λ2
k

exp

(

−δ

2λ2
k

sk

)

dsk.

(13)
Then, we consider the class of inverse gamma priors on λ2

k
of

the form

p(λ2k | σ , ρ) = ρσ

Ŵ(σ )
(λ2k)

−1−σ exp

(

− ρ

λ2
k

)

, σ > 0, ρ > 0.

(14)
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FIGURE 3 | Convergence diagnostics of parameter β̂1 for non-normal error when τ = 0.25 using Bayesian Adaptive Lasso quantile regression: (A) Trace plot, (B)

density plot, and (C) autocorrelation plot.

By combining Equations (13) and (14), we obtain the
posterior density function of λ2

k
is inverse gamma with

shape parameter 1 + σ and rate parameter
δsk

2
+ ρ. The

value of two hyperparameters σ and ρ affect the amount
of shrinkage in the prior Equation (14), e.g., larger σ and
smaller ρ lead to bigger penalization. This BALQR uses a
Laplace prior for βk such that each βk has a Lasso type

of penalization parameter
δ1/2

λk
. More detailed explanations

in formulating posterior density function for all parameter
models are written in Alhamzawi et al. [29] and Xu and Tang
[34].

To estimate credible intervals, it is not automatically valid
by constructing the posterior. Yang et al. [35] argued to employ
the Wald method based on the asymptotic approximation
to the variance-covariance matrix of the posterior sequences
to estimate the Bayes credible interval, as also reported in
Li et al. [19] and Yue and Hang [36]. In this present
study, we implemented the Wald method based on the
asymptotic approximation to the variance-covariance matrix
of the posterior sequences to estimate the Bayes credible
interval.

TABLE 4 | Summary statistics for continuous independent variables of Birth

Weight Data.

Variables Mean Standard deviation Minimum Maximum

Birth weight (Kg) 3.06 0.67 1.50 4.50

Mother’s Age (years) 30.22 6.58 18.00 44.00

Mother’s weight gain (Kg) 12.45 4.86 5.00 28.00

Hemoglobin 11.97 1.42 8.00 14.30

Last birth interval (year) 3.10 2.55 0.00 14.00

Parity (times) 1.88 0.92 1.00 7.00

Prenatal care (times) 7.93 2.37 1.00 17.00

3. RESULTS

3.1. Simulation Study
In this section, we demonstrate the application of the Bayesian,
Bayesian Lasso, and Bayesian Adaptive Lasso in quantile
regression to several different generating processes. The goal of
this simulation study here is to reveal the performance of the
proposed methods and their associated algorithm in recovering
the true parameters.
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TABLE 5 | Summary statistics of category independent variables.

Variable Frequency Percentage (%)

Maternal education

Low (Junior high school and below) 34 22.7

Middle (Senior high school) 57 38.0

High (University) 59 39.3

Maternal Occupation

Government employee 33 22.0

Housewife 77 51.3

Others 40 26.7

Residence

Urban 96 64.0

Rural 54 36.0

The number of pregnancy problems

More than one problem 29 19.3

One problem 52 34.7

No problem 69 46.0

Sex of the baby

Female 70 46.7

Male 80 53.3

For the proposed model, the MCMC simulations were
implemented in R version 3.6.1 [37]. In this simulation study,
the response variable yi is generated from the following
regression model.

yi = β0 + β1xi1 + β2xi2 + β3xi3 + ei, i = 1, ..., 150,

where each covariate xik is simulated from a standard normal
distribution and β = (5, 1.5, 3). Three different distributions for
ei were considered: (i) heteroscedastic normal, (1 + x1)N(0, 1),
(ii) autocorrelated error, sin(seq(0.1π , 18.3π , 0.1π) + Z) with
Z (0, 0.1), (iii) nonnormal error, the mixture of two Student’s
t distribution, 0.1t(1) + 0.9t(3). For each choice of the error
distribution, we employed a Bootstrap resampling method with
100 simulations were carried out. In each simulation, 150
observations were generated. Four different values of the given
quantile τ = 0.25, 0.50, 0.75, and 0.95 were considered. To
assess the sampling efficiency of the proposed algorithm, the
Monte Carlo standard errors for each βk, k = 1, 2, 3 were
calculated by running the Gibbs sampler for 5,000 iterations with
an initial burn-in of 1,000 iterations to lessen the effect of initial
simulations. The process resulted in 4,000 final posterior samples
for each regression parameter. Then the width of 95% Bayes
credible interval was estimated for each selected quantile for each
proposed method. The absolute bias is also estimated when the
estimates of β̂k were compared with the true value of βk. The
results are summarized in Tables 1–3.

Table 1 presents the results of all three proposed methods
at several selected quantiles (i.e., τ = 0.25, τ = 0.50, τ =
0.75, and τ = 0.95). The table also presents the absolute
bias and the width of 95% Bayes credible interval. The table
shows that all proposed methods yielded very similar results. The
table shows that, in general, Bayesian Adaptive Lasso quantile

FIGURE 4 | Estimate coefficients for birth weight with 95% CI.

regression performs well compared to two other methods, BLQR
and BQR.

Table 2 shows the results for autocorrelated errors. The
table informs us that all proposed methods yielded almost
similar values for corresponding quantiles. In general, BALQR
performed best among the three methods because of the number
of the smallest values of the entries.

Table 3 presents the absolute bias and the width of 95%
Bayes credible interval for the three-parameter models of a
nonnormal error condition. The results show that all values of
the absolute Bias for corresponding quantiles are almost similar.
Note that BALQR yielded the smallest values among the other
three methods except for β̂3. The Bayes credible intervals for all
proposed methods at the same quantiles are almost similar. In
general, the credible interval for BALQR is narrower than the
other two methods.

The results concerning three different error distributions
inform us of two things. First, although the performance of
all the three methods proposed in this study is very close in
general, the Bayes Adaptive Lasso quantile regression method
performs better than the Bayes Lasso quantile regression and
Bayes quantile method. Second, the BALQR method is robust
to the error distribution assumptions, such as the normality
assumption, the homogeneous assumption, or the non-correlated
assumption.We assumed that the BALQR tends to produce more
suitable values for the parameter estimated than other methods.

For the next analysis, we have to evaluate our algorithm’s
convergence used in the BALQR method. We use convergence
diagnostics such as the posterior plots (trace plot and density
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TABLE 6 | The estimate mean and width of 95% Bayes credible interval for empirical data at quantile τ = 0.10, 0.25, and 0.50.

Indicator Frequencies Modified quantile regression method

Variables Method

QR BQR BLQR BALQR

I II I II I II I II

Quantile τ = 0.10

Middle 0.825* 1.309 0.709* 0.845 0.595* 0.784 0.613* 0.861

High 0.725* 1.353 0.557* 0.835 0.468* 0.801 0.488* 0.872

One problem –0.050 1.231 –0.215 0.614 –0.236 0.676 –0.176 0.651

No problem 0.475* 0.944 0.305* 0.588 0.381* 0.537 0.409* 0.510

Parity 0.125* 0.199 0.138* 0.171 0.119* 0.184 0.116* 0.170

Quantile τ = 0.25

Middle 0.380* 1.430 0.376* 0.584 0.219 0.562 0.261* 0.568

High 0.380* 1.431 0.362* 0.629 0.168 0.597 0.207* 0.618

One problem 0.080 1.532 –0.029 0.686 –0.092 0.556 –0.072 0.551

No problem 0.320* 1.328 0.326* 0.539 0.221 0.592 0.253* 0.509

Parity 0.180* 0.189 0.147* 0.172 0.123* 0.173 0.133* 0.165

Quantile τ = 0.50

Middle 0.200 0.932 0.265* 0.552 0.078 0.463 0.135 0.497

High 0.300* 0.936 0.361* 0.579 0.149 0.527 0.219 0.522

One problem 0.000 0.998 0.064 0.562 –0.001 0.446 0.024 0.475

No problem 0.300* 0.866 0.326* 0.447 0.216* 0.434 0.276* 0.424

Parity 0.100* 0.157 0.098* 0.147 0.066 0.144 0.081* 0.143

*Significant at α = 0.05.

I = Estimate Mean.

II = Width of 95% Bayes CI.

The bold values indicate the smallest values.

plot) and autocorrelation analysis. Figures 1–3 present the trace
plot, density plot, and autocorrelation plot of β̂1 at quantile
τ = 0.25 for all three conditions of error, i.e., heteroscedastic
normal, autocorrelated error, and non-normal error, respectively.
The author saves other plots for limited space.

As shown in the trace plots in Figures 1A, 2A, and 3A that
all generated samples lie within two parallel horizontal lines,
centered at respective values, and no trends are detected. The
histograms of marginal posteriors in Figures 1B, 2B, and 3B

above inform us that the conditional posterior distributions
are the desired stationary univariate normal. All posterior
distributions shrink at the true parameter value (trace plot and
density plot). Furthermore, Figures 1C, 2C, and 3C inform that
the decrease in the empirical autocorrelation of posterior samples
proves that the underlying chains are stationary.

The results obtained from these convergence diagnostics
indicate that our algorithm used in the BALQR approach
could produce adequate and acceptable values of the
estimated parameter.

3.2. Modeling Low Birth Weight
3.2.1. Sample Data

The analysis is applied to the primary data related to Birth weight.
The data was collected by distributing the online questionnaires
from February to April 2020 to mothers who just delivered a

singleton live birth and living in West Sumatera, Indonesia. In
total, 150 respondents with complete information were involved
in the analysis.

This study uses Birth weight, recorded in kilograms, as a
response variable and 11 indicator variables, consisting of 6
variables in continuous type and five variables in categorical
types. The continuous indicator variables were the Mother’s
age, Mother’s weight gain (during pregnancy), Hemoglobin,
Last birth interval, Parity, and Prenatal care. Meanwhile,
the categorical indicator variables were Maternal education,
Maternal occupation, Residence, Number of pregnancy
problems, and Sex of the baby. Maternal education was divided
into three levels; Low, Middle, and High level, where the
Low level was set as a reference category, so coefficients were
interpreted relative to this category. The Maternal occupation
was classified into three categories, i.e., Government employee,
Housewife, and Others. A Residence was categorized as Urban
or Rural. Many pregnancy problems were categorized into
three types: More than one problem, One problem, and No
problem, where More than One problem was used as the
reference category.

Table 4 displays the summary statistics for the continuous

independents of the sample. The mean Birth weight data is 3.06,
with the mean Mother’s age being 30.22 years old. The average

Mother’s weight gain is 12.45 Kg and the mean of Hemoglobin
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is 11.97. On average, the mother’s Last birth interval was 3.10

years ago. The mean of Parity is 1.88 times, and the mother had
Prenatal care on average is 7.93 times.

While Table 5 presents the summary statistics for categorical

independents of the sample. In terms of Maternal educational

attainment, 22.7% of mothers have a Low school education, 38%
are Middle school, and 39.3 are University or College graduates.

For the Maternal occupation variable, more than half of the
mother’s status is a Housewife (51.3%), 22.0% is a Government

employee, and Others are 26.7%. More than half of mothers
(64%) are living in urban areas. In terms of The number of
pregnancy problems, most mothers have No problem while
pregnancy (46%), 34.7% have One problem, and 19.3% have
More than one problem. For the gender of babies, 46.7% are girls
and 53.3% are boys.

3.2.2. Construction of LBW Model

In the preliminary analysis, we did several tests on the Birth
weight model. Based on the test, it informs that the error of our
model is violated by normality assumption and homoscedasticity.
Then the quantile regression model between the response Birth
weight and the eleven predictors without intercept was applied.
In this empirical study, the frequentist quantile regression model
is also employed for comparison purposes. The same equation
shown in (1) is used here. The wild bootstrap method, as
proposed by Feng et al. [38] and Yanuar and Zetra [39], was
implemented for the quantile regression to get the parameter
estimated. The procedures to use the wild bootstrap are as
follows:

1. Fitting Equation (1) to the data to obtain the parameter vector
of β̂ and the residual êi for i = 1, . . . , n.

2. Generate the weight wi from an appropriate distribution and
let e∗i = wi | êi |.

3. Calculate the bootstrap sample as y∗i = xTi β̂ + e∗i .
4. Refit Equation (1) to the bootstrap sample and denote the

bootstrap estimated by β̂∗.
5. Repeat Steps 2–4 until 100 times and estimate the mean and

the variance of the 100 copies of β̂∗.

In constructing the proposed model, we did any model
combination and compared it to obtain the best and most
acceptable model, including allowing a model’s simplicity (results
for model comparison are available upon request).

Hence, our reduced model only involved the significant
indicator variables, namely, Maternal education (consisting of
3 categories), The number of pregnancy problems (with three
categories), and Parity. Thus, we consider the following quantile
regression (QR) model:
Birth weighti =
β1 Education (Middle)i + β2 Education (High)i + β3 Problems

(Oneproblem)i +
β8 Problems (No problem)i + β9 Parityi + εi;

Figure 4 displays the quantile with CI estimated at any
sequence quantiles shown with the grey area. The straight and
dashed red line provides the OLS (Ordinary Least Square)

estimated mean with its upper bound and lower bound for a
95% CI. This figure informs us that the width of 95% confidence
interval based on OLS estimated seems to appear similar to
quantiles, especially at lower quantiles.

Table 6 summarizes the results for the estimatedmean and the
width of the 95% CI obtained based on quantile regression with
the wild Bootstrap resampling method and modified quantile
regression (BRQ, BLQR, and BALQR). Since LBW is focused on
low quantiles, quantile t = 0.10, 0.25, and 0.50 were selected.

For the QR model at all selected quantiles τ , the 95% CI of
the quantile is wider than each modified quantile method. These
results have been predicted as the sample size is relatively small
for the QR method (150 observations). Thus, in this analysis, QR
does not produce an adequate model. ANOVA test also yielded
that at selected quantile, the significant different due between
quantile and respectively modified quantile. Furthermore, we
could look at this table that at 0.10th quantile, all indicator
variables for QR and modified QR are significantly difference
from zero at the 5% level except for No problem. We also
conclude here that BALQR tends to yield the shortest 95% CI
among others.

The interpretation of the proposed model yielded based on
BALQR is the 0.10th quantile (or percentile) of Birth weight
for Middle is 0.613 Kg higher than Low, hold all else constant.
The 0.10th quantile of Birth weight for High is 0.488 Kg
higher than Low, assumed all else constant. Besides, the 0.10th
quantile of Birth weight for No problem is 0.409 Kg higher
than More than one problem. The impact of Parity on Birth
weight is greater, for every increment of 1 unit of Parity, the
Birth weight will increase by 0.116 Kg with assumptions else
constant. A similar interpretation for model BALQR at 0.25th
and 0.50th quantile could be created as well, except for No
problem (not significant). While the 0.50th quantile for all four
dummy variables is not significantly different from zero at the 5%
level, only Parity. Parity, as a continuous variable, has a significant
impact on Birth weight.

The next analysis is the convergency test for all estimated
parameters. Figure 5 shows the diagnostic plots for Middle at the
0.25th quantile for illustrative purposes. The author saves other
plots because of limited space.

4. CONCLUSION

The study yields the acceptable model of LBW in West
Sumatera, Indonesia, after doing a comparative study between
three modification methods in quantile regression. The strength
of the quantile method is that it can model the predictors’
effects on the different quantiles of the response variable. It
can accommodate non-normal errors since it is insensitive to
heteroscedasticity and outliers. The quantile method’s limitation
requires a big sample size, and therefore, a quantile method
should then be modified by combining it with the Bayesian
approach. Under the Bayesian quantile regression approach,
the parameter model is estimated by minimizing the check
function, equivalent to maximizing a likelihood function formed
by combining independently distributed asymmetric Laplace
error distribution. This technique is robust to model small
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FIGURE 5 | Convergence diagnostics of parameter β̂1 (Middle) at τ = 0.25 using Bayesian Adaptive Lasso quantile regression: (A) Trace plot, (B) density plot, and

(C) autocorrelation plot.

to moderate-sized samples and can handle any cases with
violated normal assumptions. Generally, the Bayesian method
needs no assumptions.

Even though many studies have been done on determining
the LBW, no studies have been done on the modeling of the
LBW model using a comparison of Bayesian quantile and its
modification in this study. Not many studies have been done
on constructing LBW using all 11 indicator variables as done in
this present study. The indicators that are found significant in
determining the LBW considered in this study are the mother’s
education at three levels: Middle, High, and Low level (as
reference category), The number of pregnancy problems was
categorized into three types: One problem, No problem, and
More than one problem (as reference category), and Parity. These
results are also linear with previous studies, such as research by
Silvestrin et al. [5] and Yanuar et al. [18]. Here, the low birth
weight model was constructed by involving 150 respondents. We
assumed that these respondents were representing the condition
of other mothers who just have a baby and living in West
Sumatera. Based on data, we found that these size samples have
met the requirement of sample adequacy. But, we argue to future
research to use at least 200 samples to avoid misleading in such
implementation of the quantile regression approach.

In this present study, we implemented the Wald method
based on the asymptotic approximation to the variance-
covariance matrix of the posterior sequences to estimate
the Bayes credible interval. Based on simulation study and
empirical study, it was proved that the Bayesian Adaptive
Lasso quantile regression results in the smallest absolute
Bias and the shortest 95% Bayes credible interval than
the other two methods. This present study also gives a
paramount significance to the attention of policymakers
and decision-making organizations related to maternal
pregnancy health to improve the adequacy of prenatal
care use, facilitate the development of culturally sensitive
interventions to enhance nutritional status and health of
maternal pregnancy.
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