
ORIGINAL RESEARCH
published: 20 April 2022

doi: 10.3389/fams.2022.880086

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 April 2022 | Volume 8 | Article 880086

Edited by:

Min Wang,

University of Texas at San Antonio,

United States

Reviewed by:

Muhammad Suhail,

University of Agriculture,

Peshawar, Pakistan

Zakariya Yahya Algamal,

University of Mosul, Iraq

*Correspondence:

Mohamed R. Abonazel

mabonazel@cu.edu.eg

Specialty section:

This article was submitted to

Statistics and Probability,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 21 February 2022

Accepted: 14 March 2022

Published: 20 April 2022

Citation:

Dawoud I, Abonazel MR and

Awwad FA (2022) Generalized

Kibria-Lukman Estimator: Method,

Simulation, and Application.

Front. Appl. Math. Stat. 8:880086.

doi: 10.3389/fams.2022.880086

Generalized Kibria-Lukman
Estimator: Method, Simulation, and
Application
Issam Dawoud 1, Mohamed R. Abonazel 2* and Fuad A. Awwad 3

1Department of Mathematics, Al-Aqsa University, Gaza, Palestine, 2Department of Applied Statistics and Econometrics,

Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, Egypt, 3Department of Quantitative Analysis,

College of Business Administration, King Saud University, Riyadh, Saudi Arabia

In the linear regression model, the multicollinearity effects on the ordinary least squares

(OLS) estimator performance make it inefficient. To solve this, several estimators are

given. The Kibria-Lukman (KL) estimator is a recent estimator that has been proposed to

solve the multicollinearity problem. In this paper, a generalized version of the KL estimator

is proposed, along with the optimal biasing parameter of our proposed estimator derived

by minimizing the scalar mean squared error. Theoretically, the performance of the

proposed estimator is compared with the OLS, the generalized ridge, the generalized

Liu, and the KL estimators by the matrix mean squared error. Furthermore, a simulation

study and the numerical example were performed for comparing the performance of

the proposed estimator with the OLS and the KL estimators. The results indicate

that the proposed estimator is better than other estimators, especially in cases where

the standard deviation of the errors was large and when the correlation between the

explanatory variables is very high.

Keywords: generalized liu estimator, multicollinearity, generalized ridge estimator, biasing parameter, ridge-type

estimator

INTRODUCTION

The statistical consequences of multicollinearity are well-known in statistics for a linear regression
model. Multicollinearity is known as the approximately linear dependency among the columns of
the matrix X in the following linear model

y = Xβ + ε, ε ∼ N
(

0, σ 2In
)

(1)

where y is an n × 1 vector of the given dependent variable, X is a known n × p matrix of the
given explanatory variables, β is an p× 1 vector of given unknown regression parameters, and ε is
described as an n × 1 vector of the disturbances. Then, the ordinary least squares (OLS) estimator
of β for the model (1) is given as:

β̂ = (X′X)−1X′y

The multicollinearity problem effects on the behavior of the OLS estimator make it inefficient.
Sometimes, it produces wrong signs [1, 2]. Many studies were conducted to handle this. For
example, Hoerl and Kennard [2] proposed the ordinary ridge and the generalized ridge (GR)
estimators, while Liu [3] introduced the popular Liu and the generalized Liu (GL), and very
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recently, Kibria and Lukman [1] proposed a ridge-type estimator
called the Kibria–Lukman (KL) estimator which is defined by

β̂KL = (X′X + kIp)
−1(X′X − kIp)β̂ , k > 0

This estimator has been extended for use in different generalized
linear models, such as Lukman et al. [4, 5], Akram et al. [6], and
Abonazel et al. [7].

According to recent papers [8–10], we can say that the
efficiency of any bias estimator will increase if the estimator
is modified or generalized using bias parameters that vary
from observation to observation in the sample (ki and/or di)
rather than in fixed bias parameters (k and/or d). Hence, the
main purpose of this paper is to develop a general form of
the KL estimator to combat the multicollinearity in the linear
regression model.

The rest of the discussion in this paper is structured as
follows: Section Statistical Methodology presents the statistical
methodology. In Section Superiority of the Proposed GKL
Estimator, we theoretically compare the proposed general form
of the KL estimator with each of the mentioned estimators. In
Section The Biasing Parameter Estimator of the GKL Estimator,
we give the estimation of the biasing parameter of the proposed
estimator. Different scenarios of the Monte Carlo simulation
are done in Section A Monte Carlo Simulation Study. A real
data is used in Section Empirical Application. Finally, Section
Conclusion presents some conclusions.

STATISTICAL METHODOLOGY

Canonical Form
The canonical form of the model in equation (1) is used
as follows:

y = Zα + ε (2)

where Z = XR, α = R
′

β , and R is an orthogonal matrix such that
Z′Z = R′X′XR = G = diag(g1, g2, . . . , gp). Then, the OLS of α

is as:

α̂ = G−1Z′y (3)

and the matrix mean squared error (MMSE) is given as,

MMSE
(

α̂
)

= σ 2G−1 (4)

Ridge Regression Estimators
The OR and the GR of αare, respectively, defined as follows [2]:

α̂OR = W1Gα̂ (5)

α̂GR = W2Gα̂ (6)

where W1 = [G + kIp]−1, k > 0 and W2 = [G + K]−1, with
K = diag(k1, k2, ..., kp), ki > 0, and i = 1, 2, ..., p.

The MMSE of the OR and the GR are given respectively as:

MMSE(α̂OR) = σ 2W1GW1
′
+ (W1G− Ip)αα′(W1G− Ip)

′ (7)

MMSE(α̂GR) = σ 2W2GW2
′
+ (W2G− Ip)αα′(W2G− Ip)

′ (8)

Liu Regression Estimators
The Liu and the GL of αare respectively defined as follows [3]:

α̂Liu = F1α̂ (9)

α̂GL = F2α̂ (10)

where

F1 = [G+ Ip]
−1[G+ dIp], 0 < d < 1 and F2 = [G+ Ip]

−1

[G+ D], with D = diag(d1, d2, ..., dp) and 0 < di < 1.

The MMSE of the Liu and the GL are, respectively, given as:

MMSE(α̂Liu) = σ 2F1G
−1F1

′
+ (F1 − Ip)αα′(F1 − Ip)

′ (11)

MMSE(α̂GL) = σ 2F2G
−1F2

′
+ (F2 − Ip)αα′(F2 − Ip)

′ (12)

Kibria–Lukman Estimator
The KL estimator of αis given as Kibria and Lukman [1]:

α̂KL = W1M1α̂ (13)

whereM1 = [G−kIp] and theMMSE of this estimator is given as:

MMSE(α̂KL) = σ 2W1M1G
−1M1

′W1
′

+[W1M1 − Ip]αα′[W1M1 − Ip]
′ (14)

The Proposed GKL Estimator
Now, by replacingW1 withW2 andM1 withM2 = [G−K] in the
KL estimator, we obtain the general form of the GKL estimator
as follows:

α̂GKL = W2M2α̂ (15)

then, the MMSE of the proposed GKL estimator is computed by,

MMSE(α̂GKL) = σ 2W2M2G
−1M2

′W2
′
+ [W2M2 − Ip]

αα′[W2M2 − Ip]
′ (16)

SUPERIORITY OF THE PROPOSED GKL
ESTIMATOR

In this section, we make a comparison of the proposed GKL
estimator with each of OLS, GR, GL, and KL estimators. First,
we offer some useful lemmas for our comparisons of estimators.

Lemma1:Wang et al. [11]: SupposeM andN are n×n positive
definite matrices, thenM > N if and only if (iff) λ − 1max, where
λ − 1max is the maximum eigenvalue of NM−1 matrix.

Lemma 2: Farebrother [12]: Let S be an n× n positive definite
matrix. That is, S > 0 and α be some vector. Then, S − αα

′

> 0
iff α′S−1α < 1.

Lemma 3: Trenkler and Toutenburg [13]: Let αi = Uiw,
i = 1, 2 be any two linear estimators of α. Suppose that Q =

Cov(α̂1)−Cov(α̂2) > 0, where Cov(α̂i), i = 1, 2 be the covariance
matrix of α̂i and bi = Bias(α̂i) = (UiX − I)α. Then,

1
(

α̂1 − α̂2
)

= MMSE
(

α̂1
)

−MMSE
(

α̂2
)

= σ 2Q

+b1b1
′
− b2b2

′ > 0 (17)
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iff b2
′[σ 2Q+b1

′b1]−1b2 < 1 whereMMSE(α̂i) = Cov(α̂i)+ bibi
′

Theorem 1: α̂GKL is superior to α̂ iff

α′[W2M2 − Ip]
′[σ 2(G−1

−W2M2G
−1M2

′W2
′)]

[W2M2 − Ip]α < 1 (18)

Proof : The covariance matrices difference is written as

Difference = σ 2 (

G−1
−W2M2G

−1M2
′W2

′
)

= σ 2diag

{

1

gi
−

(gi − ki)2

gi(gi + ki)2

}p

i=1
(19)

where G−1 − W2M2G
−1M2

′W2
′ becomes positive definite iff

(gi + ki)2 − (gi − ki)2 > 0 or (gi + ki) − (gi − ki) > 0. It is
clear that for ki > 0, i = 1, 2, ..., p, (gi + ki)− (gi − ki) = 2ki > 0.
Therefore, this is done using Lemma 3.

Theorem 2:When λ − 1max, α̂GKL is superior to α̂GR iff

α′[W2M2 − Ip]
′[V1 + (W2G− Ip)αα′(W2G− Ip)

′]

[W2M2 − Ip]α < 1 (20)

λ − 1max (21)

where V1 = σ 2(W2GW2
′ − W2M2G

−1M2
′W2

′), N =

W2KG
−1KW2

′, andM = 2W2KKW2
′.

Proof :

V1 = σ 2 (

W2GW2
′
−W2M2G

−1M2
′W2

′
)

= σ 2 (

W2GW2
′
−W2 (G− K)G−1 (G− K)W2

′
)

= σ 2
(

2W2KKW
′

2 −W2KG
−1KW2

′
)

= σ 2(M − N)

For ki > 0, it is obvious thatM > 0 and N > 0. Then,M − N >

0 iff λ − 1max, where λ − 1max is the maximum eigenvalue of
NM−1. So, this is done by Lemma 1.

Theorem 3: α̂GKL is superior to α̂GL iff

α′[W2M2 − Ip]
′[V2 + (F2 − Ip)αα′(F2 − Ip)

′][W2M2 − Ip]

α < 1 (22)

where V2 = σ 2(F2G−1F2
′ −W2M2G

−1M2
′W2

′).
Proof : The covariance matrices difference is written as

V2 = σ 2 (

F2G
−1F2

′
−W2M2G

−1M2
′W2

′
)

= σ 2diag

{

(gi + di)2

gi(gi + 1)2
−

(gi − ki)2

gi(gi + ki)2

}p

i=1
(23)

where F2G−1F2
′ − W2M2G

−1M2
′W2

′ becomes positive definite
iff (gi + ki)2(gi + di)2 − (gi − ki)2(gi + 1)2 > 0 or (gi + ki)(gi +
di) − (gi − ki)(gi + 1) > 0. So, if ki > 0 and 0 < di < 1,
(gi+ki)(gi+di)−(gi−ki)(gi+1) = ki(2gi+di+1)+gi(di−1) > 0.
So, this is done by Lemma 3.

Theorem 4: α̂GKL is superior to α̂KL iff

α′[W2M2 − Ip]
′[V3 + (W1M1 − Ip)αα′(W1M1 − Ip)

′]

[W2M2 − Ip]α < 1 (24)

where V3 = σ 2(W1M1G
−1M1

′W1
′ −W2M2G

− 1M2
′W2

′).
Proof : The covariance matrices difference is written as

V3 = σ 2 (

W1M1G
−1M1

′W1
′
−W2M2G

−1M2
′W2

′
)

= σ 2diag

{

(gi − k)2

gi(gi + k)2
−

(gi − ki)2

gi(gi + ki)2

}p

i=1
(25)

whereW1M1G
−1M1

′W1
′ −W2M2G

−1M2
′W2

′ becomes positive
definite iff (gi + ki)2(gi − k)2 − (gi − ki)2(gi + k)2 > 0 or
(gi + ki)(gi − k)− (gi − ki)(gi + k) > 0. So, if ki > 0 and ki > k,
(gi + ki)(gi − k)− (gi − ki)(gi + k) = 2gi(ki − k) > 0. So, this is
done by Lemma 3.

THE BIASING PARAMETER ESTIMATOR
OF THE GKL ESTIMATOR

The performance of any estimator depends on its biasing
parameter. Therefore, the determination of the biasing parameter
of an estimator is an important issue. Different studies analyzed
this issue (e.g., [2, 3, 8–10, 14–24]).

Kibria and Lukman [1] proposed the biasing parameter
estimator of the KL estimator as follows:

k̂ = min

{

σ̂ 2

[(σ̂ 2/gi)+ 2α̂2
i ]

}p

i=1

(26)

Here, we find the estimation of the optimal values of ki for the
proposed GKL estimator. The optimal values of ki are obtained
by minimizing

MMSE(α̂GKL) = E[(α̂GKL − α)′
(

α̂GKL − α
)

],

m(k1, k2, ..., kp) = tr(MMSE(α̂GKL), and

m(k1, k2, ..., kp) = σ 2
p

∑

i=1

(gi − ki)2

gi(gi + ki)2
+

p
∑

i=1

4k2i α
2
i

(gi + ki)2
(27)

Differentiating m(k1, k2, ..., kp) with respect to ki and setting

[
∂m(k1,k2 ,...,kp)

∂ki
] = 0, the optimal values of ki after replacing σ 2

and α2
i by their unbiased estimators become as follows:

k̂i =
σ̂ 2

((σ̂ 2/gi)+ 2α̂2
i )
, i = 1, 2, ..., p (28)

A MONTE CARLO SIMULATION STUDY

The explanatory variables are generated as follows [25–27]:

xji = (1− ρ2)
1
2 aji + ρajp, j = 1, 2, ..., n, i = 1, 2, ..., p (29)

where aji are the independent pseudo-random numbers that
have the standard normal distribution and ρ is known that
the correlation between two given explanatory variables. The
dependent variable y are given by:

yj = β1xj1 + β2xj2 + . . . + βpxjp + εj, j = 1, 2, . . . , n (30)
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TABLE 1 | The factors’ values of the simulation study.

Factor Symbol Levels

Sample size n 50, 100, 150

Standard deviation σ 1, 5, 10

Degree of correlation ρ 0.8, 0.9, 0.99

Explanatory variables number p 3, 7

Replicates number MCN 5,000

TABLE 2 | Estimated mean squared error (EMSE) values of the estimators when

p = 3.

n σ ρ OLS KL GKL

50 1 0.8 0.1249 0.1094 0.1548

0.9 0.2260 0.1829 0.2738

0.99 2.0641 1.1439 1.1208

5 0.8 3.1235 1.7550 1.6052

0.9 5.6491 2.8600 2.4774

0.99 51.6036 22.2378 17.6275

10 0.8 12.4940 6.2898 5.3865

0.9 22.5965 10.5775 8.7621

0.99 206.4144 87.8850 69.2762

100 1 0.8 0.0605 0.0557 0.0701

0.9 0.1107 0.0964 0.1373

0.99 1.0308 0.6454 0.7558

5 0.8 1.5118 0.9306 0.9509

0.9 2.7663 1.5097 1.4056

0.99 25.7697 11.3736 8.9376

10 0.8 6.0471 3.1436 2.7244

0.9 11.0651 5.2952 4.3648

0.99 103.0788 44.4958 34.4270

150 1 0.8 0.0420 0.0393 0.0469

0.9 0.0768 0.0687 0.0928

0.99 0.7125 0.4700 0.6113

5 0.8 1.0497 0.6763 0.7487

0.9 1.9189 1.0893 1.0826

0.99 17.8124 7.7631 6.1352

10 0.8 4.1988 2.2214 1.9830

0.9 7.6756 3.6905 3.1029

0.99 71.2496 29.9827 23.1604

For each case, the smallest EMSE value is bolded.

where εj are the i.i.dN(0, σ 2). The values of β are given such that
β ′β = 1 as discussed in Dawoud and Abonazel [28], Algamal
and Abonazel [29], Abonazel et al. [7, 30], and Awwad et al. [31].
Also, all factors that used in the simulation are given in Table 1.

In order to see the performance of the OLS, KL, and
the proposed GKL estimators with their biasing parameters
estimators presented in Section Statistical Methodology, the
estimated mean squared error (EMSE) are calculated for each
replicate with different values of σ , ρ, n, and p using the

TABLE 3 | EMSE values of the estimators when p = 7.

n σ ρ OLS KL GKL

50 1 0.8 0.4143 0.3129 0.4302

0.9 0.6792 0.5399 0.6831

0.99 7.3867 3.9941 3.0983

5 0.8 10.3568 5.5139 4.1882

0.9 19.4796 10.0849 7.4658

0.99 184.6673 92.8175 66.6994

10 0.8 41.4272 21.1839 15.5082

0.9 77.9186 39.4124 28.5547

0.99 738.6690 370.3048 265.3667

100 1 0.8 0.1766 0.1529 0.2137

0.9 0.3322 0.2702 0.3652

0.99 3.1561 1.9888 1.7020

5 0.8 4.4159 2.7275 2.2455

0.9 8.3060 4.8911 3.8358

0.99 78.9019 43.6091 32.3890

10 0.8 17.6638 10.1544 7.7808

0.9 33.2240 18.6747 14.0582

0.99 315.6077 173.4003 128.2151

150 1 0.8 0.1105 0.0992 0.1341

0.9 0.2081 0.1773 0.2504

0.99 1.9769 1.3108 1.2036

5 0.8 2.7632 1.7804 1.5371

0.9 5.2014 3.1588 2.5389

0.99 49.4224 27.3769 20.2601

10 0.8 11.0529 6.4542 4.9732

0.9 20.8054 11.8006 8.8790

0.99 197.6896 108.306 79.6545

For each case, the smallest EMSE value is bolded.

TABLE 4 | Estimated coefficients and mean squared error (MSE) values of the

estimators.

Estimator β̂1 β̂2 β̂3 β̂4 MSE

OLS 2.1930 1.1533 0.7585 0.4863 0.0638

KL 2.1764 1.1572 0.7465 0.4888 0.0629

GKL 2.1653 1.1613 0.7312 0.4904 0.0620

following formula:

EMSE(α∗) =
1

MCN

MCN
∑

l=1

(α∗
l − α)′(α∗

l − α) (31)

where α∗
l
is the estimated vector of α at the lth experiment of

the simulation.
The EMSE values of the OLS, KL, and GKL estimators are

presented in Tables 2, 3. We can conclude the following based
on the simulation results:

1. When the standard deviation (σ), the degree of
multicollinearity (ρ), and the explanatory variables number
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(p) get an increase, the EMSE values of estimators get
an increase.

2. The EMSE values of estimators get a decrease in case of the
sample size gets an increase.

3. TheGKL is better than theOLS estimator in all different values
of factors except when σ = 1 and ρ = 0.80, 0.90 with the
considered values of p and n.

4. The GKL is better than the KL estimator in all different values
of factors except the following cases: (i) for n = 50 when
σ = 1 and ρ = 0.80, 0.90 with p = 3 or 7, (ii) for n = 100, 150
when σ = 1 in all presented values of ρ with p = 3 or when
σ = 5 and ρ = 0.80 with p = 3, and (iii) for n = 100, 150
when σ = 1 and ρ = 0.80, 0.90 with p = 7.

5. Finally, we see that the proposed GKL estimator is obviously
efficient in case of the standard deviation getting large and
when the correlation among the explanatory variables are
very high.

EMPIRICAL APPLICATION

For clarifying the performance of the proposed GKL estimator,
the dataset of the Portland cement that was originally due
to Woods et al. [32], which was considered in Kibria and
Lukman [1], where the dependent variable is the heat evolved
after 180 days of curing and measured in calories per gram of
cement. In this study, the first explanatory variable is tricalcium
aluminate, the second explanatory variable is tricalcium silicate,
the third explanatory variable is tetracalcium aluminoferrite,
and the fourth explanatory variable is β-dicalcium silicate.
The eigenvalues of X′X matrix are 44,676.21, 5,965.42, 809.95,
and 105.42. Then, the condition number is 20.58. Therefore,
multicollinearity exists among the predictors. The estimated
error variance is σ̂ 2 = 5.84, which shows high noise in the
data. The estimated values of the optimal parameters in the
GKL estimator are calculated as derived in Section Statistical
Methodology. Also, the equation proposed by Kibria and
Lukman [1] for estimating the biasing parameter of the KL
estimator is used. Consequently, the mean square error (MSE)

of the OLS, KL, and GKL estimators are presented in Table 4.
From Table 4, we can note that the KL estimator is better than
the OLS estimator, and the GKL estimator is better than the OLS
and KL estimators.

CONCLUSION

In this paper, we proposed the GKL estimator. The performance
of the proposed GKL estimator is theoretically compared with
the OLS, GR, GL, and KL estimators in terms of known matrix
mean squared error. Moreover, the optimal shrinkage parameter
of the proposed GKL estimator is presented. A simulation study
and the numerical example were performed for comparing the
performance of the proposed GKL estimator with the OLS
and KL estimators based on the estimated mean squared error
criterion. The results indicate that the proposed estimator is
better than other estimators, in particular, in the case the standard
deviation of the errors was large and when the correlation
between the explanatory variables is very high.
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